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The ringdown phase following a binary black hole merger is usually assumed to be well described by a
linear superposition of complex exponentials (quasinormal modes). In the strong-field conditions typical
of a binary black hole merger, nonlinear effects may produce mode coupling. Artificial mode coupling can
also be induced by the black hole’s rotation, if the radiation field is expanded in terms of spin-weighted
spherical harmonics (rather than spin-weighted spheroidal harmonics). Observing deviations from the
predictions of linear black hole perturbation theory requires optimal fitting techniques to extract ringdown
parameters from numerical waveforms, which are inevitably affected by numerical error. So far, nonlinear
least-squares fitting methods have been used as the standard workhorse to extract frequencies from
ringdown waveforms. These methods are known not to be optimal for estimating parameters of complex
exponentials. Furthermore, different fitting methods have different performance in the presence of noise.
The main purpose of this paper is to introduce the gravitational wave community to modern variations of a
linear parameter estimation technique first devised in 1795 by Prony: the Kumaresan-Tufts and matrix
pencil methods. Using ‘‘test’’ damped sinusoidal signals in Gaussian white noise we illustrate the
advantages of these methods, showing that they have variance and bias at least comparable to standard
nonlinear least-squares techniques. Then we compare the performance of different methods on unequal-
mass binary black hole merger waveforms. The methods we discuss should be useful both theoretically (to
monitor errors and search for nonlinearities in numerical relativity simulations) and experimentally (for
parameter estimation from ringdown signals after a gravitational wave detection).
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I. INTRODUCTION

The past year witnessed a remarkable breakthrough in
numerical relativity. Many different groups were finally
able to evolve black hole binaries through the last few
cycles of inspiral, merger, and ringdown and to extract
gravitational waveforms from the evolutions [1–10]. If
numerical simulations start out at large enough separation,
it should be possible to match them with post-Newtonian
predictions for the inspiral signal. This is a very active
research area [11–13]. Studies of equal-mass merger simu-
lations starting from different orbital separations (or pro-
duced by different numerical techniques) show that,
independently of the waveform accuracy in the premerger
phase, the strong-field waveform has a ‘‘universal’’ shape.
Preliminary, ‘‘first order’’ explorations of the merger wave-
form for equal-mass black hole binaries indicate that the

merger phase is short-lived, lasting only �0:5–0:75 gravi-
tational wave (GW) cycles [12]. After this short merger the
signal has the typical ‘‘ringdown’’ shape—i.e., it is well
modeled by a superposition of complex exponentials,
known as quasinormal modes (QNMs).

QNMs play a role in any astrophysical process involving
stars and black holes. Oscillations of a relativistic star and
of a black hole necessarily produce GWs [14–16]. In linear
perturbation theory the metric perturbations can usually be
described by a single scalar function, which, in the ring-
down phase, can be written as a superposition of complex
exponentials:

 �lm�t� �
X
n

Almne
��lmn�i!lmn�t�i’lmn : (1.1)

Here Almn, ’lmn, !lmn, and �lmn � ���1
lmn are the mode’s

amplitude, phase, frequency, and damping time, respec-
tively. The indices �l; m� describe the angular dependence
of the signal, and the index n sorts the modes by the
magnitude of their damping time. The amplitude and phase
is determined by the specific process exciting the oscilla-
tions. Remarkably, in linear perturbation theory the QNM
frequencies !lmn and damping times �lmn are uniquely
determined by the mass and angular momentum of the
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black hole: this is a consequence of the so-called ‘‘no-hair’’
theorem of general relativity. For this reason, accurate
QNM measurements could provide the ‘‘smoking gun’’
for black holes and an important test of general relativity
in the strong-field regime (see e.g. [17], listing the domi-
nant QNM frequencies for rotating black holes and provid-
ing fits of the numerical results).

In the GW literature it is often claimed that ‘‘the ring-
down phase is well described by (linear) black hole per-
turbation theory, and that the ringdown waveform is given
by a simple superposition of damped exponentials’’ of the
form (1.1). This statement is based on two tacit assump-
tions, that may well be false under the strong-field con-
ditions typical of a binary black hole merger:

(i) Nonlinearities are negligible, so that linear perturba-
tion theory applies. However, nonlinear effects
should be present in binary black hole merger wave-
forms. Model problems show that nonlinearities are
responsible for a systematic shift in the quasinormal
frequencies and, more interestingly, for mode cou-
pling [18].

(ii) Mode coupling is negligible. Even if assumption (i)
above is valid and nonlinear effects are small, differ-
ent multipolar components can still be coupled. For
example, artificial mode coupling can arise because
of some commonly used approximations in the wave
extraction process.1

An important open problem in the interpretation of
merger waveforms is to isolate general relativistic nonline-
arities from artificial effects induced by unwanted features
of the numerical simulations, such as finite-differencing
errors, errors due to the approximate nature of initial data,
or spurious rotational QNM coupling induced by the use of
spin-weighted spherical harmonics in GW extraction. All
of these effects depend on the details of the numerical
implementation and of the wave extraction procedure.
The ultimate goal of GW detection is to assess the validity
of general relativity in the strong-field regime, so the
relevance of this problem can hardly be underestimated.
Understanding nonlinear phenomena unique to general
relativity is of paramount importance if we want to dis-
criminate Einstein’s theory from alternative theories of
gravity, that may give different predictions in strong-field
situations. Since most of the strong-field waveform can be

described as a QNM superposition, strong-field effects
could well show up in the fine structure of this QNM
superposition: in particular, nonlinearities may manifest
themselves as time variations of the ringdown frequencies,
or as beating phenomena between different QNMs.

In this paper we take a first step towards the solution of
this problem. We consider intrinsic limitations of the fitting
routines used to extract quasinormal ringing parameters,
exploring the properties of different fitting techniques for
the extraction of ringdown parameters from numerical
waveforms. This issue can be studied independently of
the details of any given merger simulation. The idea is
that, by quantifying the limitations of a given fitting
method, we should be able to isolate systematic uncertain-
ties (due to the fact that we are fitting noisy numerical
waveforms) from possibly more interesting physical fea-
tures of the waveforms themselves.

The problem of estimating the parameters of complex
exponentials in noise has a long history in science and
engineering. Damped sinusoidal signals are the ‘‘real-
world counterpart’’ of the harmonic oscillators used in
Fourier analysis. Therefore, estimating the parameters of
damped sinusoids is of primary importance in physics.
Examples include (i) speech and audio modeling [21], (ii) -
angle-of-arrival estimation of plane waves impinging on
sensor arrays for radar purposes or radio-astronomy, and
antennae array processing [22], (iii) estimation of lifetimes
and intensities in radioactive decay [23], (iv) nuclear mag-
netic resonance and computer assisted medical diagnosis
[24]. This list can be extended to include spectroscopy, the
study of mechanical vibrations (including seismic signal
processing), the diffusion of chemical compounds, eco-
nomics, and so on.

