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The gyraton model describes a gravitational field of an object moving with the velocity of light which
has finite energy and spin distributed during some finite time interval L. A gyraton may be considered as a
classical toy model for a quantum wave packet of high-energy particles with spin. In this paper we study a
head-on collision of two gyratons and black hole formation in this process. The goal of this study is to
understand the role of the gravitational spin-spin interaction in the process of mini-black-hole formation in
particle collisions. To simplify the problem, we consider several gyraton models with special profiles of
the energy and spin density distribution. For these models we study the apparent horizon (AH) formation
on the future edge of a spacetime region before interaction. We demonstrate that the AH forms only if the
energy duration and the spin are smaller than some critical values, while the length of the spin distribution
should be at least of the order of the system gravitational radius. We also study gravitational spin-spin
interaction in the head-on collision of two gyratons under the assumption that the values of gyraton spins
are small. We demonstrate that the metric in the interaction region for such gyratons depends on the
relative helicities of incoming gyratons, and the collision of gyratons with oppositely directed spins allows
the AH formation in a larger parameter region than in the collision of the gyratons with the same direction
of spins. Some applications of the obtained results to the mini-black-hole production at the Large Hadron
Collider in TeV gravity scenarios are briefly discussed.
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I. INTRODUCTION

The black hole formation in high-energy particle colli-
sions is an important issue especially in the context of TeV
gravity scenarios [1–3]. In the theory with large extra
dimensions, the Planck energy could be of the order of
TeV, and collisions of particles with the center-of-mass
energy greater than the Planckian one will occur in future
accelerators such as the Large Hadron Collider (LHC) at
CERN [4]. A detailed study of mini-black-hole production,
especially at the threshold of this effect, would require the
complete theory of quantum gravity. However, if the mass
of a created black hole is much larger than the Planck mass,
one can use a semiclassical approximation to describe such
processes. In this approximation, the black hole formation
in particle collision and its subsequent decay in the process
of the Hawking evaporation are studied in the framework
of the (semi)classical general relativity. The apparent hori-
zon (AH) is a useful tool for estimation of the black hole
production rate in this approximation, because the exis-
tence of an AH is a sufficient condition for the black hole
formation.

The first work along this line was done by Eardley and
Giddings [5] in the four-dimensional case. Since the high-
energy particles are relativistic, they used the Aichelburg-
Sexl (AS) metric [6] to describe the gravitational field of
such particles before their collision. The AS metric can be
obtained by boosting a Schwarzschild black hole to the
speed of light and keeping the energy p of the boosted
black hole fixed. The gravitational field of the AS particle
is a shock and it is localized on the null plane (u � 0 for
one of the particles and v � 0 for the other one). One of the
null generators on each of the null planes represents a

particle trajectory, while its gravitational field is distributed
in the transverse plane orthogonal to the direction of mo-
tion. Two AS particles do not interact before the collision
and the metric outside of the interacting region is known
explicitly. Eardley and Giddings analytically studied the
AH on some slice (u � 0 � v and v � 0 � u) and derived
the maximal impact parameter bmax for the AH formation.
The quantity �AH � �b2

max gives the lower bound on the
cross section of the black hole production.

The results of [5] were generalized by one of us and
Nambu [7] for the mini-black-hole formation in the higher-
dimensional spacetimes. In this work the numerical calcu-
lations were used. Later, one of us and Rychkov [8] im-
proved these results by studying the AH on the futuremost
slice that can be adopted without the knowledge of the
interacting region (i.e., u � 0 � v and v � 0 � u). Using
this approach the stronger lower bound �AH=��rh�2p��2 ’
2–3 on the cross section of the black hole production in the
collision of AS particles was obtained for spacetime di-
mensionality D � 5–11.

Certainly the model of colliding AS particles is over-
simplified. The AS particles are assumed to be neutral and
spinless. In reality, all the known elementary particles have
spin and most of them have either electric or color charge
as well.

Charged particles have additional charge-charge inter-
action besides the gravitational interaction. Moreover, their
gravitational interaction can also be modified. The latter
effect was discussed to some extent by one of us and Mann
[9]. In that paper a boosted Reissner-Nordström metric was
used as the model of an ultrarelativistic charged particle
and the head-on collision in a spacetime with an arbitrary

PHYSICAL REVIEW D 75, 124005 (2007)

1550-7998=2007=75(12)=124005(21) 124005-1 © 2007 The American Physical Society

http://dx.doi.org/10.1103/PhysRevD.75.124005


number of dimensions was studied. The results obtained in
that paper indicate that the charge makes the AH formation
more difficult. It was also argued that the effects of the
quantum electrodynamics could change the results. The
results of [9] were later used by Gingrich [10] who recon-
sidered the black hole production rate at the LHC.

In the quantum mechanical description, the colliding
particles are characterized by wave packets which have a
finite duration in time [11]. To take into account this effect
as well as to include spin-spin interaction, in this paper we
study head-on collisions of two gyratons.

The gyraton model was proposed in [12]. The motiva-
tion of this paper was to find the gravitational field gen-
erated by a beam pulse of spinning radiation with a finite
time duration, which is propagating at the speed of light. In
the gyraton model, the metric outside of the source satisfies
the vacuum Einstein equations and the gravitational field is
distributed in the plane transverse to the direction of mo-
tion. Unlike an AS particle, the gravitational field of a
gyraton is not a shock wave but has the finite duration in
time. A gyraton may have spin which manifests itself in the
dragging-into-rotation effect. The AS particle metrics can
be obtained from the gyraton solutions if the duration is
taken infinitely small and the spin vanishes. General prop-
erties of gyraton metrics were studied in detail in [13].
Electrically charged gyratons and gyratons in the super-
gravity were discussed in [14,15], respectively. Gyraton
solutions can also be generalized to the case when the
spacetime is asymptotically anti-de Sitter [16,17].

Colliding gyratons which we consider in this paper
differ from the AS particles both by the presence of spin
and the finite duration in time. Let us discuss briefly what
kind of new features one can expect. The first natural
question is: Can one include spin effects in the interaction
between highly nonrelativistic particles by boosting the
Kerr metric? Such boosted Kerr black hole solutions
were considered, e.g. in [18–20], in the four-dimensional
spacetime and in [21] in higher dimensions. The main
problem in this approach is the following. In order to
have a well-defined limit for the boosted metric, one needs
to keep the energy p of the system fixed, so that the mass of
the black hole M � ��1p must vanish when the �-factor
infinitely grows. If one assumes that the spin s remains
finite in this limit, the rotation parameter a � s=M infi-
nitely grows, so that the metric describes a naked singu-
larity. The radius of the ring singularity is of the order of a
and also infinitely grows. The latter problem can be
avoided by assuming that the rotation parameter a remains
finite in the infinite boost limit, as it was done in the above
references. Although finite results different from the AS
particle can be obtained by this procedure, fixing a means
that the spin s � aM of the boosted object vanishes.
Furthermore, in this limit we have an object of typical
size a, which does not satisfy the requirement that we
would like to have a pointlike object. Thus a boosted

Kerr black hole does not provide one with a suitable model
for an ultrarelativistic particle with spin, e.g. for a photon.
In the gyraton model the spin is easily included.

