
N-dimensional Vaidya metric with a cosmological constant in double-null coordinates

Alberto Saa*
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A recently proposed approach to the construction of the Vaidya metric in double-null coordinates for
generic mass functions is extended to the n-dimensional (n > 2) case and to allow the inclusion of a
cosmological constant. The approach is based on a qualitative study of the null geodesics, allowing the
description of light cones and revealing many features of the underlying causal structure. Possible
applications are illustrated by explicit examples. Some new exact solutions are also presented and
discussed. The results presented here can simplify considerably the study of spherically symmetric
gravitational collapse and mass accretion in arbitrary dimensions.
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I. INTRODUCTION

The Vaidya metric [1] is a solution of Einstein’s equa-
tions for a spherically symmetric body with a unidirec-
tional radial null fluid. It has been used in the analysis of
spherically symmetric collapse and the formation of naked
singularities for many years (for references, see the exten-
sive list of [2] and also [3]). It is also known that the Vaidya
metric can be obtained from the Tolman metric by taking
appropriate limits in the self-similar case [4]. This result
has shed some light on the nature of the so-called shell-
focusing singularities [5], as discussed in detail in [2,6–8].
The Vaidya metric has also proved to be useful in the study
of Hawking radiation and the process of black-hole evapo-
ration [9–12], in the stochastic gravity program [13], and,
more recently, in the quasinormal modes analysis of vary-
ing mass black holes [14,15].

The n-dimensional Vaidya metric is required in many
physically relevant situations. The study of the gravita-
tional collapse in higher dimensional spacetimes [16], for
instance, has contributed to the elucidation of the forma-
tion, nature, and eventual visibility of singularities. This
last topic belongs to the realm of Penrose’s celebrated
cosmic censorship conjecture, see, e.g., [3] for references.
Higher dimensional varying mass black holes are also
central protagonists in the new phenomenological models
with extra dimensions [17]. These objects might be ob-
tained in the LHC at CERN [18] and, once produced, they
are expected to decay driven by the emission of Hawking
radiation. The analysis of their quasinormal modes can
help the understanding of the dynamics of the evaporation
process, and could even lead to some observational signs
[15].

The inclusion of a cosmological constant � in the
n-dimensional Vaidya metric is mainly motivated by the
recent intensive activities in the AdS/CFT and dS/CFT
conjectures; see [19] for some references. A cosmological
constant is also necessary to allow the discussion of the

n � 3 case in the same framework of the higher dimen-
sional cases.

The n-dimensional Vaidya metric was first discussed in
[20]. It can be easily cast in n-dimensional (n > 3, the
three-dimensional case will be discussed later) radiation
coordinates �w; r; �1; . . . ; �n�2� [16]:

 ds2 � �

�
1�

2m�v�

�n� 3�rn�3

�
dv2 � 2cdrdv� r2d�2

n�2;

(1)

where c � �1 and d�2
n�2 stands for the metric of the unity

�n� 2�-dimensional sphere, assumed here to be spanned
by the angular coordinates ��1; �2; . . . ; �n�2�,

 d�2
n�2 �

Xn�2

i�1

�Yi�1

j�1

sin2�j

�
d�2

i : (2)

For the case of an ingoing radial flow, c � 1 and m�v� is a
monotone increasing mass function in the advanced time
v, while c � �1 corresponds to an outgoing radial flow,
with m�v� being, in this case, a monotone decreasing mass
function in the retarded time v. The four-dimensional
Vaidya metric with a cosmological constant in the radiation
coordinates has been considered previously in [21].

It is well known that the radiation coordinates are de-
fective at the horizon [22], implying that the Vaidya metric
(1) is not geodesically complete in any dimension. (See
[23] for a discussion about possible analytical extensions.)
Besides, the cross term drdv can introduce unnecessary
oddities in the hyperbolic equations governing the evolu-
tion of physical fields on spacetimes with the metric (1).
Typically, the double-null coordinates are far more conve-
nient. This was the main motivation of Waugh and Lake’s
work [24], where the problem of casting the four-
dimensional Vaidya metric with � � 0 in double-null
coordinates is considered. As all previous attempts to con-
struct a general transformation from radiation to double-
null coordinates have failed, they followed Synge [25] and
considered Einstein’s equation with spherical symmetry in
double-null coordinates ab initio. The resulting equations,*asaa@ime.unicamp.br
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however, are not analytical solvable for generic mass
functions. Waugh and Lake’s work was recently revisited
in [26], where a semianalytical approach allowing for
generic mass functions was proposed. Such an approach
consists in a qualitative study of the null geodesics, allow-
ing the description of light cones and revealing many
features of the underlying causal structure. It can be used
also for more quantitative analyses; indeed, it has already
enhanced considerably the accuracy of the quasinormal
modes analysis of four-dimensional varying mass black
holes [14,15], and it can also be applied to the study of
gravitational collapse [26]. We notice that another method
to construct conformal diagrams based on a systematic
study of the null geodesics was also recently proposed in
[27].

Here, we extend the approach proposed in [26] to the
n-dimensional (n > 2) case with the cosmological constant
�. Some new exact solutions are also presented. For n � 3,
notably, a crucial nonlinearity can be circumvented and the
problem can be reduced to the solution of a second order
linear ordinary differential equation, opening the possibil-
ity for analytical study of large classes of mass functions.
We generalize one of Waugh and Lake’s exact solutions by
introducing the case corresponding tom�v� / vn�3, n > 3,
describing a naked or shell-focusing singularity in an
n-dimensional spacetime. We also present some explicit
examples of the use of the semianalytical approach to the
study of the causal structure of some particular solutions.