Fits of ringdown waveforms are usually performed using
standard nonlinear least-squares methods (see e.g. [12,20]
and references therein). These methods are known to fail in
estimating parameters for a sum of damped exponentials.
In this case, minimizing the squared error over the data
requires the solution of highly nonlinear expressions in
terms of sums of powers of the damping coefficient. No
analytic solution is available, and these expressions can
usually be solved only with a good initial guess for the
parameters [25]. Even for a single damped exponential, if
the initial guess is inaccurate the algorithm often fails to
converge. Iterative algorithms, such as gradient descent
procedures or Newton’s method, have been devised to
minimize these nonlinear expressions. Unfortunately, the
algorithms are computationally very expensive, sometimes
requiring at each step the inversion of matrices of dimen-
sion as large as the number of data samples [26].
Furthermore, gradient descent algorithms for multimodal
equations sometimes fail to converge to the global
minimum.

Computational difficulties with nonlinear least-squares
methods led to the development of suboptimal estimation

1Spin-weighted spherical harmonics are often used to separate
the angular dependence of the Weyl scalars and to read off the
�l;m� multipolar components of the emitted radiation, but the
Kerr metric is not spherically symmetric. More correctly, one
should use spin-weighted spheroidal harmonics [19]. Spin-
weighted spherical harmonics can be expressed as linear super-
positions of spin-weighted spheroidal harmonics, and this leads
to some artificial mode mixing in the extracted waveforms
[12,20]. By ‘‘artificial’’ we mean that the effect—in this case,
mode coupling—is due to approximations we introduce in the
simulations, rather than being produced by a physical agent
(such as nonlinearities).
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methods based on linear prediction equations [24,25].
These methods are modern variations on a 1795 paper by
Gaspard Riche, Baron de Prony [27], who introduced a
procedure to exactly fit N data points by as many purely
damped exponentials as needed. Modern versions of
Prony’s method generalize the original idea to damped
sinusoidal models. They also make use of least-squares
analysis to approximately fit an exponential model for
cases where the data points cannot be fitted by the assumed
number of exponential terms. Unfortunately, these ‘‘modi-
fied least-squares Prony methods’’ are very sensitive to
numerical noise. Two successful improvements of these
methods, the Kumaresan-Tufts (KT) [28] and matrix pencil
(MP) [29] techniques, make use of singular value decom-
position to improve parameter estimation accuracy in the
presence of noise. For excellent reviews of these and other
estimation methods we refer the reader to the first chapter
of [24] (in French) and to Marple’s book [25]. A purpose of
this paper is to introduce these estimation methods to the
GW community.

The plan of the paper is as follows. To put our problem in
perspective, in Sec. II we describe the main features of our
numerical simulations of binary black hole mergers and of
the resulting waveforms. In Sec. III we summarize the
theory behind different estimation methods, and in
Sec. IV we list the numerical algorithms we implemented
in our comparisons. In Sec. V we compare the performance
of linear estimation methods (MP and KT) against non-
linear least-squares methods, by performing Monte Carlo
simulations of damped sinusoidal signals in Gaussian
white noise. In Sec. VI, we apply different fitting methods
to selected waveforms generated by numerical relativity
simulations. Finally, we summarize our results and indicate
possible directions for further research.

II. NUMERICAL SIMULATIONS

In this section we briefly describe the numerical simu-
lations of nonspinning, unequal-mass black hole binaries
previously presented in [9]. The simulations were per-
formed with the BAM code [8], using the so-called ‘‘moving
puncture’’ method. This method, originally introduced in
Refs. [3,4], is now being used almost routinely by various
groups to successfully perform numerical simulations of
inspiralling and merging black hole binaries. Our simula-
tions of the inspiral of unequal-mass black hole binaries are
the same used to study recoil in Ref. [9]. Details of these
simulations, of the numerical setup, and of the BAM code
are given in Refs. [8,9]. The main purpose of this paper is
to test fitting methods to extract QNMs from the simula-
tions. Therefore we defer a detailed investigation of the
unequal-mass waveforms and of their physical properties
to a forthcoming publication [30].

In the absence of spin, a standard conformally flat black
hole binary initial data set is uniquely determined by the
parameters m1, m2, ~P1, ~P2, D which denote, in this order,

the bare masses and linear momenta of the individual
holes, and their coordinate separation. The specification
of these parameters allows us to compute the total
Arnowitt-Deser-Misner (ADM) mass M of the system,
the orbital angular momentum L � �P1 � P2�D, the indi-
vidual black hole masses M1, M2, and the mass ratio q �
M1=M2. Finally, the sum of the individual holes’ spins and
of the orbital angular momentum gives the total ADM
angular momentum J of the system.

In the parameter study under consideration, the mass
ratio q was varied while keeping constant the initial coor-
dinate separation D � 7M of the black holes. The linear
momenta of the individual holes then follow from the
requirement that the system represent a quasicircular con-
figuration. For a given separation D, the momentum of
each puncture can thus be calculated to third-order post-
Newtonian accuracy in the Arnowitt-Deser-Misner,
transverse-traceless (ADMTT) gauge. The resulting rela-
tion is given by Eq. (64) in [8] and forms the basis for all
initial data sets discussed in this work. The parameters
used in our simulations are summarized in Table I.

In the notation of Ref. [8], the simulations have been
performed using the ���2 approach of the moving punc-
ture method with a number of grid points i � 56, 64, 72 on
the three innermost refinement levels, respectively. This
corresponds to resolutions of h � 1=45, 1=51, and 1=58. In
this work we use the waveforms resulting from the low-
resolution and high-resolution simulations, using i � 56
and i � 72 grid points, respectively. The wave extraction
procedure is based on the Newman-Penrose formalism.
The Weyl scalar �4 is extracted according to the method
described in Sec. III A of [8]. In all simulations presented
in this work, �4 is calculated at extraction radius rex �
30M. Further details of the numerical setup are given in
Ref. [9].

To illustrate some issues related with the extraction of
ringdown information from numerical waveforms, in
Figs. 1 and 2 we show the complex mode amplitudes2

TABLE I. Total ADM mass, angular momentum, and initial
binding energy of the unequal-mass binaries.

q M J=M2 �Eb=M

1.00 0.9935 0.8845 0.0140
1.49 1.2422 0.8494 0.0134
1.99 1.4914 0.7870 0.0124
2.48 1.7408 0.7232 0.0114
2.97 1.9904 0.6649 0.0104
3.46 2.2401 0.6132 0.0096
3.95 2.4899 0.5679 0.0089

2These amplitudes are projections of the Weyl scalar �4 onto
spin-weighted spherical harmonics of spin-weight s � �2. For
the definition see, e.g., Eq. (39) of [8], where the amplitudes are
denoted by Alm. Here we choose a different notation, to avoid
confusion with the QNM amplitudes Almn.
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FIG. 2 (color online). jrM lmj for different multipoles. The high-resolution l � m � 2, l � m � 3, and l � m � 4 wave
amplitudes have maxima at tpeak=M � 236:4, 238.4, and 235.7, respectively. Wiggles at late times are due to numerical noise, mainly
caused by reflections from the boundaries.
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FIG. 1 (color online). Real and imaginary parts of rM lm for the two dominant multipoles. The binary has mass ratio q � 1:5. The
burst of radiation at early times is induced by the initial data. After the initial burst, the real and imaginary parts are simply related by a
phase shift (i.e., the waveform is circularly polarized). The irregular behavior at late times is due to numerical noise.
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rM lm and their modulus jrM lmj for the dominant com-
ponents of the radiation emitted by a binary with mass ratio
q � 1:5.3 Because of the reflection symmetry of the system
(see [8]), real and imaginary parts of the positive-m and
negative-m components are related by

  l�m � ��1�l� lm�
�: (2.1)

Components with jmj< l or l > 4 usually contain signifi-
cant numerical noise, and we will ignore them in the
following.