There is another aspect of the high-energy particle col-
lision which the gyraton model may help to understand
better. Recently, the validity of an AS particle as the model
of a high-energy elementary particle was questioned in
[22]. In this model the curvature invariants at the moment
of the collision of the two planes, representing the colliding
particles, are infinite, so that formally higher-curvature
quantum corrections may be important. This problem
was discussed in [11]. It was argued that the quantum
effects, such as the finite size and finite duration in time
of the incoming wave packets, can help to solve this
problem. The quantum-to-classical transition in the de-
scription of the mini-black-hole formation in the particle
collision is an interesting open question. We do not address
it in our paper, but instead we use the gyraton model in
order to discuss how the finiteness of the duration in time of
the colliding objects modifies the results of the AS ap-
proximation. In such an approach, the gyratons might be
considered as an effective model for the quantum wave
packets.

With these motivations we study the AH formation in
the head-on collision of gyratons. For simplicity we con-
sider the four-dimensional case. The paper is organized as
follows. In the next section, we introduce several gyraton
models: a gyraton without spin, its AS limit, and spinning
gyratons. As for spinning gyratons, we consider two types
depending on relative locations of the energy and spin
profiles. Then we set up five cases of head-on collisions
of gyratons. In Sec. III, we derive an AH equation on the
future edge of the spacetime region before interaction, u �
0 � v and v � 0 � u. We present the numerical results of
this study in Sec. IV. The conditions on the spin and on the
energy and spin durations for the AH formation are ob-
tained for each of the collision cases. Then in Sec. V we
focus our attention on the study of the spin-spin interac-
tion. In general, this is a complicated problem, since it
requires the knowledge of the metric in the region of
interaction. To obtain it, one needs to solve nonlinear
Einstein equations. We simplify the problem by assuming
that the spins of the interacting objects are small and solve
the equations by using a method of perturbation. Then we
study again the AH formation on the new slice that is the
future edge of the solved region. In the adopted approxi-
mation we obtain spin-spin interaction corrections to the
mini-black-hole production. Section VI contains a sum-
mary of the results and a discussion of their possible
applications for the study of mini-black-hole production
at the LHC.

II. SYSTEM SETUP

In this section, we set up the problem of the head-on
collisions of two gyratons. We first review the gyraton
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model in a four-dimensional spacetime in Sec. II A. The
gyraton has the total energy p and the spin J which are
distributed in time. Their time profiles are characterized by
two functions. We introduce four kinds of gyratons by
specifying these two functions. Next in Sec. II B, we
introduce a system of null geodesic coordinates, which is
necessary for specifying the slice to study the AH exis-
tence. It is also useful for clarifying the gravitational field
of gyratons. In Sec. II C, we set up five cases of head-on
collisions of two gyratons, using the introduced four
gyratons.

A. The gyraton model

The gyraton model was proposed in [12]. In that paper,
the gravitational field generated by a beam pulse of spin-
ning radiation was first studied in the weak field approxi-
mation and then the exact solutions of the Einstein
equations were obtained, which reduce to the approximate
solution at a far distance from the source. These solutions
were obtained in any number of spacetime dimensions. In
particular, a four-dimensional gyraton has the metric
 

ds2 � �d �ud �v	 d �r2 	 �r2d ��2 � 4G�2p log�r�p� �u�d �u

� J�j� �u�d ���d �u: (1)

This metric represents a spacetime in which a segment-
shaped source located at �r � 0 with the total energy p and
the spin J is propagating at the speed of light along �u �
const. The existence of the term d ��d �u in Eq. (1) indicates
the presence of a dragging-into-rotation effect generated
by the spin source. The functions �p� �u� and �j� �u� are
arbitrary functions satisfying the normalization conditions

 

Z
�p� �u�d �u �

Z
�j� �u�d �u � 1: (2)

They represent the energy and spin density profiles,
respectively.

Introducing the new coordinates �x :� ��r cos ��; �r sin ���,
nonzero components of the energy-momentum tensor of
the gyraton are calculated as

 T �u �u � p�p� �u��� �x� 	 �GJ
2�2

j � �u��
2� �x�; (3)

 T �ua �
J
4
�j� �u��ab@b�� �x�: (4)

These formulas show that the source has an infinitely
narrow shape. For a realistic beam pulse, the source should
have a finite radius �r � �rs and the metric will take a
different form from Eq. (1) for �r < �rs. Therefore Eq. (1)
is considered to be the metric outside of the source �r � �rs.
In this paper, we do not take account of this finiteness (in
space) of the beam pulse for simplicity and adopt Eq. (1)
for arbitrary values of �r (i.e., �rs � 0).

Hereafter we adopt the gravitational radius of 2p, i.e.
rh�2p� � 4Gp, as the unit of the length. In this length unit,
the gyraton metric is represented as

 ds2 � �d �ud �v	 d �r2 	 �r2d ��2 � 2 log�r�p� �u�d �u2

	 2j�j� �u�d ��d �u: (5)

Here, j is a dimensionless quantity defined by j :�
J=2prh�2p� and we use j as a parameter to specify the
spin of the gyraton.

The gyraton model is specified by determining the func-
tions �p� �u� and �j� �u�. The interaction between two gyra-
tons with arbitrary profiles �p� �u� and �j� �u� is a quite
complicated problem which, in the general case, requires
numerical calculations. Hence, it is natural to consider first
the simplest profiles for which the null geodesic coordi-
nates can be studied analytically. For this reason, in this
paper we consider four types of gyratons whose energy and
spin profiles are as shown in Fig. 1. We will explain them
one by one in the following. For convenience, we introduce
the following function:

 #� �u; L� �
1

L
��� �u� � �� �u� L��; (6)

where �� �u� is the Heaviside step function. Its integral over
�u is 1, and in the limit L! 0 it gives a �-function.

1. p-gyraton

The first one is a gyraton without spin with energy
duration L. For this model, we adopt

L0

p-profile

p-gyraton

u
0

p-profile

AS-gyraton

u u
L0

j-profile

p-profile

a-gyraton

L0

j-profile

p-profile

b-gyraton

u

FIG. 1 (color online). The energy and spin density profiles, �p� �u� and �j� �u�, for the p-, AS-, a-, and b-gyratons, respectively. The
gray arrows show the directions of propagation.
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��p� �u� � #� �u; L�;

�j� �u� � 0:
(7)

This model is useful for studying the effect of the energy
duration on the AH formation. We simply call it a ‘‘spin-
less gyraton’’ or a ‘‘p-gyraton’’ because it has only one
parameter, energy p.