In the next section, the main equations are derived and
the exact solutions are presented. Section III is devoted to
the introduction of the semianalytical approach. Some
explicit examples are presented, particularly the two ap-
parent horizons case of an evaporating black hole in a de
Sitter spacetime and the BTZ [28] black hole undergoing a
finite time interval mass accretion process. The last section
is left to some concluding remarks. This work also has two
appendixes. The first one presents explicitly the
n-dimensional geometrical quantities necessary to repro-
duce the equations of Sec. II, and the last contains the
polynomial manipulations involved in the calculations of
the apparent horizons of Secs. II and III.

II. THE METRIC

The n-dimensional spherically symmetric line element
in double-null coordinates (u; v; �1; . . . ; �n�2) is given by

 ds2 � �2f�u; v�dudv� r2�u; v�d�2
n�2; (3)

where f�u; v� and r�u; v� are nonvanishing smooth func-
tions. We adopt here the same conventions of [24,25]. In
particular, the indices 1 and 2 stand for the differentiation
with respect to u and v, respectively.

The energy-momentum tensor of a unidirectional radial
null fluid in the eikonal approximation is given by

 Tab �
1

8�
h�u; v�kakb; (4)

where ka is a radial null vector. We will consider here,
without loss of generality, the case of a flow along the v
direction. The case of simultaneous ingoing and outgoing
flows in four dimensions has already been considered in
[29]. Einstein’s equations are less constrained in such a
case, allowing the construction of some exact similarity
solutions, which, incidentally, can also be generalized to
the n-dimensional case in the light of the present work.

Einstein’s equations with a cosmological constant �,

 Rab �
1
2gabR � ��gab � 8�Tab; (5)

imply that, for the energy-momentum tensor (4),

 R �
2n
n� 2

�: (6)

Using (6) and (A6), Einstein’s equations for the metric
(3) and the energy-momentum tensor (4) read

 

f1

f
�
r11

r1
� 0; (7)

 

f2

f
�
r22

r2
�

h
n� 2

r
r2
; (8)

 

f1f2

f2 �
f12

f
� �n� 2�

r12

r
� �

2�

n� 2
f; (9)

 2�rr12 � �n� 3�r1r2� � �n� 3�f �
2�

n� 2
fr2: (10)

For n � 3, differentiating Eq. (10) with respect to u and
then inserting Eq. (7) leads to

 

rn�2r12

f
�

2�

�n� 2��n� 1�
rn�1 � �A; (11)

where A�v� is an arbitrary integration function. The n � 3
case will be considered below. Now, differentiating
Eq. (10) with respect to v and using (8) and (11) gives

 h � �
�
n� 2

n� 3

�
fA2

rn�2r1

: (12)

Equation (7) is ready to be integrated,

 f � 2Br1; (13)

where B�v� is another arbitrary integration (and nonvan-
ishing) function. From (12) and (13), one has

 h � �2
�
n� 2

n� 3

�
B
A2

rn�2 : (14)

Finally, by using (10) and (13), Eq. (11) can be written as

 r2 � �B
�
1�

2A

�n� 3�rn�3 �
2�

�n� 2��n� 1�
r2

�
: (15)
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Note that (9) follows from Eqs. (13) and (15). Einstein’s
equations are, therefore, equivalent to Eqs. (13)–(15),
generalizing the results of [24,26].

In order to interpret physically the arbitrary integration
functions A�v� and B�v�, let us transform from the double-
null coordinates back to the radiation coordinates by means
of the coordinate change �u; v� ! �r�u; v�; v�. Such a
transformation casts (3) in the form

 ds2 � 4Br2dv2 � 4Bdrdv� r2d�2
n�2; (16)

where (13) was explicitly used. Comparing (1) and (16)
and taking into account (15), it is clear that with the choice

 B � �
1

2

A2

jA2j
; (17)

for A2 � 0, the function A�v� should represent the mass of
the n-dimensional solution, suggesting the following
n-dimensional generalization of the mass definition based
on the angular components of the Riemann tensor proposed
for � � 0 in [30]:

 m �
n� 3

2
rn�3R�1�k�1

�k ; (18)

k > 1; see (A5) and (15). Note that, for constant A, the
choice of the function B�v� is irrelevant since it can be
absorbed by a redefinition of v. Note also that the weak
energy condition applied for (4) requires, from (14), that
BA2 � 0. Since B must be nonvanishing from (13), A�v�
must be a monotone function.

The Kretschmann scalar K � RabcdR
abcd could also be

invoked to interpret the integration function A. Taking into
account Eqs. (13) and (15), we have from (A8)

 K � 4
�n� 1��n� 2�2

�n� 3�

A2

r2�n�1�
�

8n

�n� 1��n� 2�2
�2:

(19)

It is clear from (19) that r � 0 is a singularity for A � 0
and that A acts as a gravitational source placed at r � 0.