At early times the waveform is contaminated by a spu-
rious burst of radiation, due to the approximate nature of
the initial data. After this initial data burst, the frequency
and amplitude of the wave grow as the binary members
come closer, producing the characteristic ‘‘chirping’’
gravitational waveform. Eventually the binary members
merge, the wave amplitude reaches a maximum, and then
it decays as the remnant black hole settles down to a
stationary Kerr state, emitting ringdown waves. The final
part of the ringdown waveform is visibly contaminated by
some amount of numerical noise, that decreases as we
increase the resolution. This noise is mainly due to radia-
tion being reflected from the boundaries of the computa-
tional domain.

The plots clearly show that the real and imaginary parts
of the waveform follow the same pattern, except for a
(roughly) constant phase shift. This means that the wave-
form is circularly polarized [31]. From the point of view of
extracting information from the ringdown, circular polar-
ization means that fitting the real or the imaginary part
should make no difference: to a good approximation, we
should get the same results for the oscillation frequencies
and damping times. Fitting methods capable of directly
dealing with complex waveforms (such as the Prony-type
methods considered in this paper) should be particularly
useful for waveforms with general polarization, such as
those that should be emitted by the generic merger of
spinning, precessing black holes.

Independently of the chosen fitting method, there is
some arbitrariness in the choice of the time window
�t0; tf	 used to perform the fit. A well-known problem
with the transition merger-ringdown is that we do not
know a priori when the ringdown starts (see [12,20,32]
and references therein). Ideally, the starting time t0 should
be determined by a compromise between the following
requirements: (i) t0 should be small enough to include
the largest possible number of data points: in particular,
we do not want to miss the large amplitude, strong-field
part of the waveform right after the merger; (ii) t0 should be
large enough that we do not include parts of the waveform
which are not well described by a superposition of complex

exponentials: the inclusion of inspiral and merger in the
ringdown waveform would produce a bias in the QNM
frequencies.

A judicious choice of tf is also necessary. Usually we
would like the time window to be as large as possible, but a
glance at Fig. 1 and 2 shows that the low-amplitude, late-
time signal is usually dominated by numerical noise,
mainly caused by reflections from the boundaries. This
noise can reduce the quality of the fit, especially for the
subdominant components with l > 2 and for large values of
t0. A practical criterion for the choice of tf is suggested by
a look at Fig. 2. If the ringdown waveform were not
affected by noise from boundary reflections, jrM lmj
should decay linearly on the logarithmic scale of the plots.4

At low signal amplitudes, we see boundary noise-induced
wiggles superimposed on this linear decay: the first occur-
rence of these wiggles is a good indicator of the time tf at
which numerical results cannot be trusted anymore. To test
the robustness of fitting results to late-time numerical
noise, while at the same time keeping the largest number
of data points in the waveform, we decided to use two
different ‘‘cutoff criteria’’:

(1) ‘‘Relative’’ cutoff: remove from the waveforms all
data for times t > tf � trel, where trel is the time
when the amplitude of each multipolar component
jrM lmj becomes less than some factor  cutoff times
the peak amplitude (at tpeak � 240M for the wave-
forms in Fig. 2):

 

jrM lm�trel�j

jrM lm�tpeak�j
< cutoff : (2.2)

(2) ‘‘Absolute’’ cutoff: remove from the fit all data with
t > tf � tabs, where tabs is the time at which the
absolute value of the amplitude jrM lmj<
 cutoff=10.

The choice of the cutoff amplitude is somewhat arbi-
trary. We chose  cutoff � 10�3 for low resolution, and
 cutoff � 10�4 for high resolution.

For each chosen tf, we will look at the performance of
the fitting routines as we let t0 vary in the range �tpeak; tf	.
We do this for two reasons. The first reason is physical: by
monitoring the convergence of the QNM frequencies to
some ‘‘asymptotic’’ value as t0 ! 1, we can tell if the
black hole settles down to a stationary Kerr state, or if, on
the contrary, nonlinearities and mode coupling are always
present. The second reason is related with the main goal of
this paper, which is to assess the performance of our fitting

3Here and in the following we label the BAM runs by the
corresponding value of q, rounded to the first decimal digit (see
Table I).

4With larger resolution and longer running times, eventually
the exponential decay should turn into the well-known power-
law tail induced by backscattering of the radiation off the space-
time curvature [33]. In the simulations we consider, noise
produced by boundary effects is large enough that this effect is
not visible.
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routines: as t0 grows the signal amplitude decreases ex-
ponentially, and we effectively reduce the signal-to-noise
ratio (SNR) in our fitting window. Robust fitting methods
should give reasonable results even for large values of t0
(that is, modest values of the SNR).

III. A BRIEF SURVEY OF ESTIMATION METHODS
FOR DAMPED SINUSOIDS

In this section we present a brief summary of the theory
behind different estimation methods for damped sinusoidal
signals. We consider only methods that make direct use of
the data, by which we mean that no use is being made of
the autocorrelation function. The measured signal x is a
linear superposition of the ‘‘true’’ waveform, �, and noise,
$. We suppose we have N samples of the signal, equally
spaced in time with time sampling interval T, and we label
each sample by an integer n:

 x�n	 � ��n	 �$�n	; n � 1; . . . ; N: (3.1)

For simplicity we assume the noise $�n	 to be white and
Gaussian, with standard deviation � and mean � � 0. We
are interested in the ringdown waveform ��n	, that we
write as a superposition of p complex exponentials with
arbitrary amplitudes and phases:

 ��n	 �
Xp
k�1

Ake
��k�i!k��n�1�T�i’k : (3.2)

It is useful to recast Eq. (3.2) in the slightly different form

 ��n	 �
Xp
k�1

hkzn�1
k ; (3.3)

with

 hk � Ake
i’k ; (3.4)

 zk � e��k�i!k�T: (3.5)

Now the unknown complex parameters are fhk; zkg (k �
1; . . . ; p), and possibly the number p of damped sinusoids.