2. AS-gyraton

The second one is an Aichelburg-Sexl (AS) particle [6]
with

 

��p� �u� � �� �u�;

�j� �u� � 0:
(8)

This is the limit L! 0 of the p-gyraton. Hereafter we call
it an ‘‘AS-gyraton’’ for short.

3. a-gyraton and b-gyraton

The remaining two gyratons, which are referred to as an
‘‘a-gyraton’’ and a ‘‘b-gyraton,’’ have nonzero spin. We
adopt the following functions of �p� �u� and �j� �u� for a- and
b-gyratons:

 a-gyraton:
�
�p� �u� � �� �u�;
�j� �u� � #� �u; L�;

(9)

 b-gyraton:
�
�p� �u� � �� �u� L�;
�j� �u� � #� �u; L�;

(10)

In these two models, L represents the spin duration and the
energy has zero duration. We call them an a-gyraton and a
b-gyraton, respectively, because for the a-gyraton, the spin
source comes after the energy source, while for the
b-gyraton, the spin source comes before the energy source.
These two models are useful for studying the effect of the
spin and its density duration on the AH formation. By
comparing the results of a- and b-gyratons, we can under-
stand to what extent the obtained results depend on relative
positions of the energy and spin density profiles. Each of
the gyratons is reduced to an AS-gyraton if we take j � 0.

Readers might wonder why we do not adopt �p� �u� �
�j� �u� � #� �u; L� for spinning gyratons. This is because of a
technical problem. In the next subsection, we derive a
coordinate system based on the null geodesic congruences.
This coordinate system can be analytically derived for a-
and b-gyratons, but not for �p� �u� � �j� �u� � #� �u; L�.

B. Null geodesic coordinates

In this subsection, we introduce null geodesic coordi-
nates, which are very useful for specifying the slice on
which we study the AH. We introduce new coordinates
�u; v; r;�� by

 �u � u; �v � v	 F�u; r�; �r � G�u; r�;

�� � �	H�u; r�:
(11)

We assume that the two coordinate systems coincide for
�u � u � 0 and hence F � H � 0 and G � r for u � 0.
For u � 0, we require a line v, r, � � const to be a null
geodesic and the coordinate u to be its affine parameter.
This requirement is realized if and only if the following
relations are satisfied:

 H;u � �
j�j�u�

G2 ; (12)

 F;u � G2
;u � 2�p�u� logG�

j2�2
j �u�

G2 ; (13)

 F;r � 2G;uG;r: (14)

These relations determine F, G, and H. In terms of these
functions, the metric takes the form

 ds2 � �dudv	G2
;rdr2 	G2�d�	H;rdr�2: (15)

Eliminating F from Eqs. (13) and (14), we find

 G;uu � �
�p�u�

G
	
j2�2

j �u�

G2 : (16)

Once this equation is solved, one can find H by solving
Eq. (12) and determine all the coefficients in the metric
(15).

1. p-gyraton and AS-gyraton

For a spinless gyraton, using Eq. (7), we find

 G�u; r� �
� ~G�u; r�; �0 � u � L�;

~G;u�L; r��u� L� 	 ~G�L; r�; �L � u�;

(17)

where

 

~G�u; r� :� r exp���erf�1�y��2�; (18)

 y :�

�������
2

�L

s
u
r
: (19)

Here, the function erf�1�y� denotes the inverse function of
the error function: x � erf�1�y� is equivalent to

 y � erf�x� :�
Z x

0

2����
�
p exp��t2�dt: (20)

In the limit L! 0, the function G reduces to

 G�u; r� � r� u=r; �0 � u�; (21)

and the metric (15) coincides with the AS-gyraton in the
null geodesic coordinates [8,22].

We should point out that there is a coordinate singularity
at

 u �
� ������������
�L=2

p
r; �0 � u � L�;

L� ~G�L; r�= ~G;u�L; r�; �L � u�;
(22)
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where G � 0. The shape of the singularity is shown by a
solid line at the left plot of Fig. 2. In order to understand the
meaning of this singularity, it is useful to consider null
geodesics v, r, � � const. These null geodesics plunge
into the coordinate singularity. Let us go back to the
original � �u; �v; �r; ��� coordinates. The trajectories of the
light rays in the coordinates � �u; �r� are shown in the right
plot of Fig. 2. Because of the gravitational effect of the
gyraton energy, the proper circumference of a congruence
of light rays with an identical r value becomes small as �v is
increased and eventually becomes zero. This is where the
congruence hits the coordinate singularity in the
�u; v; r;�� coordinates. Thus, the coordinate singularity
corresponds to the symmetry axis and therefore we call it
the focusing singularity.

2. a-gyraton

Now we turn to the spinning a-gyraton. Using Eq. (9),
Eqs. (12) and (16) are solved as

 G�u; r� �
� ~G�u; r� �0 � u � L�;

~G;u�L; r��u� L� 	 ~G�L; r�; �L � u�;

(23)

 H�u; r� �
� ~H�u; r�; �0 � u � L�;

~H�L; r�; �L � u�;
(24)

where

 

~G�u; r� :� r

����������������������������������������������������������������������
j2=L2 	 ��1	 j2=L2��u=r2� � 1�2

1	 j2=L2

s
; (25)

 

~H�u; r� :� arctan
j=L

1� r2=u
: (26)

In this case, there are two coordinate singularities. One is
the singularity at

 u �
r2�1� r2=L�

1	 j2=L2 � r2=L
; �L � u�; (27)

where G � 0, and the other is at

 u �
�
�1	 j2=L2��1=2r2; �0 � u � L�;
L� ~G;r�L; r�= ~G;ur�L; r�; �L � u�;

(28)

whereG;r � 0. The two coordinate singularities are shown
in the left plot of Fig. 3. A light ray v, r,� � const plunges
into one of the two singularities. The propagation of light
rays in the � �u; �r� coordinates is shown in the right plot of
Fig. 3. Because there is the energy distribution at �u � 0,
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1
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r

FIG. 3 (color online). The left plot shows the coordinate singularities in the �u; r� coordinates where G � 0 (dark gray lines) and
G;r � 0 (light gray line) for an a-gyraton with L � 1. The lines r � const are null geodesics and they hit one of the two coordinate
singularities. The right plot shows the propagation of light rays in the � �u; �r� coordinates. Light rays with a large r value focus to one
point, which corresponds to G � 0. On the other hand, light rays with a small r value bend outward due to a repulsive force around the
center. Then two neighboring light rays cross each other, which corresponds to G;r � 0.
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FIG. 2 (color online). The left plot shows the coordinate singularity in the �u; r� coordinates where G � 0 for a p-gyraton with
L � 1. The lines r � const are null geodesics and they hit the coordinate singularity. The right plot shows the light rays in the � �u; �r�
coordinates. The light rays with an identical r value bend due to an attractive force and focus to one point on a symmetry axis, which
corresponds to G � 0.
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the light rays bend quickly there. Then the light rays with a
sufficiently large r value focus to one point and this is the
focusing singularity G � 0. On the other hand, around the
center, the gravitational field generated by the spin source
is repulsive and the light rays of a small r value bend
outward. Because of this effect, the neighboring light
rays cross with each other and this is where the congruence
hits the coordinate singularityG;r � 0. Therefore we call it
the crossing singularity.