The problem now may be stated in the same way as the
four-dimensional � � 0 case [26]: given the mass function
A�v� and the constant B, one needs to solve Eq. (15), giving
rise to the function r�u; v�. Then, f�u; v� and h�u; v� are
calculated from (13) and (14). The arbitrary function of u
appearing in the integration of (15) must be chosen prop-
erly [24] in order to have a nonvanishing f�u; v� function
from (13). Unfortunately, as stressed earlier by Waugh and
Lake [24], such a procedure is not analytically solvable in
general. They, nevertheless, were able to find some regular
solutions for Eqs. (13)–(15) for n � 4 and � � 0, namely,
the linear [A�v� � �cv] and a certain exponential [A�v� �
1
� �� exp��cv=2� � 1�] mass functions (�, �, and � are
positive constants, c � �1, corresponding to ingoing/out-
going flow, respectively). The four-dimensional linear
mass case was also considered in [8] in great detail and

in a more general situation (the case of a charged radial null
fluid). In [26], another four-dimensional exact solution
corresponding to A�v� � �=v and � � 0 was also pre-
sented and discussed. These are the only varying mass
analytical solutions obtained in double-null coordinates
so far. We notice, however, that Kuroda was able to con-
struct a transformation from radiation to double-null coor-
dinates for some other particular mass functions in four
dimensions [10].

In the following section, we will present a semianalyt-
ical procedure to attack the problem of solving Eqs. (13)–
(15) for general mass functions obeying the weak energy
condition, generalizing in this way the results of [26]
obtained for n � 4 and � � 0. The approach allows us
to construct qualitatively conformal diagrams, identifying
horizons and singularities, and also to evaluate specific
geometric quantities. First, however, we notice that
Waugh and Lake’s solution corresponding to A�v� � �cv
can also be generalized for n dimensions. Let us consider
the mass function

 A�v� � �vn�3; (20)

v � 0, � > 0. For this mass function and � � 0, with the
choice (17), Eq. (15) reads

 r2 �
1

2
�

�
n� 3

�
v
r

�
n�3

; (21)

which can be integrated as

 lnv�
Z �r=v��

s�
1

2
�

�
n� 3

s��n�3�

�
�1
ds � D�u�; (22)

where D�u� is an arbitrary integration function, implying,
from Eq. (13), that

 f � �
vn�2D1

rn�3

��
r
v

�
n�2
�

1

2

�
r
v

�
n�3
�

�
n� 3

�
: (23)

The integration functionDmust be chosen in order to have
a regular f. As in the four-dimensional case originally
considered by Waugh and Lake, we have three qualita-
tively distinct cases: 0< �< �cn, � � �cn, and � > �cn,
where

 �cn �
�
n� 3

2�n� 2�

�
n�2

: (24)

For � > �cn, for instance, the quantity inside the square
brackets in (23) does not vanish; see Appendix B. The
integral in (22) can be (numerically) evaluated and, for
instance with Waugh and Lake’s choice D�u� � �u,
r�u; v� can also be (numerically) determined. The resulting
causal structures are the same ones as Waugh and Lake’s
four-dimensional cases. We will construct the relevant
conformal diagrams for the three qualitatively distinct
cases as an application of the semianalytical approach.
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The three-dimensional case

In lower dimensional (n < 4) spacetimes, the Riemann
tensor is completely determined by its traces, namely, the
Ricci tensor and the scalar curvature, implying some quali-
tative distinct behavior for the solutions of Einstein’s equa-
tions in these situations [31]. For n � 3, Eq. (10) reads

 

rr12

f
��r2 � 0: (25)

It is interesting to compare this last equation with (11).
Equation (13) is still valid and, by using it, Eq. (25) can be
easily integrated,

 r2 ��Br2 � C; (26)

where C is an arbitrary integration function which we call,
by convenience, C�v� � �B�v�A�v�, leading to

 r2 � �B��A��r2�; (27)

which corresponds to the three-dimensional counterpart of
Eq. (15). Equation (9) for n � 3 also follows from (13) and
(27). As for the n-dimensional case, by using (13) and (27),
one gets from (8) the last equation,

 h � �B
A2

r
: (28)

One can show that the integration functions A and B have
the same physical interpretation as the higher dimensional
cases by introducing the radiation coordinates. We have for
the three-dimensional case

 ds2 � ��2B�2��A��r2�dv2 � 4Bdrdv� r2d�2:

(29)

It is clear that, with the choice (17) for B, the function A
plays the role of the BTZ black-hole mass [28] (�< 0 in
this case). Note, however, that for n � 3 there is no purely
angular components of the Riemann tensor and, therefore,
there is no equivalent of the mass definition (18). The
Kretschmann scalar in this case reads simply

 K � 12�2: (30)

In fact, if terms involving distributions are take into ac-
count properly, curvature invariants such as K reveal that
the origin for the BTZ black hole is a conical singularity
(see, for a recent rigorous analysis, [32]).

In contrast with the n-dimensional case, the nonlinearity
present in (27) can be easily circumvented. Let us consider
A2 > 0, B � �1=2, and � � �1=‘2 (other cases follow
straightforwardly). By introducing the linear second order
ordinary differential equation

 w00�v� �
A�v�

4‘2 w�v� � 0; (31)

it is easy to show that

 r�u; v� � �2‘2 P�u�w
0
a�v� � w0b�v�

P�u�wa�v� � wb�v�
(32)

is the solution of (27), where wa�v� and wb�v� are the two
linearly independent solutions of (31), and P�u� is an
arbitrary function. The second order linear equation (31)
has an analytical solution in closed form for many func-
tions A�v�. For instance, for A�v� / v� [or A�v� / exp�v],
� 2 R, Eq. (31) is equivalent to the Bessel equation, after
an appropriate redefinition of v (v! v��=2�1� or v!
e�v=2). Even for the case where no solution in closed
form can be obtained, the main analytical properties of
w�v� can be inferred easily from (31) due to its linearity.