A. Nonlinear least squares

A popular estimation method is nonlinear least squares,
which consists in minimizing the integrated squared error

 � 

XN
n�1

j$�n	j2; (3.6)

with $�n	 � x�n	 ���n	. The method is very general, in
the sense that (in principle) it can be applied to any model
function ��n	. For ringdown waveforms of the form (3.3)
we must minimize over the fhk; zkg parameter space (and
possibly the p-space, if the number of damped exponen-
tials is not known a priori) in an essentially nontrivial way.
The procedure is computationally expensive and not al-
ways accurate: the solution may converge to a local (rather

than a global) minimum of the integrated squared error.
Experiments show that nonlinear least squares techniques
perform badly in estimating the parameters of damped
exponentials. The situation gets even worse in the presence
of noise [24,25]. In our numerical work, to minimize the
integrated squared error we used the well-known
Levenberg-Marquardt algorithm [34] as implemented in
the FORTRAN subroutine lmdif, which is part of the
MINPACK library for solving systems of nonlinear equa-
tions [35].5

B. Prony method

Computational difficulties with nonlinear least-squares
methods led to the development of suboptimal estimation
methods, especially designed to deal with damped sinusoi-
dal signals. The prototype of these estimation techniques is
the Prony method, which is essentially a trick to reduce the
nonlinear minimization problem to a linear prediction
problem. The method has been successfully tested in dif-
ferent branches of data analysis and signal processing.
Some variants of the basic idea improve the variance and
bias of parameter estimation in the presence of noise: we
briefly discuss these variants in the following sections. Our
introduction to standard Prony methods parallels those by
Marple [25] and Djermoune [24]. We refer the reader to
those references for further details.

To start with, let us assume there is no noise in our data
set. Let us also assume that there are as many data samples
as there are complex exponential parameters �h1; . . . ; hp�,
�z1; . . . ; zp�: N � 2p. We are then fitting x�n	 to an expo-
nential model,

 x�n	 �
Xp
k�1

hkzn�1
k : (3.7)

For 1 � n � p we can write this in matrix form as

 

z0
1 z0

2 � � � z0
p

z1
1 z1

2 � � � z1
p

..

. ..
. . .

. ..
.

zp�1
1 zp�1

2 � � � zp�1
p

0
BBBB@

1
CCCCA

h1

h2

..

.

hp

0
BBBB@

1
CCCCA �

x�1	
x�2	

..

.

x�p	

0
BBBB@

1
CCCCA: (3.8)

If we can determine the zk’s by some other procedure, then
(3.8) is a set of linear equations for the complex amplitudes
hk. Prony’s method is in essence a trick to determine the
zk’s without the need for nonlinear minimizations, as fol-
lows. Let us define a polynomial A�z� of degree p which
has the zk’s as its roots:

 A �z� �
Yp
k�1

�z� zk� 

Xp
m�0

a�m	zp�m: (3.9)

Let us also normalize the complex coefficients a�m	 so that

5The same algorithm is also implemented in MATHEMATICA
[36].
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a�0	 � 1. By using Eq. (3.7) we can write

 a�m	x�n�m	 � a�m	
Xp
k�1

hkzn�m�1
k : (3.10)

Summing this last equation from m � 0 to m � p we get,
for p� 1 � n � 2p

 

Xp
m�0

a�m	x�n�m	 �
Xp
i�1

hiz
n�p
i

Xp
m�0

a�m	zp�m�1
i � 0;

(3.11)

where the last equality follows from (3.9). This is a (for-
ward) linear prediction equation. In matrix form it can be
expressed as

 

x�p	 x�p� 1	 � � � x�1	
x�p� 1	 x�p	 � � � x�2	

..

. ..
. . .

. ..
.

x�2p� 1	 x�2p� 2	 � � � x�p	

0
BBBB@

1
CCCCA

a�1	
a�2	

..

.

a�p	

0
BBBB@

1
CCCCA

� �

x�p� 1	
x�p� 2	

..

.

x�2p	

0
BBBB@

1
CCCCA: (3.12)

This equation is the basic result of the Prony method: it
shows that we can determine the a�k	’s from the data,
decoupling the problem of determining the hk and zk
parameters.

The original Prony procedure works as follows. First,
given the data, solve (3.12) for the coefficients a�m	. Then
determine the roots zk of the polynomial (3.9). The damp-
ing and frequency are obtained by inverting (3.5):

 

�k � logjzkj=T; (3.13a)

!k � tan�1�Im�zk�=Re�zk�	=T: (3.13b)

Finally, solve (3.8) for the complex quantities hk and invert
(3.4) to find amplitudes and phases:

 

Ak � jhkj; (3.14a)

’k � tan�1�Im�hk�=Re�hk�	: (3.14b)

It should now be clear that the Prony algorithm reduces the
nonlinear fitting problem to the trivial, computationally
inexpensive numerical tasks of (i) solving linear systems
of equations, and (ii) finding the roots of a polynomial.

C. Modified least-squares Prony

For most situations of interest, there are more data points
than there are exponential parameters: N > 2p. In this
case, Eq. (3.12) is modified to

 

x�p	 x�p� 1	 � � � x�1	

x�p� 1	 x�p	 � � � x�2	

..

. ..
. . .

. ..
.

x�N � 1	 x�N � 2	 � � � x�N � p	

0
BBBBBB@

1
CCCCCCA

a�1	

a�2	

..

.

a�p	

0
BBBBBB@

1
CCCCCCA

� �

x�p� 1	

x�p� 2	

..

.

x�N	

0
BBBBBB@

1
CCCCCCA
: (3.15)

We can write this as a matrix equation,

 X a � �x; (3.16)

which can be solved in the least-squares sense

 a � ��XHX��1XHx; (3.17)

where a superscript H denotes Hermitian transpose: XH �
�XT��. The important difference is that we must now
minimize the linear prediction squared error, rather than
the exponential approximation squared error of Eq. (3.6).
Once we have determined the a�k	’s, the rest of the Prony
method carries on in the same manner. Details of the
implementation of this ‘‘least-squares Prony method’’
(which is sometimes called ‘‘extended Prony method’’)
can be found in [25].

D. Kumaresan-Tufts

Unfortunately, the original and least-squares Prony
methods only work well in the absence of noise, or for
large SNR. For small SNR, the estimation of the frequen-
cies and damping times has large variance and bias [25,37].

In the previous section we explained how to estimate the
exponential parameters by introducing the characteristic
polynomial A�z�, which has roots at zk 
 esk � e��k�i!k�T .
The coefficients a�k	 of A�z� are solutions of the forward
linear prediction equation (3.11). These same exponentials
can be generated in reverse time by the backward linear
predictor [25]

 

Xp
m�0

b�m	x�n� p�m	 � 0: (3.18)

in which b�0	 � 1. The characteristic polynomial

 B �z� �
Xp
m�0

b��m	zp�m (3.19)

has roots at zk � e�s
�
k . For damped sinusoids (Re��k	< 0)

it can be shown that the roots of the forward linear pre-
diction polynomial A�z� lie inside the unit z-plane circle,
whereas those of the backward linear prediction polyno-
mial B�z� lie outside the unit z-plane circle [25,28].
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Suppose now we superimpose to the signal complex
additive Gaussian white noise. Noise causes a bias in the
estimates of the true zeros of the polynomials, which trans-
lates into a bias in the estimates of frequencies and damp-
ing times. It was empirically observed that the bias may be
significantly reduced by looking for a number of exponen-
tial components L > p, where p is the actual number of
exponentials present in the signal [28]. L is called the
prediction order of the model. Of course, the selection of
a higher prediction order introduces additional zeros due to
noise, but these can be statistically separated by examining
the zeros of A�z� and B�z�. For both polynomials, zeros
due to the noise tend to stay within the unit circle, whereas
the true zeros due to the exponential signal form complex-
conjugate pairs inside and outside the unit circle. This is
basically due to the fact that the statistics of a stationary
random process do not change under time reversal. Using
singular value decomposition (SVD) can provide further
improvement [24,25,28]. Write X in (3.16) as