3. b-gyraton

Finally, we obtain the formulas for G and H of a spin-
ning b-gyraton. They are found by solving Eqs. (12) and
(16) using Eq. (10). The result is

 G�u; r� �

8<:
~G�u; r�; �0 � u � L�;
�j2�Lr2��u�L�

Lr
���������
r4	j2
p 	 ~G�L; r�; �L � u�; (29)

 H�u; r� �
� ~H�u; r�; �0 � u � L�;

~H�L; r�; �L � u�;
(30)

where

 

~G�u; r� :� r

������������������������
1	

j2=L2

�r2=u�2

s
; (31)

 

~H�u; r� :� � arctan
j=L

r2=u
: (32)

Similarly to the a-gyraton, there are the focusing singular-
ity at

 u �
r2�r2=L	 1�

r2=L� j2 ; �L � u�; (33)

and the crossing singularity at

 u �
�
�L=jjj�r2; �0 � u � L�;
L� ~G;r�L; r�= ~G;ur�L; r�; �L � u�:

(34)

The shape of the two singularities in �u; r� coordinates and
the propagation of light rays in � �u; �r� coordinates are shown
in Fig. 4.

C. Gyraton collisions

Consider two gyratons and assume that each of them
belongs to one of the four types described above. We obtain
several different configurations for the collisions of these
gyratons. To illustrate main features of these collisions, in
this subsection we set up five cases of the head-on collision
of two gyratons which are of the most interest. The incom-
ing gyratons are referred to as gyraton 1 and gyraton 2. Let
us divide a spacetime for the two-gyraton system into four
regions:

 region I: �u� 0; v� 0�; region II: �u� 0; v� 0�;

region III: �u� 0; v� 0�; region IV: �u� 0; v� 0�:

(35)

Because the gyratons propagate at the speed of light, they
do not interact with each other before the collision. Thus
we can use the metric of the gyraton 1 in regions I and II
and the metric of the gyraton 2 in regions I and III (by
changing u and v). Then, the metric of the system is given
as

 ds2 �

8><>:
�dudv	 dr2 	 r2d�2; �region I�;
�dudv	G�1�;r �u; r�2dr2 	G�1��u; r�2�d�	H�1�;r �u; r�dr�2; �region II�;
�dudv	G�2�;r �v; r�2dr2 	G�2��v; r�2�d�	H�2�;r �v; r�dr�2; �region III�:

(36)

The metric of region IV is unknown, because the interac-
tion between the two gyratons determines its structure
through the Einstein equations.1

In the previous subsection, we introduced four gyraton
models, i.e., a p-gyraton, an AS-gyraton, an a-gyraton, and
a b-gyraton. Using these models, we will consider five
cases of collision. The first one, which we call case (0),
is the collision of two identical spinless p-gyratons. For
both G�1� and G�2�, we use the formula of G for the
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FIG. 4 (color online). The same as Fig. 3 but for a b-gyraton.

1In Sec. IV, we will solve the Einstein equation in a part of
region IV in a specific case, when spins are small.
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p-gyraton (17)–(19). The energy p determines the scale, so
that the only essential parameter which specifies the sys-
tem is the energy duration L.

In the next two cases (1a) and (1b), we consider colli-
sions of a spinning gyraton (a- and b-gyraton, respectively)
with an AS-gyraton. In both cases, we assume that incom-
ing gyratons have the same energy, and only a gyraton 1
has the spin j. These are interpreted as collisions of a
spinning particle and a particle without spin. For G�1� and
H�1�, we use the formulas (23)–(26) of G and H for
a-gyraton in the (1a) case, and use the formulas (29)–
(32) ofG andH for b-gyraton in the (1b) case. ForG�2�, the
formula (21) ofG for AS-gyraton is used in both cases. The
essential parameters which specify the system are the spin
j and its duration L for a gyraton 1.

In the remaining two cases (2a) and (2b), we study
collisions of two a-gyratons and two b-gyratons, respec-
tively. These are interpreted as collisions of two spinning
particles. In these cases, the incoming gyratons are as-
sumed to have the same energy p and the same spin
duration L. As for the spin values, we assume that the
gyraton 1 has the spin j and the gyraton 2 has the spin �j,
where � � 
1. Therefore two spins have the same abso-
lute value jjj and have either the same sign or different
signs. For the choice � � 	1, two spins have the same
direction (i.e. helicities have opposite signs), and for the
choice � � �1 two spins have opposite directions (i.e.
helicities have the same sign). ForG�1� andH�1�, we use the
formulas (23)–(26) of G and H for a-gyraton in the (2a)
case, and use the formulas (29)–(32) of G and H for
b-gyraton in the (2b) case. For G�2� and H�2�, we use the
formulas of G and H for a- and b-gyratons with j replaced
by�j in the (2a) and (2b) cases, respectively. The essential
parameters which specify the system are the spin j of
gyraton 1, the relative directions of two spins �, and the
spin duration L of each incoming gyraton. In the study of
Secs. III and IV, the condition for AH formation in the slice
u � 0 � v and v � 0 � u will turn out to be independent
of �, and hence the essential parameters are reduced to j
and L. The sign of � will become important in the study of
the spin-spin interaction in Sec. V.

All five cases are schematically illustrated in Fig. 5.

III. FINDING THE APPARENT HORIZON

The apparent horizon (AH) � is a compact two-
dimensional spacelike surface for which the family of
outgoing null rays emitted orthogonally to � has zero
expansion. We study the AH on the slice u � 0 � v and
v � 0 � u. Figure 6 shows a schematic picture of the AH
for colliding gyratons. The AH consists of two parts:

 

�
u � h�1��r�; �u > 0 � v�;

v � h�2��r�; �v > 0 � u�:
(37)

These parts are connected at u � v � 0. Each surface has
the other end at the focusing singularity. Because the
focusing singularity is just one point for the same r value,
the surface given by Eq. (37) is a two-dimensional closed
spacelike surface.