III. SEMIANALYTICAL APPROACH

We review here the semianalytical approach proposed in
[26] for the solution of Eq. (15) [or, analogously, (27) for
the three-dimensional case]. First, notice that in double-
null coordinates the light cones correspond to the hyper-
surfaces with constant u or constant v. One can, in this
case, deduce the causal structure of a given spacetime by
considering the set of null geodesics corresponding to u �
constant or v � constant. The function r�u; v�, obtained as
the solution of (15) with a careful choice of initial con-
ditions [24,26], also has a clear geometrical interpretation:
it is the radius of the �n� 2�-dimensional sphere defined
by the intersection between the hypersurfaces u �
constant and v � constant. Once r�u; v� is obtained from
(15), f�u; v� and h�u; v� can be calculated directly from
Eqs. (13) and (14), giving all the information about the
spacetime in question. Incidentally, Eq. (15) along constant
u, and, consequently, along a portion of the light cone, is a
first order ordinary differential equation in v. One can
evaluate the function r�u; v� in any spacetime point by
solving the v-initial value problem starting with r�u; 0�.
For instance, the usual constant curvature empty space-
times (A � 0) can be obtained by choosing r�u; 0� � u=2,
leading to

 

Z r

r0

�
1�

2�

�n� 2��n� 1�
s2

�
�1
ds �

1

2
�v� u�: (33)

As is expected, for the n-dimensional de Sitter case (�>
0), r �

����������������������������������������
�n� 2��n� 1�=2�

p
corresponds to a cosmologi-

cal horizon. The condition r1�u; 0� � 0 is sufficient to
assure that f�u; v� � 0 everywhere [26].

Let us focus now on the solutions r�v� � r� �u; v� of (15),
considered as a first order ordinary differential equation in
v for constant u � �u, keeping in mind that they indeed
describe how r� �u; v� varies along the u � �u portion of the
light cone and, thus, that they are closely related to the
causal structure of the underlying spacetime. This situation
is shown schematically in Fig. 1.
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For n > 3, the curves defined by

 �
2�

�n� 2��n� 1�
rn�1 � rn�3 �

2A�v�
n� 3

(34)

correspond (if they indeed exist) to the frontiers of certain
regions of the �v; r� plane where the solutions r�v� of (15)
have qualitative distinct behaviors. For the de Sitter case,
(34) can define two nonintersecting curves, whereas for the
anti–de Sitter case (�< 0) there is only one curve. (See
Appendix B.) Let us suppose, for instance, a de Sitter case
with A2�v�> 0 and B � �1=2. (Outgoing radiation flows,
three-dimensional spacetimes, or the anti–de Sitter case
follow in a straightforward manner.) Let us call rEH�v� and
rCH�v� the curves defined by (34); see Fig. 2. Because of
(15), for all points of the plane �v; r� below rEH�v�, r2 < 0.
Hence, any solution r�v� entering in this region will, un-

avoidably, reach the singularity at r � 0, with finite v.
Suppose a given solution ri�v� with the initial condition
ri�0� � ri enters into the region below rEH�v�. As for
smooth A, the uniqueness of solutions for (15) is guaran-
teed for any point with r > 0; any solution starting at
r�0�< ri is confined to the region below ri�v� and will
also reach the singularity at r � 0, with finite v. On the
other hand, suppose that a given solution re�v� with the
initial condition re�0� � re never enters into the region
below the curve rEH�v�. Solutions starting at r�0�> re
are, therefore, confined to the region above re�v� and
will escape from the singularity at r � 0. Hence, one has
two qualitatively distinct behaviors for the light cones; see
Fig. 2. For r�0�< ri, the future direction points toward the
singularity and all null geodesics eventually reach r � 0.
This is the typical situation in the interior region of a black
hole. For r�0�> re, the u � constant portion of the light
cones escapes from the singularity. The curve rEH�v� plays
the role of an apparent event horizon. For a given v, all
solutions r�v� in Fig. 2 such that r�v� � rEH�v� will be
captured by the singularity. Solutions for which r�v�>
rEH�v� are temporally free, but they may find themselves
trapped later if rEH�v� increases. The event horizon corre-
sponds to the last of these solutions trapped by the singu-
larity and is located somewhere between ri�v� and re�v�.

In the region between rEH�v� and rCH�v�, the solutions
r�v� have r2 > 0. They escape from rEH�v� and tend

r

r=
v

EH

r=0

CH
2 <0

r    2>0

r    2 <0

u

r    

v

CH

EH

v

FIG. 2. In the region below the curve rEH�v� (the apparent
event horizon), r2 < 0. Any solution r�v� of (15) that enters into
this region will reach the singularity at r � 0 with finite v.
Solutions confined to the r2 > 0 region always escape from
the singularity and tend asymptotically to rCH�v� (the apparent
cosmological horizon). The region above rCH�v� corresponds to
the cosmological exterior; any solution there also tends asymp-
totically to rCH�v�. The dashed line corresponds to the apparent
event horizon for the case of a vanishing � (the unique solution
of (34) for � � 0). The conformal diagram is inserted. [The case
depicted here corresponds to n � 5, � � 1, and A�v� � �6=5�	
tanhv, v � 0. In this work, we do not consider maximal ex-
tensions. For a discussion of the maximal conformal diagram for
de Sitter and anti–de Sitter black holes, see [39], for instance.]