 X � USVH; (3.20)

where S is a �N � L�  L dimensional matrix with the
singular values on the diagonal �s1; . . . ; sp; sp�1; . . . :; sL�
arranged in decreasing order. Noise can be reduced by
considering the reduced rank approximation

 X̂ � UŜVH (3.21)

with

 Ŝ �
Sp 0
0 0

� �
�N�L�L

: (3.22)

Here Sp is the top-left p p minor of S. An estimate for
the coefficients a�k	 is then

 â � �X̂�x; (3.23)

where X̂� is the pseudoinverse of X̂. It was found [28] that
the use of the truncated SVD greatly enhances the SNR,
providing a better estimate of the vector â, and conse-
quently of the exponential parameters. This is the basic
idea underlying the Kumaresan-Tufts method. More details
can be found in the original work [28] (see also [24,25]).
For improvements of this method using total least squares,
see for instance [38].

The frequency variance depends on the prediction order
L. For one undamped exponential (� � 0) of amplitude h1

it can be shown [29,39] that the variance is given by

 

var�!� �
2�2L� 1�

3�N � L�2L�L� 1�

�2

jh1j
2 for L � N=2;

(3.24a)

var�!� �
2���N � L�2 � 3L2 � 3L� 1	

3�N � L�L2�L� 1�2
�2

jh1j
2

for L � N=2: (3.24b)

Minima are attained for L ’ N=3 (L � N=2) and for
L ’ 2N=3 (L � N=2), these relations being exact in the
limit N ! 1. Correspondingly, the optimal frequency
variance is

 var �!� ’
27

4N3

�2

jh1j
2 ; (3.25)

which is only slightly larger than the Cramer-Rao bound:

 CRB �!� �
6

N�N2 � 1�

�2

jh1j
2 ; (3.26)

the ratio being 9=8 � 1:125 in the limit N ! 1. For one
damped exponential, closed-form expressions for the vari-
ance and bias of the damping time in the large SNR limit
can be found in [40,41].

E. Matrix pencil

An alternative to estimate exponential parameters from
noisy signals is the matrix pencil (MP) method [29]. The
MP method is in general more robust than the KT method,
having a lower variance on the estimated parameters, but a
slightly larger bias [24,41]. For a detailed description of
this method we refer the reader to [29]. The following brief
summary follows quite closely the treatment in [24]. Let
X0 and X1 be two matrices defined as

 X 0 �

x�0	 x�1	 � � � x�L� 1	
x�1	 x�2	 � � � x�L	

..

. ..
. . .

. ..
.

x�N � L� 1	 x�N � L	 � � � x�N � 2	

0
BBB@

1
CCCA;

X1 �

x�1	 x�2	 � � � x�L	
x�2	 x�3	 � � � x�L� 1	

..

. ..
. . .

. ..
.

x�N � L	 x�N � L	 � � � x�N � 1	

0
BBBB@

1
CCCCA:

(3.27)

Here L is the pencil parameter: it plays the role of the
prediction order parameter in the KT method. One can
decompose X0 and X1 as

 X 0 � ZlHZr; (3.28)

 X 1 � ZlHZZr; (3.29)

where
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 Z l �

1 1 � � � 1
z1 z2 � � � zp
..
. ..

. . .
. ..

.

zN�L�1
1 zN�L�1

2 � � � zN�L�1
p

0
BBBB@

1
CCCCA;

Zr �

1 z1 � � � zL�1
1

1 z2 � � � zL�1
2

..

. ..
. . .

. ..
.

1 zp � � � zL�1
p

0
BBBB@

1
CCCCA;

(3.30)

 H � diag�h1; h2; . . . ; hp�; (3.31)

 Z � diag�z1; z2; . . . ; zp�: (3.32)

Consider now the matrix pencil6 X1 � zX0. We can write
this as

 X 1 � zX0 � ZlH�Z� zIp�Zr: (3.33)

When z � zi, the matrix Z� zIp is of rank p. However,
for z � zi it is of rank p� 1. Therefore the poles of the
signal reduce the rank of the matrix pencil for p � L �
N � p. This is equivalent to saying that the poles zi are the
generalized eigenvalues of �X1;X0�, in the sense that
�X1 � zX0�v � 0, with v an eigenvector of X1 � zX0.
To find the poles zi one can use the fact that X�0 X1 has
p eigenvalues equal to the poles zi, and L� p null eigen-
values [24]. Here a dagger denotes the (Moore-Penrose)
pseudoinverse.

In practice we do not have access to the noiseless signal,
therefore we must work directly with the noisy data. SVD
is again necessary to select the singular values due to the
signal. The basic steps of the MP method can be summa-
rized as follows:

(i) Build the matrices Y0 and Y1 as in (3.27).
(ii) Make a SVD of Y1: Y1 � USVT .

(iii) Estimate the signal subspace of Y1 by considering
the p largest singular values of S: ~Y1 � UpSpVH

p ,
where Up and Vp are built from the first p columns
of U and V, and Sp is the top-left p p minor of S.

(iv) The matrix ZL � Y�1 Y0 � VpS�1
p UT

pY0 has p ei-
genvalues which provide estimates of the inverse
poles 1=zi; the other L� p eigenvalues are zero.
Since ZL has only p nonzero eigenvalues, it is con-
venient to restrict attention to a p p matrix Zp �

S�1
p UT

pY0Vp [29].
The MP technique exploits the matrix pencil structure of

the underlying signal, rather than the prediction equations
satisfied by it. Nevertheless, there are strong similarities
between the MP and KT methods. An extensive compari-

son of their performance and theoretical properties can be
found in [24,29,41].

As for the KT method, the variance of parameter esti-
mation depends on L. For one undamped exponential of
amplitude h1 it can be shown [29] that the variance is given
by
 

var�!� �
1

�N � L�2L

�2

jh1j
2 for L � N=2; (3.34a)

var�!� �
1

�N � L�L2

�2

jh1j
2 for L � N=2; (3.34b)

i.e. it is always lower than the corresponding variance for
the KT method, as given in Eq. (3.24). Choices minimizing
the frequency variance are L � N=3 for L � N=2, and
L � 2N=3 for L � N=2, and the optimal frequency vari-
ance is

 var �!� �
27

4N3

�2

jh1j
2 ; (3.35)

as in the KT method. For one damped exponential, closed-
form expressions for the variance and bias of the damping
time in the large SNR limit have recently been derived and
compared with Monte Carlo simulations [41]. The results
indicate that the MP method performs better (has smaller
variance) than the KT method. For both methods the
frequency estimate is unbiased, but the estimate of the
damping time is biased. The bias is slightly larger for the
MP method, the difference between the two methods be-
coming larger for small SNR.