Because the AH equations and the outer boundary con-
ditions for h�1� and h�2� have the same form, we only
consider h�r� :� h�1��r� and denote G � G�1� and H �
H�1�. The metric in the neighborhood of v � 0< u is given
by

 ds2 � �dudv	G2
;rdr

2 	G2�d�	H;rdr�
2: (38)

Let us consider a point �u; r;�� � �h�R�; R;	�. The local
light cone with the apex at this point is

 �u� h�R��v�G2
;r�r�R�

2	G2����	� 	H;r�r�R��
2:

(39)

We find the envelope of the local light cones by taking the
derivative of Eq. (39) with respect to R and 	. The tangent
vector of the null geodesic congruence in the �u; v; r;��
coordinate is

 k
 �
�
h2
;r

2G2
;r
; 2;

h;r
G2
;r
;�

H;r

G2
;r
h;r

�
: (40)

Now we calculate the expansion. The induced metric on
the v � const surface is given by d�2 � G2

;rdr
2 	

G2�d�	H;rdr�2, and its determinant � is
����
�
p
� G;rG.

rmin

u

gyraton1 r

r
v

gyraton2

rmax

AH(1) AH(2)

FIG. 6 (color online). The schematic picture of the AH in the
slice u � 0 � v and v � 0 � u.
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v
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u
(2b)

v

p p
j σj

FIG. 5 (color online). The five cases of gyraton collision that
we study in this paper. In case (0), two identical p-gyratons
collide. In cases (1a) and (1b), a- and b-gyratons with spin j
collide with an AS particle, respectively. In cases (2a) and (2b),
two a- and b-gyratons with spins j and �j (� � 
1) collide,
respectively.
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Let us consider a rectangular coordinate domain with
apices at the four points P1, P2, P3, and P4:

 �r;�� �

8>>><>>>:
P1: �R	; 		�;
P2: �R	; 	��;
P3: �R�; 		�;
P4: �R�; 	��:

(41)

Here R
 � R
 �r=2 and 	
 � 	
��=2. The proper
area �A�0� of this domain is

 �A�0� � G;rGj�h�R�;R��r��: (42)

The null geodesics passing through the apices are

 �r;�� �

8>>><>>>:
P01: �R	 	 kr�R	��;		 	 k��R	���;
P02: �R	 	 kr�R	��;	� 	 k��R	���;
P03: �R� 	 kr�R���;		 	 k��R����;
P04: �R� 	 kr�R���;	� 	 k��R����;

(43)

where � is an affine parameter. In what follows, we keep
terms up to first order in �. The coordinate shape of the
domain surrounded by the four apices after evolution is a
parallelogram as indicated by the vectors

 P02P
0
1

���!
� P04P

0
3

���!
� �0;���; (44)

 P03P
0
1

���!
� P04P

0
2

���!
� ��1	 @rk

r���r; @rk
���r�: (45)

The coordinate area of the domain is �1	 @rkr���r��
and the proper area of the domain is
 

�A��� � �G;rG�j�h�R�	ku�R��;R	kr�R����1	 @rkr���r��

� �A�0�
�

1	
�
G;ruku 	G;rrkr

G;r

	
G;uk

u 	G;rk
r

G
	 @rkr

�
�
�
: (46)

Hence, the condition d�A=d� � 0 implies

 h;rr	h;r

�
�
�3=2�G;ruh;r	G;rr

G;r
	
�1=2�G;uh;r	G;r

G

�
� 0:

(47)

This equation determines the AH surface �.
Let us discuss now the boundary conditions at the outer

boundary r � rmax. By the continuity of the surface, the
AH should cross the coordinate singularity at r � rmax:

 G�h�rmax�; rmax� � 0: (48)

The continuity of k
 also must be imposed, because the
surface has a delta-functional expansion if k
 is discon-
tinuous. Going back to the � �u; �v; �r; ��� coordinate, the con-
tinuity can be imposed as k�r � 0 by the axisymmetry. This
is equivalent to

 h;r�rmax� � �2G;r=G;u: (49)

The other condition for the continuity of k
 is that k ��

should take a finite value. But this is automatically satisfied
since the condition H;u � 0 at the focusing singularity
implies that k �� � 0.

Now we turn to the boundary conditions at the inner
boundary r � rmin. The inner boundary conditions depend
on both h�1� and h�2�. By continuity of the surface, both
sides of the AH should cross u � v � 0 at r � rmin, and
thus

 h�1��rmin� � h�2��rmin� � 0: (50)

Also the null tangent vectors k�1�
 and k�2�
 of two surfaces
should be parallel at r � rmin so that there is no delta-
functional expansion. k�1�
 and k�2�
 are given by

 k�1�
 �
�
2;
h�1�2;r

2
; h�1�;r ; 0

�
; k�2�
 �

�
h�2�2;r

2
; 2; h�2�;r ; 0

�
;

(51)

and k�1� k k�2� is equivalent to

 h�1�:r �rmin�h
�2�
;r �rmin� � 4: (52)

The numerical procedure for defining the AH is straight-
forward. First, we choose some value of rmax and solve h�r�
with the outer boundary conditions (48) and (49). When
h�r� becomes zero at r � rmin, we check whether the inner
boundary condition (52) is satisfied. Iterating these steps
for various values of rmax, we determine whether the AH
exists and find its location.

Note that H does not appear in the AH equation and the
boundary conditions. This means that the dragging-into-
rotation effect causes a change in the shear but not in the
expansion. Thus on the slice we have adopted, the condi-
tion for the AH formation does not depend on the sign of j
in the cases (1a) and (1b). In cases (2a) and (2b), it does
not depend also on the relative directions of two spins �.
Therefore in the next section j is assumed to be positive
without loss of generality and we do not specify the value
of � when the numerical results are shown.

IV. NUMERICAL RESULTS

In this section, we present the numerical results of the
AH studies. The results for case (0), cases (1a) and (1b),
and cases (2a) and (2b) are provided in Secs. IVA, IV B,
and IV C, respectively.

A. Collision of gyratons without spin

We begin with case (0), the collision of two identical
spinless p-gyratons with energy duration L. Figure 7
shows top views of the AH for L � 0:5, 1.0, and 1.423.
For 0 � L � 1:423, we found only one solution, and there-
fore there is no inner boundary of the trapped region. For
L � 1:423, the AH intersects the focusing singularity at
u ’ L and almost touches the source of the energy which
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distributes at 0 � �u � L on the symmetry axis. For L �
1:424, we found no solution. Thus, on the slice we studied,
the condition of AH formation is given by L � 1:423 in the
length unit rh�2p� � 1.

B. Collision of a spinning gyraton with an AS particle

Next we show the results of cases (1a) and (1b), i.e., the
collisions of spinning a- and b-gyratons with an AS
particle.

Figure 8 shows the AHs in case (1a) for parameters L �
0:1 and j � 0:05, 0.10, and 0.1466. We found two solutions
to the AH equation, which correspond to the AH and the
inner boundary of the trapped region. As the value of j is
increased for a fixed value of L, the trapped region grows
smaller and the two solutions coincide at some value of j �

jcrit. The trapped region vanishes for j � jcrit. The similar
phenomena was observed also in case (1b). In Fig. 9, the
AH shape in case (1b) is shown for the same parameters as
those in Fig. 8. Again, there are two solutions and they
degenerate at some critical value j � jcrit.

As it has been found above, the spin makes the forma-
tion of the AH more ‘‘difficult.’’ This is because the
gravitational field generated by the spin source is repulsive
as we pointed out in Sec. II. As the value of j is increased,
the repulsive force surpasses the attractive force generated
by the energy source and causes the extinction of the AH.