II

v

v

v

v

u

οο
r=

u=u
0

(r=2m)

r=0

I

FIG. 1. The solutions r�u; v� of (15) for the Schwarzschild
case [A�v� � m; see [24]]. The dotted lines correspond to the
lines of constant r. In region I (the interior region), the values of
r decrease monotonically upward, varying from r � 2m (the
horizon corresponding to the degenerated hyperbole u � u0 and
v � v0) to the singularity r � 0. In the exterior region (II), on
the other hand, the values of r increase monotonically leftward,
varying from r � 2m to the spatial infinity r � 1. Some slices
of constant u � �u are depicted by the lines with arrows. The
values of r� �u; v� read along such lines correspond to the solu-
tions of (15) with a certain initial condition r�0� � r �u. Since the
lines of constant u are portions of the light cone, the function
r� �u; v� describes how the light cones cross the �n�
2�-dimensional spheres of radius r. In the interior region, for
instance, all null geodesics eventually reach the singularity,
whereas in the exterior the null geodesics with constant u escape
to the null infinity. Between such regions, there is an event
horizon at u � u0. We notice that all this information is coded
in the qualitative behavior of the solutions r� �u; v� for the first
order ordinary differential equation corresponding to (15) con-
sidered along constant u � �u. This is the basic idea of our
semianalytical approach.
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asymptotically to rCH�v�, which plays the role of an ap-
parent cosmological horizon. The region above rCH�v�
corresponds to the cosmological exterior. [See, for in-
stance, [33]. For A � 0, the cosmological exterior region
corresponds to the choice r0 � 1 in (33).] There, r2 < 0
and the solutions also tend asymptotically to rCH�v�. The
case where rEH�v� and rCH�v� converge to the same func-
tion gives rise to the interesting n-dimensional Nariai
solution [34].

Summarizing, since the partial differential equation (15)
for r�u; v� does not involve u explicitly, it is always pos-
sible to discover how the light cones cross the �n�
2�-dimensional spheres of radius r by exploring, in the
plane �v; r�, the solutions r� �u; v� of the first order differ-
ential equation corresponding to (15) considered on the
constant u null geodesics. From this information, one can
reconstruct the causal structure of the underlying space-
time. For typical cases, we will have some spacetime
regions where the light cones necessarily end in the singu-
larity at r � 0, whereas for some other regions it is always
possible to escape to the null infinity. The frontier of these
regions must correspond to event horizons. Let us illustrate
the approach with some explicit examples.

A. Waugh and Lake generalized solutions

As the first application of the semianalytical approach,
let us consider the generalized Waugh and Lake solutions
corresponding to the choice (20) for the mass function.
From the discussion of Sec. II, we expect three qualita-
tively distinct cases according to the value of �. In fact,
these solutions have the same causal structure for any n >
3. The frontier of the region in the �v; r� plane where all the
solutions of (21) reach the singularity at r � 0 corresponds
to the straight line

 r0�v� �
�

2�
n� 3

�
1=�n�3�

v: (35)

Taking the v derivative of (21), one gets

 r22 � �
vn�2

rn�3

�
�1�

1

2

v
r
�

�
n� 3

�
v
r

�
n�3

�
: (36)

The regions in the plane �v; r� where the solutions obey
r22 � 0 are the straight lines defined by

 

�
r
v

�
n�2
�

1

2

�
r
v

�
n�3
�

�
n� 3

� 0: (37)

One can now repeat the analysis done for the n � 4 case by
considering the three qualitatively different cases accord-
ing to the value of � and the possible solutions of (37). For
this purpose, we will consider the solutions of (21) with the
initial condition r�u; 0� / u.

For � > �cn, with �cn given by (24), Eq. (37) has no
solution and r22 < 0 for all points with v > 0. The only
relevant frontier in the plane �v; r� is the r0�v� straight line.
All solutions of (21) are concave functions and cross the

r2 � 0 line, reaching the singularity with a finite v which
increases monotonically with u. The causal structure of the
corresponding spacetime is very simple. There is no hori-
zon, and all future cones end in the singularity at r � 0.
The associated conformal diagram is depicted in Fig. 3.

For � � �cn, r22 � 0 only on the line

 rh�v� �
n� 3

2�n� 2�
v: (38)

This straight line itself is a solution of (21). All other
solutions are concave functions. Note that, in this case,
rh�v�> r0�v� for v > 0. We have two distinct qualitative
behaviors for the null trajectories along the u constant. All
solutions starting at r�0�> 0 are confined to the region
above rh�v�. They never reach the singularity; all trajecto-
ries reach I�. However, in the region below rh�v�, we have
infinitely many concave trajectories starting and ending in
the (shell-focusing) singularity. They start at r�0� � 0,
increase in the region between rh�v� and r0�v�, cross the
last line, and reach r � 0 again, with finite v. The trajec-
tory rh�v� plays the role of an event horizon, separating
two regions with distinct qualitative behavior: one where
constant u null trajectories reach I� and another where
they start and end in the singularity. This behavior is only
possible, of course, because the solutions of (21) fail to be
unique at r � 0. The relevant conformal diagram is also
shown in Fig. 3.