IV. FITTING ALGORITHMS CONSIDERED IN
THIS PAPER

In the rest of this paper we will compare the performance
of the four fitting algorithms described in the previous
section: Levenberg-Marquardt (LM), modified least-
squares Prony, Kumaresan-Tufts (KT), and matrix pencil
(MP). For quick reference, in Table II we list the original
papers, along with web resources and publications provid-
ing software implementations of each algorithm (in

TABLE II. Fitting methods used in this paper. El-Hadi
Djermoune and Stanley Lawrence Marple, Jr. kindly sent us
up-to-date implementations of the codes described in [24,25].
We are also grateful to Gordon Smyth for providing us with a
MATLAB routine to estimate parameters for purely damped ex-
ponentials, and to Boaz Porat for MATHEMATICA packages to
estimate parameters of undamped sinusoids using several meth-
ods (KT, maximum likelihood, Yule-Walker . . .): see [42].

Method Reference Software

Levenberg-Marquardt (LM) [34] [35,36]
Modified least-squares Prony [25] [25,43–45]
Kumaresan-Tufts (KT) [28] [24,46]
Matrix pencil (MP) [29] [24]

6Let A and B be two n n matrices. The set of all matrices of
the form A� �B, with � complex, is called a matrix pencil.
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FORTRAN, MATLAB, or MATHEMATICA). Below we give
some details on our own practical implementation of the
algorithms.

A. Levenberg-Marquardt

The LM algorithm is more general than the other meth-
ods we consider in this paper, in the sense that fitting
functions are not restricted to a simple sum of complex
exponentials. A problem if we want to fit merger wave-
forms is that LM (like most nonlinear least-squares meth-
ods) is designed to deal with real functions. For this reason
the authors of [12], who studied waveforms similar to those
in Fig. 1, fitted only the real (or imaginary) part of the
signal. Some practice also shows that general nonlinear
least-squares methods (such as the LM algorithm) often
fail to converge if the signal is given by a superposition of
damped sinusoids, unless we provide very accurate initial
guesses for the fitting parameters.

For simplicity, and to take into account these limitations
of nonlinear least-squares algorithms, in Sec. V we will
compare the performance of different routines on a real
ringdown signal with a single frequency and damping time.
We choose some starting time t0 and we fit the real signal
by a four-parameter function:

 ��t� � Ae��t�t0� sin�!t� ’�: (4.1)

The LM algorithm provides reasonable answers only if the
four parameters �A;’;!; �� are reasonably close to their
true values. In particular, an accurate initial guess for A is
necessary to avoid ‘‘hard failures’’ of the fitting routine: we
choose as an initial guess the value of the signal amplitude
at t0. We fix the tolerance parameter in the lmdif routine
to be TOL � 10�12 (but this choice is not crucial).

As a final remark we point out that, by using a real
signal, in a sense we are ‘‘biasing’’ our tests in favor of
the LM method. The reason is that fitting a real signal
requires the inclusion of at least two complex exponentials
in the sum (3.2), unnecessarily doubling the number of
unknown parameters to be searched for by Prony methods.

B. Modified least-squares Prony, Kumaresan-Tufts, and
matrix pencil

A FORTRAN routine implementing modified least-
squares Prony was kindly provided to us by Stanley
Lawrence Marple, Jr. [25]. We tested the routine’s per-
formance on noiseless ‘‘pure ringdown’’ waveforms ob-
tained by superposing three damped exponentials with
frequencies given by the first three QNMs �n � 0; 1; 2� of
a Schwarzschild black hole [17]. For noiseless waveforms,
the frequency and damping time of the fundamental mode
(n � 0) are typically determined with accuracies �10�6.
The frequency and damping time of the two overtones
usually have accuracies �10�5. Parameter estimation be-
comes much worse, as expected from the theory, when we
add even a modest amount of noise to the waveforms.

Performance in the presence of noise gets much better
when we use two MATLAB routines by El-Hadi Djermoune
[24], implementing the Kumaresan-Tufts and matrix pencil
methods. These routines require the specification of the
prediction order (that we always choose to be L � N=3,
where N is the number of data points, in order to minimize
the variance in parameter estimation). In addition, they also
require the specification of the number of complex expo-
nentials to be searched for. Djermoune kindly provided us
with an additional routine to estimate the number of com-
plex exponentials present in the signal, or (in more tech-
nical jargon) the ‘‘order of the exponential model.’’ The
estimation routine is based on two criteria: Akaike’s infor-
mation criterion (AIC) and the minimum description
length (MDL) criterion [47,48].

When tested on noiseless waveforms, Djermoune’s rou-
tines are remarkably successful at estimating the number of
modes present in the signal. Frequencies and damping
times for noiseless signals are typically determined to
accuracies �10�15 (comparable to machine precision).

We will see in the following that MP and KT methods
have essentially the same performance. In fact, in the next
section we will show by numerical experiments that MP
methods have slightly smaller variance and bias in parame-
ter estimation: this was pointed out also by Djermoune and
collaborators (see e.g. [24,41,49]). Because of the similar-
ity of the two techniques, and due to the slightly superior
performance of MP over KT, we will usually compare MP
and LM methods in our analysis of merger waveforms
(Sec. VI below).

As a final remark, we point out that MP and KT have a
variance in frequency estimation which is only ’ 9=8 �
1:125 times larger than the Cramer-Rao bound. These
algorithms may prove extremely useful not only to study
the merger waveforms produced by numerical relativity (as
we do here), but also to estimate the source parameters
after GW detection. MP and KT algorithms are most
effective and useful when we deal with noisy waveforms,
and these situations are often the most interesting. For
example, fitting the late-time, low-amplitude portion of a
numerical relativity waveform yields the remnant black
hole’s parameters. Fitting large-l multipolar components
(that carry little energy, hence are more affected by nu-
merical noise) is necessary for tests of the general relativ-
istic no-hair theorem [17]. Last but not least, the
importance of parameter estimation from experimental,
noisy GW data can hardly be underestimated.

V. COMPARISON OF DIFFERENT METHODS ON
NOISY DAMPED SINUSOIDS

To test the performance of different fitting methods, we
built model waveforms reproducing the essential features
of the ringdown waveforms produced by binary black hole
merger simulations (see Fig. 1). For simplicity, and to take
into account the limitations of the LM algorithm, here we
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consider our true signal as consisting of a single damped
sinusoid. We take the frequency and damping time to be
those of the fundamental (n � 0) l � m � 2 perturbations
of a Kerr black hole, as listed in [17]. For a given oscil-
lation frequency !, we produce a signal lasting five GW
cycles: i.e. the signal length tfin � 5�2	=!� � 5TGW. The
sampling time is taken to be T � TGW=50, so that the
‘‘full’’ waveform consists of 250 data points.