We studied the value of jcrit as a function of L, i.e.,
jcrit�L�. In Fig. 10, the critical lines for the AH formation in
the �L; j�-plane are shown for both cases. The AH forma-
tion is allowed under the critical line. For L & 1, the two
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FIG. 8 (color online). The top views of the AH in case (1a) for L � 0:1 and j � 0:05, 0.10, and jcrit � 0:1466. For all 0< j �
1:466, there are the AH (solid lines) and the inner boundary of the trapped region (dashed lines). The trapped region shrinks as j is
increased and no AH exists for j � 0:1467.
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FIG. 7 (color online). The top views of the AH in case (0) for L � 0:5, 1.0, and 1.423. For all 0 � L � 1:423, we find only one
solution. At L � 1:423, the AH almost touches the energy source at the symmetry axis. No AH exists for L � 1:424.
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critical lines agree well and go to zero in the limit L! 0.
Both critical lines have the peak j ’ 0:24 at L ’ 0:6. For
L * 1, the two critical lines show different behaviors. In
case (1a), jcrit�L� decreases and becomes zero at L � e :�
exp�1�. On the other hand, it decays (almost) exponentially
but never becomes zero in case (1b).

Let us discuss the reasoning for these results. The reason
why jcrit goes to zero in the limit L! 0 is as follows. As
stated above, the extinction of the AH is caused by the
repulsive force generated by the spin source. Thus, it is
useful to introduce a radius req where the attractive force
due to the energy and the repulsive force due to the spin
balance one another. For this purpose, let us recall Figs. 3
and 4 that show the propagation of light rays through the

gravitational field of the gyratons. The figures indicate the
existence of req such that the rays with r > req shrink and
those with r < req expand in the region �u > L. Such req is
found by the equation G;u�L; req� � 0 and solved as

 req �

� ��������������������
L	 j2=L

p
; a-gyraton;����������

j2=L
p

; b-gyraton:
(53)

As L is decreased, req becomes larger, which indicates that
the repulsive force becomes stronger. It is natural that
req & 1 represents the condition for AH formation, and it
is reduced to j2 & L in the limit L! 0. This explains the
behavior of the critical lines at L� 1.

At L * 1, the condition req & 1 does not explain the
numerical results well. This is because the above discus-
sion takes account only of the gravitational structure in the
transverse direction of motion, which would be sufficient
in the case L� 1, while the spin duration L plays an
important role for the AH existence in the case L * 1.
Let us first consider case (1a). Taking a limit j! 0 for
L * 1, the AH solution is expected to reduce to that for the
collision of two AS particles:

 h�1��r� � h�2��r� � 2r2 logr; (54)

with rmin � 1 and rmax �
���
e
p

. This statement holds only
for L< e. In the case L > e, the ‘‘solution’’ (54) plunges
into the crossing singularity. In other words, it crosses the
spin source distributed on the symmetry axis for 0 � u �
L, on which the outer boundary condition cannot be im-
posed. Thus in case (1a), the situations j � 0 and j � 0	
are different. This is the reason why the critical line inter-
sects the L-axis at L � e.

Next we discuss case (1b). In the limit j! 0 for L * 1,
the AH solution reduces to
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FIG. 10. The critical line on the �L; j�-plane for AH formation
in cases (1a) and (1b). The AH formation is allowed under the
critical line. The two critical lines almost coincide for L � 1 and
go to zero in the limit L! 0. The critical line of the (1a) case
intersects the L-axis at L � e, while that of the (1b) case
becomes exponentially close to the L-axis as L is increased.
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FIG. 9 (color online). The same as Fig. 8 but for case (1b). For L � 0:1, the critical value of AH formation jcrit is almost the same as
that in case (1a).
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 h�1��r� �
�

2r2 logr	 L; �1 � r �
���
e
p
�;

2 log�r=rmin�; �rmin � r � 1�;
(55)

 h�2��r� � 2r2 log�r=rmin�; �rmin � r�
���
e
p
rmin�; (56)

where rmin � e�L=2. In contrast to the (1a) case, this state-
ment is valid for arbitrary L, because the AH never touches
the spin source. Then, the condition for AH formation in
the case j > 0 is expected to be rmin * req, which is
equivalent to j2 & Le�L. This explains the exponential
decay of the critical line in the (1b) case.

Note that the above interpretations, especially the ones
for L * 1, strongly depend on the slice we have adopted.
Thus there is no reason why the above discussion holds for
another slice that is future to our slice. Hence, we should
keep in mind the possibility that the critical line does not
touch the L-axis in another slice also in case (1a).

To summarize, for the collision of a spinning gyraton
with the AS-gyraton and for the slice we have adopted, the

condition for the AH formation is roughly expressed as
L� 1 and j & 0:25 in both cases.

C. Collision of two spinning gyratons

Finally we show the results of cases (2a) and (2b), i.e.,
the collisions of two spinning a- and b-gyratons (identical
up to helicities).

Figure 11 shows the AHs in case (2a) for parameters
L � 0:1 and j � 0:05, 0.10, and 0.113. Similarly to the
(1a) case, there are two solutions to the AH equation,
which surround the trapped region, and they coincide at
some value of j � jcrit as the value of j is increased for a
fixed value of L. The similar phenomena was observed also
in case (2b). In Fig. 12, the AH shape in case (2b) is shown
for L � 0:1 and j � 0:01, 0.05, and 0.0981. Again, we
found two solutions and their disappearance at some criti-
cal value j � jcrit. Similarly to cases (1a) and (1b), the spin
has the effect to make the AH formation more difficult.
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FIG. 11 (color online). The top views of the AH (solid lines) and the inner boundary of the trapped region (dashed lines) in case (2a)
for L � 0:1 and j � 0:05, 0.10, and 0.113. No AH exists for j � 0:113.
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FIG. 12 (color online). The top views of the AH (solid lines) and the inner boundary of the trapped region (dashed lines) in case (2b)
for L � 0:1 and j � 0:01, 0.05, and 0.0981. No AH exists for j � 0:0982.
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We studied the value of jcrit as a function of L. In Fig. 13,
the critical line for cases (2a) and (2b) in the �L; j�-plane is
shown. The AH formation is allowed under each critical
line.

Let us first discuss the critical line of the (2a) case. It
goes to zero in the limit L! 0 and intersects the L-axis at
L � e. It has a peak j ’ 0:19 at L ’ 0:6, and this peak
value is somewhat smaller than the peak value 0.24 of the
(1a) case. Hence, the critical line of the (2a) case has the
same features as that of the (1a) case except that the peak
value is smaller. For the behaviors at L! 0 and L! e, the
same reasoning to the results of the (1a) case holds.
Compared to the (1a) case, the AH formation is expected
to become more difficult, since both gyratons have the
repulsive forces around their centers in the (2a) case while
only one gyraton has the repulsive force in the (1a) case.
This leads to the smaller peak value of jcrit�L� in the (2a)
case.