For 0< �< �cn, we have three distinct regions accord-
ing to the concavity of the solutions. They are limited by
the two straight lines r��v� and r��v� defined by (37). We
have r0�v�< r��v�< r��v� for v > 0. Both straight lines

r=
0

λn
cλ =

λn
cλ < 0<

λn
cλ> 

u

u

u

u

u

v

v

v

u

r−

r+

r
h

(a) (b)

(c)

r=0

r=0

r=0

r=
0

FIG. 3. Conformal diagrams corresponding to the mass func-
tion (20) and � � 0. Cases (b) and (c) exhibit naked and shell-
focusing singularities. For all cases, the curves in �v; r� are
similar to the ones presented in [26], corresponding to the n �
4 case.
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r��v� and r��v� are also solutions of (21). Between them,
solutions are convex. Above r� and below r�, solutions are
concave. The last line is the inner horizon. Inside the
horizon, the null trajectories with constant u start and
end in the singularity r � 0. The line r� is an outer
horizon. Between them, the constant u null trajectories
start in the naked singularity and reach I�. Beyond the
outer horizon, all constant u null trajectories escape the
singularity; see Fig. 3.

B. Black-hole evaporation in a de Sitter spacetime

As an example of using the semianalytical approach for
� � 0, let us consider the case of an evaporating black
hole due to Hawking radiation in a de Sitter n-dimensional
(n > 3) spacetime. The mass decreasing rate for these
n-dimensional black holes can be obtained from the
n-dimensional Stefan-Boltzmann law (see, for instance,
[35]), leading to

 

dm
du
� �am�2=�n�3� (39)

where a > 0 is the effective n-dimensional Stefan-
Boltzmann constant. Equation (39) can be immediately
integrated, leading to

 m�u� � m0

�
1�

u
u0

�
�n�3�=�n�1�

; (40)

where u0 is the lifetime of a black hole with initial mass
m0,

 au0 �
n� 3

n� 1
m�n�1�=�n�3�

0 : (41)

We recall that (39) is not expected to be valid in the very
final stages of the black-hole evaporation, where the ap-
pearance of new emission channels for Hawking radiation
[36] can induce changes in the value of the constant a, and
maybe even the usual adiabatic derivation of Hawking
radiation would not be valid anymore. We do not address
these points here. We assume that the black hole evaporates
completely (40) for all 0 � u � u0 and that m � 0 for u >
u0. Notice that, since m0 ! 1 for u! u0, a naked singu-
larity will be formed after the vanishing of the black hole
[10].

We can consider now an n-dimensional Vaidya metric
with a mass term of the form given by (40). This is the first
case of an outgoing radial flux we consider, and according
to (17), B � 1=2. However, in this case, f�u; v� has differ-
ent sign and the temporal directions for the B � �1=2 case
are now spacelike. The transformation �u; v� ! �v;�u�
restores the temporal and spatial directions [26]. One needs
to keep in mind that, for B< 0 (ingoing radiation fields), v
corresponds to the advanced time, whereas for B> 0 (out-
going radiation fields), u should correspond to the retarded
time. In this case, the equivalent of Eq. (15) for the mass
function (40) reads

 r1 �
1

2

�
1�

2m0

n� 3

�1� u=u0�
�n�3�=�n�1�

rn�3

�
2�

�n� 1��n� 2�
r2

�
; (42)

0 � u � 0. For u > u0, we have an empty n-dimensional
de Sitter spacetime. We can now apply the same procedure
we have used for the previous cases. We call rEH�u� and
rCH�u� the curves on the �u; r� plane delimiting the regions
where the solutions of (42) have qualitative distinct behav-
ior. (See Fig. 4.) In this case, since A1 < 0, the curve rEH�v�
decreases and reaches r � 0 for u � u0, corresponding to
the total vanishing of the black hole. After this point,
rCH�v� is the only horizon (a cosmological one) of this
spacetime. Before u � u0, however, some solutions of (42)
that crossed rEH�v� could reach the singularity at r � 0.
The exterior cosmological region [region of the �u; r� plane
above rCH�v�] is insensitive to the singularity. The result-
ing conformal diagram is shown in Fig. 4. It represents a
spacetime with a cosmological horizon and, in its interior,
a black hole that evaporates completely leaving behind a
naked singularity.

C. Mass accretion by BTZ black holes

As an explicit example of the n � 3 case, let us consider
a BTZ black hole [28] undergoing a mass accretion process

1 >0

r
1<0

r
1<0

οοr=

u

u

v

u

u=
u 0

r

r=0

EH

CH HC r=
0

CH

u

r

0u

EH

FIG. 4. The �u; r� plane for an evaporating black hole in an
n-dimensional de Sitter spacetime. The apparent horizons rEH�u�
and rCH�u� delimit the regions where the solutions of (42) have
qualitatively distinct behavior. Since the black hole vanishes for
u � u0, for u > u0 the only remaining horizon corresponds to
rCH�u�. The conformal diagram is inserted. For u < u0, it rep-
resents a usual black hole. For u > u0, we have the empty space
left after the vanishing of the black hole. The dashed line HC
(extension of the black-hole horizon EH) is a Cauchy horizon.
Beyond it, we have a breakdown of predictability due to the
naked singularity left by the black hole. Part of the cosmological
exterior region (the region above CH and below HC) is com-
pletely insensitive to the singularity. (The case depicted here
corresponds to n � 6, � � 5=2, and m0 � u0 � 1, u � 0.)