To this true signal we superimpose Gaussian white
noise. In this section we do not consider standard least-
squares Prony, since it is outperformed by MP and KT
algorithms in the presence of noise. The MP and KT
algorithms are implemented in MATLAB. In this case, we
produce Gaussian noise using the built-in function
normrnd. For our FORTRAN implementation of the LM
algorithm we generate noise as a random variable $ with
mean � � 0 and standard deviation � using the Box-
Müller method [50]: for each t, given two random numbers
u1 and u2 uniformly distributed in �0; 1	 (as generated with
the Numerical Recipes routine ran2 [51]), we add to our
signal

 $�t� � �� �
��������������������
�2 ln�u1�

q
cos�2	u2�: (5.1)

For illustration, in Fig. 3 we show a typical waveform
generated in this way. The true signal (with � � 0) corre-
sponds to a perturbed Schwarzschild black hole, i.e. the
frequency and damping time correspond to the fundamen-
tal l � m � 2 QNM for a black hole of dimensionless spin
parameter j � 0 [17]. For any given �, the addition of
Gaussian white noise has a less severe impact for large
values of j. The reason is that the damping time of the l �
m � 2 mode grows with the rotation parameter j (see e.g.
Table II in [17]). A Schwarzschild waveform with � �

10�3 is quite similar to the typical merger waveforms of
Fig. 1, and for this reason we will use it to test the
performance of the different fitting routines. Results for
different values of � are qualitatively similar.

For each fitting algorithm, we perform Monte Carlo
simulations to produce a large number (Nnoise � 100) of
realizations of the noise with � � 10�3. For each realiza-
tion of the noise (
 � 1; . . . ; Nnoise) we fit the waveform
varying the starting time from t0 � 0 to t0 � tfin. Each fit
yields a couple of values !
�t0�, �
�t0�, and from these we
can deduce the quality factor of the oscillation Q
�t0� 

j!
�t0�=�2�
�t0�	j [17]. For each t0 we compute the stan-
dard deviation and bias of each of these fitted quantities x
( � !;� or Q) from our Monte Carlo simulations:

 std �x�jt0 �
�

1

Nnoise � 1

XNnoise


�1

�x
�t0� � �x�t0�	2
�

1=2
; (5.2)

 bias �x�jt0 � �x�t0� � xtrue; (5.3)

where xtrue is the known, true value of each quantity and a
bar denotes the average over all noise realizations:

 �x�t0� �
�

1

Nnoise

XNnoise


�1

x
�t0�
�
: (5.4)

Results of these Monte Carlo simulations are shown in
Fig. 4. There we see that all three methods (KT, MP, and
LM) are essentially equivalent in terms of variance.7

Standard deviation and bias grow sharply for t0=tfin *

0:7, when we are fitting that part of the signal which is
buried in noise (compare Fig. 3). The bias is usually very
small, but remarkably linear methods (KT, and especially
MP) beat the nonlinear LM fitting routine in terms of bias
on the frequency. In terms of bias on the damping time, LM
performs slightly better than MP and KT only for large
values of t0, when the SNR is very small.

When comparing the performance of the different meth-
ods it is useful to remember that LM only works if we give
a good initial guess for the parameters we want to estimate,
whereas MP and KT automatically find the values of these
parameters, with no need for initial guesses. Our compari-
son is somehow ‘‘biased’’ in favor of the LM method in at
least three ways: (i) we choose optimal initial guesses for
the parameters, so that the LM algorithm is not ‘‘allowed’’
to converge to some wrong root; (ii) we choose a real signal
rather than a complex signal, because the LM algorithm
only works for real data sets; (iii) we only consider one
damped exponential (LM often fails to converge if we
include additional damped sinusoids, whereas Prony-type
methods are still remarkably successful).
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FIG. 3 (color online). QNM waveforms with and without
Gaussian white noise. We normalize the time axis to the total
duration of the signal tfin. The ‘‘pure’’ noiseless waveform (thick
black line) has unit amplitude. Dashed (red), dotted (blue), and
thin (green) lines are the same waveform superimposed to
Gaussian white noise with � � 10�4, 10�3, 10�2, respectively.

7We also tested the MP and KT methods on pure sinusoids,
finding good agreement with theoretical predictions for the
frequency variance.
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VI. APPLICATION TO MERGER WAVEFORMS

Here we turn to the problem that motivates the present
analysis of fitting algorithms for complex exponentials in

noise. If the ringdown radiation emitted as a result of a
binary merger shows no signs of nonlinearities or mode
coupling, our fits should have a simple behavior: as we
increase the starting time for the fit t0, the black hole’s
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FIG. 4 (color online). Standard deviation (left) and bias (right) in the estimate of frequency, damping time, and quality factor (top to
bottom). All quantities are given as functions of the starting time of the fit t0 (normalized by the duration of the signal tfin); each point is
the result of a Monte Carlo simulation obtained by adding Nnoise � 100 realizations of Gaussian white noise with zero mean and
� � 10�3 to the j � 0 waveform of Fig. 3. Solid (black), dashed (red), and dotted (blue) lines refer to the MP, KT, and LM algorithms,
respectively.
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oscillation frequencies !lmn and damping factors �lmn
should asymptotically approach a constant, whose value
is predicted by linear perturbation theory [17].

In Fig. 5 we show results of QNM fits performed on the
l � m � 2 component of low-resolution and high-
resolution merger simulations with mass ratio q � 1:5.
Solid lines refer to the absolute truncation criterion of
Sec. II, and dashed lines to the relative truncation criterion.
Different truncation criteria affect the estimated parame-
ters only for low-resolution simulations, and at late starting
times (t0=M * 290). Results obtained fitting by a single
complex exponential with standard least-squares Prony8

are slightly off from the ‘‘best’’ fitting methods (MP, KT,

and LM). Not surprisingly, there is remarkable agreement
between KT and MP methods, and very good agreement
between these two methods and the nonlinear least-squares
LM fit.

The main conclusion to be drawn from Fig. 5 is that all
fitting routines consistently predict that frequencies and
damping times have small (but nontrivial in structure)
time variations. Relative variations in ! are of order
�0:5%, with the frequency reaching a local maximum at
t0=M� 272. Relative variations in � are slightly larger
(roughly �2:5%), with j�j attaining a maximum (and the
damping time correspondingly attaining a minimum) for
t0=M� 280. Notice also that increasing the resolution
sensibly reduces the irregularities in the predicted fre-
quency at all times, and produces a flattening of the esti-
mated parameters for 280 & t0=M & 300. The decrease in
! and in j�j for 280 & t0=M & 300, that are visible in the
left panels, are clearly an artifact of insufficient resolution.
It would be interesting to perform Richardson extrapola-
tion of the numerical results to determine if oscillations in
the estimated parameters (which could be a sign of ‘‘new’’

250 260 270 280 290 300

t0 /M
0.530

0.532

0.534

0.536

M
ω

Least-squares Prony
Matrix Pencil, absolute
Matrix Pencil, relative
Kumaresan-Tufts, absolute
Kumaresan-Tufts, relative
Levenberg-Marquardt, absolute
Levenberg-Marquardt, relative q=1.5, l=m=2

250 260 270 280 290 300

t0 /M
0.530

0.532

0.534

0.536

M
ω

Least-squares Prony
Matrix Pencil, absolute
Matrix Pencil, relative
Kumaresan-Tufts, absolute
Kumaresan-Tufts, relative
Levenberg-Marquardt, absolute
Levenberg-Marquardt, relative

q=1.5, l=m=2
High resolution

250 260 270 280 290 300

t0 /M

-0.086

-0.085

-0.084

-0.083

M
α

Least-squares Prony
Matrix Pencil, absolute
Matrix Pencil, relative
Kumaresan-Tufts, absolute
Kumaresan-Tufts, relative
Levenberg-Marquardt, absolute
Levenberg-Marquardt, relative q=1.5, l=m=2

250 260 270 280 290 300

t0 /M

-0.086

-0.085

-0.084

-0.083

M
α

Least-squares Prony
Matrix Pencil, absolute
Matrix Pencil, relative
Kumaresan-Tufts, absolute
Kumaresan-Tufts, relative
Levenberg-Marquardt, absolute
Levenberg-Marquardt, relative

q=1.5, l=m=2
High resolution

FIG. 5 (color online). Performance of different Prony methods in estimating the oscillation frequency ! (top) and damping factor �
(bottom) for low and high-resolution runs (left and right, respectively). For concreteness we choose a binary with q � 1:5 and consider
the fundamental mode with l � m � 2. Prony-type results refer to the complex waveform, while LM results are obtained by fitting the
real part of the waveform only.