Now we discuss the critical line of the (2b) case. It goes
to zero in the limit L! 0 with the same reason to the (1b)
case. It has a peak j ’ 0:105 at L ’ 0:16, and intersects the
L-axis at L � 1=e. The allowed region of the (2b) case is
much smaller than that of the (2a) case. The condition of
the AH formation strongly depends on the relative loca-
tions of the energy and spin profiles. The reason can be
understood as follows. In the limit j! 0, the AH becomes

 h�r� �
�

2r2 log�r=
��������
rmin
p

� 	 L; �
��������
rmin
p

� r �
�����������
ermin
p

�;
2rmin log�r=rmin�; �rmin � r �

��������
rmin
p

�;

(57)

where rmin is given by the equation

 L � �rmin logrmin: (58)

This equation has two solutions for 0 � L< 1=e, one
degenerate solution for L � 1=e, and no solution for L>
1=e. Thus the AH formation in the j! 0 limit is allowed
only for 0 � L � 1=e. This is the reason why the allowed
region is restricted to 0 � L � 1=e and is much smaller
than that of case (2a). However, we should keep in mind
that this discussion is specific to the slice we have adopted.
In the case j � 0, the AH formation is allowed on a slice
appropriately taken at the future to our slice. Hence, the
allowed region in the (2b) case is so small because of the
artificial effect of the slice choice. In the next section, we
demonstrate that this expectation is true by solving a part
of the spacetime after the collision using the method of
perturbation.

To briefly summarize, for the collision of two spinning
gyratons, the condition of the AH formation on the slice we
have adopted is roughly expressed as L� 1 and j & 0:2 in
the (2a) case, while L� 0:15 and j & 0:1 in the (2b) case.

V. SECOND-ORDER EVOLUTION

In a general case, finding the spacetime structure after
the collision of two gyratons requires numerical simula-
tions. However, in the (2b) case, we can go a little bit
further using the method of perturbation assuming that the
spins of incoming gyratons are small.

Figure 14 shows the schematic spacetime structure in the
(2b) case where the gyraton 1 with the spin j and the
gyraton 2 with the spin �j collide. (Here � � 
1, but
we note that the solution to the Einstein equations found in
the Sec. VA can be applied to an arbitrary value of �.) For
�> 0 the two spins have the same direction (i.e., the
helicities of incoming gyratons have opposite signs), while
for �< 0 the two spins have opposite directions (i.e., the
helicities of incoming gyratons have the same sign). The
exact metrics in regions I, IIA, IIB, IIIA, and IIIB are
known. We focus our attention on finding the metric in
region IVA (0 � u � L and 0 � v � L), where the gravi-
tational spin-spin interaction begins. If the value of j is
small, we can expand the metric in terms of j. The back-
ground spacetime is the Minkowski spacetime, because
regions I, IIA, and IIIA are flat for j � 0. The first-order
perturbation is easily solved. Because the metric in
regions IIA and IIIA is

 ds2 �

�
�dudv	 dr2 	 r2d�2 	 2��u=r�drd�; region IIA;
�dudv	 dr2 	 r2d�2 	 2���v=r�drd�; region IIIA;

(59)

where

 � � 2j=L; (60)

0 0.5 1 1.5 2 2.5 3
L

0.05

0.1

0.15

0.2

0.25

j

(2b)

(2a)

FIG. 13. The critical lines on the �L; j�-plane for AH formation
in cases (2a) and (2b). The two lines go to zero in the limit L!
0. The critical lines of the (2a) and (2b) cases intersect the L-axis
at L � e and 1=e, respectively.
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the metric in region IVA is found to be

 ds2 � �dudv	 dr2 	 r2d�2 	 2�
u	 �v

r
drd�; (61)

using the linearity of the first-order perturbation. Strictly
speaking, we have to specify the properties of matter
interaction between the sources of two incoming gyratons
in order to determine the metric of the whole region IVA.
The domain where the matter interaction is important is
within the light cone of the source collision, i.e. uv > r2.
The spacetime structure of the other domain uv < r2 in
region IVA is not affected by the matter interaction and
therefore the metric (61) can be applied for this domain. In
the following, we restrict our attention to the domain uv <
r2 and do not consider the effect of matter interaction.

In order to study the condition of AH formation, the
above first-order solution is not sufficient because the
nonexistence of the AH is due to the effect of nonlinear
terms in j. Thus we should study (at least) the second-order
perturbation, with which we will proceed in this section.

This study has the following meanings. First, it will
clarify to what extent the condition of AH formation
depends on the choice of the slice. In the previous section,
we found that the conditions are very different in the (2a)
and (2b) cases. Although we expected that this is due to the
artificial effect of the slice choice, the study in this section
will explicitly show whether such an expectation is correct
or not. Next, by comparing the two cases � � 
1, we can
study the properties of the gravitational field generated by
the spin-spin interaction in the gyraton collision. As a
result, we will find the dependence of the AH formation
on the relative helicities of the incoming gyratons. For the
old slice u � 0 � v and v � 0 � u, we found no differ-
ence between � � 
1 cases because the function G�u; r�
on the chosen slice depends only on j2. However, the
second-order structure of region IVA will depend also on
� and it will lead to different conditions for the AH
formation on the new slice, which consists of the future

boundaries of regions IVA, IIB, and IIIB as illustrated in
Fig. 14.

The gravitational spin-spin interactions were studied for
a spinning test particle around a rotating body [23], for a
massless particle passing by a rotating body [24,25], and
for binary systems of weakly gravitating bodies [26,27]. In
the case of binary systems, the contribution of spin-spin
interaction to the relative acceleration, ~aSS, between two
bodies was calculated as

 ~a SS � �
3


r4 � ~n�
~S1 
 ~S2� 	 ~S1� ~n 
 ~S2� 	 ~S2� ~n 
 ~S1�

� 5 ~n� ~n 
 ~S1�� ~n 
 ~S2��; (62)

where ~r is a relative location ~r � ~r1 � ~r2, ~n :� ~r=r, 
 is
the reduced mass, ~S1 and ~S2 are spins of two bodies. For
~S1 � S1 ~n and ~S2 � S2 ~n, the spin-spin acceleration be-
comes ~aSS � �6=
r4�S1S2 ~n. Therefore, for a binary with
both spins aligned with the relative location vector ~r (i.e.,
both S1 and S2 are positive), the spin-spin interaction is
repulsive. Another example where the spin-spin interaction
plays an important role is the Hawking emission of mass-
less particles with spin (e.g., photons and neutrinos) by a
Kerr black hole. In this process, the flux of particles with a
given helicity created by the rotating black hole has aniso-
tropic distribution. The black hole radiates more particles
in the direction where the spin is aligned to the angular
momentum of the black hole than in the opposite direction
([28–30] and see also [31] for higher-dimensional cases).
This indicates the existence of a spin-spin interaction
between the black hole and an emitted particle, which is
repulsive when two spins have the same direction. If we
assume that a spin-spin interaction similar to the above
examples is present for a system of two relativistic spin
particles, the black hole formation in the head-on collision
of two gyratons with the same spin direction (� � 	1) is
expected to be more difficult than that with the opposite
spin directions (� � �1). The calculations in this section
will confirm this.