N-DIMENSIONAL VAIDYA METRIC WITH . . . PHYSICAL REVIEW D 75, 124019 (2007)

124019-7



during a finite time interval. The C1-class mass function

 A�v� �

8<:
mi; v <�v0;
av�3v2

0 � v
2� � b; �v0 � v � v0;

mf; v > v0

(43)

does correspond to such a situation. Here, mi and mf stand
for, respectively, the initial and final mass, and the con-
stants a � �mf �mi�=4v3

0 and b � �mf �mi�=2 are
chosen in order to have smooth matches at v � �v0. For
the BTZ case, � � �1=‘2 and the apparent horizon cor-
responding to the region of the �r; v� plane where r2 � 0 is
given simply by rEH�v� � ‘

����������
A�v�

p
; see (27). Since A2 > 0,

we adopt B � �1=2. The solutions of (27) below the curve
rEH�v� have r2 < 0, whereas the ones above have r2 > 0;
see Fig. 5. For v <�v0, and analogously for v > v0,
Eq. (27) can be easily integrated,

 

r�u; v� � ‘
������
mi
p

r�u; v� � ‘
������
mi
p � Di�u�e

����
mi
p

v=‘; (44)

where Di�u� is a monotone arbitrary integration function.
The region r > ‘

������
mi
p

is obtained by choosing Di�u�> 0,
whereas r < ‘

������
mi
p

corresponds to Di�u�< 0. In the inte-
rior region of a BTZ black hole, we see from (44) that the
constant u null geodesics reach the conical singularity at
r � 0 in a finite time given by �1=‘� ln��1=Di�u��. In
contrast with the n > 3 cases, the solutions r�v� here do
not reach r � 0 perpendicularly (see Fig. 5). For the ex-
terior region, the null geodesics can reach the spatial
infinity r � 1 also in a finite time given by �1=‘�	
ln�1=Di�u��.

The solutions r�v� for the mass function (43) are ob-
tained by matching, at v � �v0, the BTZ black hole (44)
with the accretion process corresponding to �v0 < v<
v0. This situation is depicted in Fig. 5.

IV. CONCLUSION

We considered here the problem of constructing the
n-dimensional Vaidya metric with a cosmological constant
� in double-null coordinates, generalizing the work of
[26], where a semianalytical approach is proposed to attack
the equations derived previously by Waugh and Lake [24]
for n � 4 and � � 0. Some new exact solutions are also
presented. For n � 3, in particular, the problem reduces to
the solution of the second order linear ordinary differential
equation (31), allowing the analytical study of large classes
of mass functions A�v�. As an example, for �< 0 and
A�v� � m0 �m1 tanhv,m0 >m1, Eq. (31) is equivalent to
the hypergeometric equation, after a proper redefinition of
v. This situation corresponds to a BTZ black hole with
mass m0 �m1 that accretes some amount of mass
smoothly and ends with mass m0 �m1. This kind of
smooth exact solution, with two ‘‘asymptotic BTZ’’ re-
gions (v! �1), is very interesting to the study of crea-
tion of particles in nonstationary spacetimes [37].

The generalized semianalytical approach is also useful
to the study of quasinormal modes of varying mass
n-dimensional black holes. In particular, an interesting
point is the study of the stationary regime for quasinormal
modes, described in [14], in higher dimensional space and
in the presence of a cosmological constant. The semian-
alytical approach can help the understanding of the relation
anticipated by Konoplya [38] for the quasinormal modes of
n-dimensional black holes with � � 0: !R / nr�1

0 , where
!R and r0 stand for the oscillation frequency and the black
hole radius, respectively. Some preliminary results [15]
suggest the existence of a stationary regime such that, for
slowly varying mass n-dimensional black holes, !R�v� /
nr�1

0 �v�. As another application for � � 0, we have the
dynamical formation of a Nariai solution, which could be
accomplished by choosing A�v� such that rEH�v� ! rCH�v�
for large v. These points are still under investigation.
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APPENDIX A: SOME GEOMETRICAL
QUANTITIES

We present here some geometrical quantities necessary
to reproduce the equations of Sec. II. Such quantities are
the n-dimensional (n > 2) generalization of the ones cal-
culated previously by Synge [25] and Waugh and Lake [24]
for n � 4. Only nonvanishing terms are given.

−v

r
2 >0

r
2 <0

v=
v 0 v=

−v 0

vοο
r=

u

u

I

v0

EH

r=0

EHr

r

0

 0

FIG. 5. The �v; r� plane for a BTZ black hole accreting mass
according to (43). In the region below the curve rEH�v� (the
apparent event horizon), r2 < 0. The constant u � �u null geo-
desics associated with the solutions r� �u; v� of (27) entering into
this region reach the conical singularity at r � 0 with finite v.
The null geodesics confined to the r2 > 0 region can escape from
the singularity, reaching the null and spatial infinity. The con-
formal diagram is inserted. (The case depicted here corresponds
to � � �1, B � �1=2, and mi � mf=9 � 1.)
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Recall that our n-dimensional line element is given by

 ds2 � �2f�u; v�dudv� r2�u; v�d�2
n�2; (A1)

where d�2
n�2 is the unity �n� 2� sphere, assumed here to

be spanned by the angular coordinates �i, i � 1; . . . ; �n�
2�,

 d�2
n�2 �

Xn�2

i�1

�Yi�1

j�1

sin2�j

�
d�2

i : (A2)

The Christoffel symbols are
 

�uuu �
f1

f
; �vvv �

f2

f
;

��ku�k �
r1

r
; ��kv�k �

r2

r
;

�u�k�k � r
�Yk�1

i�1

sin2�i

�
r2

f
;

�v�k�k � r
�Yk�1

i�1

sin2�i

�
r1

f
;