8Figs. 5 and 6 only display results for least-squares Prony
obtained using the relative truncation criterion. However, we did
check that using the absolute truncation criterion has a very
small effect on the estimated parameters. We also checked that
increasing the number of exponentials we search for does not
improve the agreement of standard least-squares Prony with
other methods.
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physics) disappear in the limit of infinite resolution. We
plan to address this problem in the near future. An analysis
of the fine structure of the signal, and of its implications for
gravitational wave phenomenology, will be presented in a
forthcoming publication [30].

For the time being, we simply point out that such sys-
tematic variations in the oscillation frequency and/or
damping time could be signs of nonlinearities and/or
mode coupling in the numerical simulations. Variations
could be due to the black hole’s mass and angular momen-
tum changing on a time scale which is longer than the
QNM oscillation period, or to beating phenomena with
other QNM frequencies. In our opinion, the fact that all
fitting methods consistently predict the same ‘‘global’’
structure is convincing evidence that the existence of max-
ima and minima is not due to numerical errors in the fit.

In Fig. 6 we plot the quality factor of the oscillations as a
function of t0=M. The time variation of Q is basically
dominated by the time variation of�. This is quite obvious,
since Q � !=�2�� and time variations in � are larger than
time variations in !. The interest of plotting Q�t0=M�
comes from the fact that, in linear theory and for l � m,
Q is a monotonic function of j [17]. Roughly speaking,
large variations in Q for the fundamental oscillation mode
could mean that the Kerr angular momentum parameter is
changing in time, or that there are significant corrections to
the linear approximation.

Finally, in Fig. 7 we compare the performance of our two
best fitting methods (MP and LM) in estimating oscillation
frequencies and quality factors for different mass ratios:
q � 1:0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0. Deviations inQ between
the two methods are quite significant, especially for large
mass ratio, when the numerical simulations are less reli-
able. For q � 4:0 and low resolution, the LM method
shows larger variations in ! than the MP method. This
could be an effect of the larger bias in frequency of the LM
method, as compared with the MP method (cf. Fig. 4).
Once again, increasing the resolution produces a flattening

of all curves, the effect being more pronounced for large
mass ratios. A more systematic analysis of simulations for
different mass ratios will appear elsewhere [30].

VII. CONCLUSIONS AND OUTLOOK

Our understanding of binary black hole mergers has
recently been revolutionized by the success of numerical
relativity simulations. A partial disappointment came from
the remarkable simplicity of the inspiral-merger-ringdown
transition: the nonlinearities of Einstein’s theory do not
seem to leave spectacular imprints on the merger, that
seems to be a very short phase smoothly connecting the
familiar ‘‘inspiral’’ and ringdown waveforms [12].

In this paper we argued that nonlinearities could show up
in the fine structure of the ringdown waveform, as system-
atic time variations of the ringdown frequencies and damp-
ing times. We also showed by explicit calculations that
such time variations are actually present in numerical
waveforms (see Figs. 5–7). The variations we are looking
for are typically �100 times smaller than the QNM fre-
quencies themselves. This smallness calls for accurate
parameter estimation methods to extract ringdown fre-
quencies from numerical simulations. We considered a
class of well-studied and robust parameter estimation
methods for complex exponentials in noise, which are
modern variations of a linear parameter estimation tech-
nique first introduced in 1795 by Prony.

The comparison of different fitting methods can help
resolve actual physical effects from systematic parameter
estimation errors, due to the variance and bias of each
particular fitting algorithm. For this reason we compared
two variants of the original Prony algorithm (the
Kumaresan-Tufts and matrix pencil methods [28,29])
against standard nonlinear least-squares techniques, such
as the Levenberg-Marquardt algorithm. We found that the
two classes of methods have comparable variance, but
Prony-type methods tend to have slightly smaller bias.
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FIG. 6 (color online). Same as Fig. 5, but for the quality factor Q.
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Prony methods have a number of advantages with respect
to standard nonlinear least-squares techniques:

(1) They do not require an initial guess of the fitting
parameters.

(2) They provide us with a simple, efficient way to
estimate QNM frequencies for the overtones, and
even to estimate how many overtones are present in
the signal [47,48].

(3) They are explicitly designed to deal with complex
signals, so they should be most useful for ‘‘generic’’
waveforms, such as those produced by spinning,
precessing black hole binaries. In the case of non-
trivial polarization of the gravitational radiation it
might become crucial to fit simultaneously the real
and imaginary parts of the signal to exploit opti-
mally the information carried by both degrees of
freedom.

(4) Statistical properties of Prony-based methods in the
presence of noise (such as their variance and bias)
are well studied and under control. Our Monte Carlo

simulations suggest that the statistical properties of
Prony-like methods as we vary the SNR are more
consistent than for nonlinear least-squares methods,
even when we consider a single damped sinusoid
(the dotted blue lines in Fig. 4 have a very irregular
behavior).

The methods introduced in this paper should be useful
both theoretically and experimentally. From a theoretical
standpoint, besides helping in the search for nonlinearities,
Prony methods can also be used as ‘‘diagnostic tools’’ for
numerical simulations. For example, monitoring the time
variation of ringdown parameters from different multipolar
components of the radiation we can check that the end-
product of a merger is indeed consistent with the Kerr
solution. An analysis of presently available numerical
waveforms based on Prony methods is ongoing [30].

So far, Prony algorithms have generally been overlooked
by the GW data analysis community. We believe that the
techniques presented in this paper should prove useful to
extract science from noisy ringdown signals in the (hope-
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FIG. 7 (color online). Oscillation frequency (top) and quality factor (bottom) for modes with l � m � 2 and for low- and high-
resolution runs (left and right, respectively), as a function of the starting time of the fit. Thick lines use MP, thin lines use LM. Values of
the quality factor for t=M & 250 are often unphysically large. We truncate the waveform at late times when the absolute value of the
amplitude drops below 10�4 (for low resolution) or 10�5 (for high resolution). In each panel, lines from top to bottom refer to q � 1:0,
1.5, 2.0, 2.5, 3.0, 3.5, 4.0.
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fully not too distant) future, when GW detection will
finally become a reality.
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