�
�j
�k�k
� �

1

2

� Yk�1

i�j�1

sin2�i

�
sin2�j; �k > j�

��k�j�k � cot�j; �k � j�:

(A3)

The totally covariant Riemann tensor Rabcd is given by
 

Ruvuv �
f1f2

f
� f12;

Ru�ku�k � r
�Yk�1

i�1

sin2�i

��
f1r1

f
� r11

�
;

Rv�kv�k � r
�Yk�1

i�1

sin2�i

��
f2r2

f
� r22

�
;

Ru�k�kv � r
�Yk�1

i�1

sin2�i

�
r12;

R�j�k�j�k � r2

�Yj�1

l�1

sin2�l

�� Yk�1

i�j�1

sin2�i

��
1� 2

r1r2

f

�

�k > j�:

(A4)

Using (13), we get from the purely angular components of
the Riemann tensor

 R�k�1�k�1
� 1�

r2

B
; (A5)

for any k > 1. As for the n � 4 case [30], such components
are invariant under transformations involving solely
the double-null coordinates �u; v� ! �U�u; v�; V�u; v��
and are candidates for defining the mass of the solution
for � � 0.

The Ricci tensor, obtained by the contraction Rab �
Rcab

c, is given by

 

Ruu � �n� 2�
�
f1r1

fr
�
r11

r

�
;

Ruv �
f1f2

f2 �
f12

f
� �n� 2�

r12

r
;

Rvv � �n� 2�
�
f2r2

fr
�
r22

r

�
;

R�k�k �
�Yk�1

i�1

sin2�i

��
2

f
�rr12 � �n� 3�r1r2� � �n� 3�

�
:

(A6)

Two scalar quantities are relevant for our purposes: the
scalar curvature R � gabRab and the Kretschmann scalar
K � RabcdR

abcd. They are given by
 

R�
2

f

�
f12�

f1f2

f

�
�
n� 2

r2

�
4
r1r2

f
��n� 3�

�
1�

rr12

f

��
(A7)

and
 

K � 2
�n� 1��n� 3�

r2

�
4

f2

�
r2

12 � r11r22 �
r1r2f1f2

f2

�
r22r1f1

f
�
r11r2f2

f

�
�

1

r2

�
1� 4

r2
1r

2
2

f2 �
r1r2

f

��

�
4

f2

�
f2

1f
2
2

f2 � f
2
12 � 2

f12f1f2

f

�
: (A8)

APPENDIX B: SOME POLYNOMIAL RESULTS

The evaluation of the zeros of f given by (23) involves
finding the positive roots of the polynomial

 pn�x� � xn�3

�
x�

1

2

�
� �

�
n� 3

; (B1)

for � > 0 and n > 3. The only roots of pn�x� are x � 1=2
and x � 0, the latter with multiplicity n� 3. For positive
x, pn�x�< 0 only in the interval x 2 �0; 1=2�. The minimal
value of pn�x� in such an interval corresponds to

 pn�x
p
max� � �

1

n� 3
�cn � �

1

n� 3

�
n� 3

2�n� 2�

�
n�2

; (B2)

where

 xpmax �
n� 3

2�n� 2�
; (B3)

the unique root of p0n�x� in the interval. Thus, for � > �cn,
the polynomial (B1) has no roots. For � � �cn there is only
one root (x � xpmax), while for 0< �< �cn there are two
roots, x1 and x2, with 0< x1 < xpmax < x2 < 1=2.

The determination of the curves (34) involves the evalu-
ation of the positive roots of the polynomial

 qn�x� � xn�3

�
1�

2�

�n� 1��n� 2�
x2

�
�

2A
n� 3

; (B4)
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with A > 0 and n > 3. For the anti–de Sitter case, �< 0,
the only root of qn�x� is x � 0; qn�x� and q0n�x� are both
positive for all x > 0, and, therefore, (B4) has only one
positive root. Equation (34), in this case, defines only one
curve.

On the other hand, for the de Sitter case, �> 0,
qn�x� always has three roots: x � �

����������������������������������������
�n� 1��n� 2�=2�

p
and x � 0, the last with multiplicity n� 3. Moreover,
for positive x, qn�x� � 0 only for x 2

0;

����������������������������������������
�n� 1��n� 2�=2�

p
�, and the maximum value of

qn�x� in such an interval is qn�x
q
max�, where

 xqmax �

�������������������������������
�n� 2��n� 3�

2�

s
; (B5)

the only point of the interval where q0n�x� � 0. For 0<
2A=�n� 3�< qn�x

q
max�, (B4) always has two roots, x1 and

x2, x1 < xqmax < x2. For 2A=�n� 3� � qn�x
q
max�, there is

only one root, x � xqmax, and for 2A=�n� 3�>pn�x
q
max�

there is no root at all. In this case, provided that 0<
2A=�n� 3�< qn�x

q
max�, Eq. (34) defines two curves,

rEH�v� and rCH�v� (see Fig. 2), such that rEH�v�< xqmax <
rCH�v�.

If r�v� is a curve defined by (34), its derivative is given
by

 r0�v� �
2

n� 3

A0�v�

rn�4

�
�n� 3� �

2�

n� 2
r2

�
�1
: (B6)

If �< 0, it is clear that r0�v� has the same sign of A0�v�.
For �> 0, the curves rEH�v� and rCH�v� have qualitatively
distinct behavior. Since rEH�v�< xqmax, r0EH�v� has the
same sign as A0�v�. The curve rCH�v� has the converse
behavior, since rCH�v�> xqmax.
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