In Sec. VA, we derive the second-order Einstein equa-
tions and solve them. Then the AH equation and the
boundary condition on the new slice is studied in
Sec. V B. We present the numerical results in Sec. V C.
In Sec. V D, we discuss the properties of the gravitational
field in region IVA in more detail using the null geodesics.
This helps us to interpret the results of AH formation.

A. Second-order equations

We adopt � � 2�j=L� as a small expansion parameter
and assume the following metric ansatz in �u; v; r; ��
coordinates:
 

ds2 � ��1	 �2c�dudv	 �1	 �2a�dr2

	 r2�1	 �2b�d�2 	 2�
u	 �v

r
drd�: (63)

                     
    

    
    

 

u v

IVA

j σ j
I

IIA

IIB

IIIA

IIIB

FIG. 14 (color online). Schematic spacetime structure of the
gyraton collision in the (2b) case. Region IVA can be solved
using a perturbative method, assuming the spins are small. Then
we study the AH on the new slice shown by a dotted line, which
is the future edge of the solved region.
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Here a, b, and c are functions of u, v, and r. Expanding the
Einstein equations up to the second order in �, we obtain:2

 a;uu 	 b;uu �
1

r4 ; (64)

 a;vv 	 b;vv �
�2

r4 ; (65)

 2c;uv �
1

2

�
c;rr 	

c;r
r

�
	 a;uv 	 b;uv �

�

r4 ; (66)

 c;ur 	 b;ur 	
b;u
r
�
a;u
r
�

2

r5
�u	 �v�; (67)

 c;vr 	 b;vr 	
b;v
r
�
a;v
r
�

2�

r5
�u	 �v�; (68)

 2c;rr � 4a;uv 	 b;rr 	
2

r
b;r �

a;r
r
	

4

r6
�u	 �v�2 �

4�

r4 ;

(69)

 2
c;r
r
� 4b;uv 	 b;rr 	

2

r
b;r �

a;r
r
	

4

r6
�u	 �v�2 �

4�

r4 :

(70)

These relations follow from uu, vv, uv, ur, vr, rr, ��
components of the equation R
� � 0, respectively. The
other components vanish automatically.

The initial conditions for this system are found by ex-
panding the exact metric in regions IIA and IIIA in terms of
j:

 a � b �
u2

4r4 ; c � 0; for v � 0; (71)

 a � b �
�2v2

4r4 ; c � 0; for u � 0: (72)

The solutions satisfying these initial conditions are found
as

 a �
1

4r4 �u	 �v�
2 	

�

2r2

�
x
�

3�
1

1� x

�
	 log�1� x�

�
;

(73)

 b �
1

4r4 �u	 �v�
2 �

�

2r2

�
x
�

1�
1

1� x

�
	 log�1� x�

�
;

(74)

 c � �
�

2r2

x
1� x

; (75)

with

 x � uv=r2: (76)

We discuss now the properties of the second-order so-
lution in region IVA. First, a line u, r, � � const is a null
geodesic, although when c � 0 the coordinate v is no
longer an affine parameter along the geodesic. Similarly
a line v, r, � � const is a null geodesic, although the
coordinate u is not an affine parameter along it. Thus, the
coordinates �u; v; r; �� simultaneously label the two null
geodesic congruences.

Next, all second-order quantities a, b, and c diverge at
x � 1, i.e., uv � r2. Therefore it is interesting to ask
whether x � 1 is a physical singularity or a coordinate
singularity. For this purpose, we calculated the leading
term in the expansion of the Kretchman invariant K :�
RabcdR

abcd near this point:

 K � �4�2 4�3� x�

r8�1� x�3
: (77)

Evidently it is divergent at x � 1. Because we are studying
perturbation, the formula (77) cannot be trusted in the
neighborhood of x � 1, and we cannot definitely claim
that there is a physical singularity at x � 1. Still,
Eq. (77) indicates that there always exists the region where
the perturbation breaks down around x � 1 for any small j.
Hence, it is natural to expect that the exact solution, if it is
found, also will have a real singularity of which location is
shifted by O�j2� from x � 1. If this is the case, a physical
singularity is produced at u � v � r � 0 by the collision
of gyratons and expands (almost) at the speed of light
because uv � r2 represents a light cone in the background
spacetime. We note that this singularity formation is a
consequence of the infinitely narrow shape of the source,
i.e. Eqs. (3) and (4). In a realistic case where each source
has a finite radius �r � �rs, the metric is regular at the source
and therefore the singularity is not produced at uv � r2.
Then the spacetime structure in the region uv > r2 is
determined by matter interaction between the two sources.
Although the dependence on the properties of matter in-
teraction is an interesting issue, it is not tractable by the
perturbation.

Finally, although the metric is continuous everywhere,
first derivatives of a, b, and c are discontinuous at u � 0 �
v � L and v � 0 � u � L. As a result, some components
of Riemann curvature, Rurur, Rvrvr, Ru�u�, and Rv�v�,
have the delta function singularity there:

 Rurur � �2 �

4r4

�
v2�3� x�

r2�1� x�
��u� � 2v��u�

�
��v�; (78)

 Ru�u� � �2 �

4r4

�
v2�3� x�

r2�1� x�
��u� 	 2v��u�

�
��v�; (79)

2More strictly, we should put gr� � ��u��u� 	 �v��v��=r in
Eq. (63), although we do not show this because the equations
become tedious. We note that this step function formula leads to
the junction conditions at u � 0 � v � L and v � 0 � u � L
through Ruu � Rvv � 0, which the solution (73)–(75) satisfies.
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and Rvrvr and Rv�v� are obtained by changing u and v in
Eqs. (78) and (79), respectively (but note that the Ricci
tensor is zero in the sense of distribution). Hence, at the
encounter of the two spin flows, a new shock field is
produced and it grows linearly in u or v. The above four
components of Riemann curvature are proportional to �
and thus the feature of the shock gravitational field at u �
0 � v � L and v � 0 � u � L depends on the sign of �.

B. AH equation on the new slice

Because the metric in region IVA has properties that are
somewhat different from other regions, we should derive
the AH equation on the new slice. But the basic idea is the
same as that in Sec. II.

The second-order metric can be written like

 ds2 � �Cdudv	 Adr2 	 B�d�	Ddr�2; (80)

where A, B, C, and D are functions of u, v, and r. In
region IVA,

 

A � 1	 �2

�
a�
�u	 �v�2

r4

�
; B � r2�1	 �2b�;

C � 1	 �2c; D � �
�u	 �v�

r3 ; (81)

and in region IIB,

 A �
�
1	

uL
r2

��
1	

uL
r2 �

j2

r2

�
3	

�
5

r2 	
6

L

�
uL

��
;

B �
�
r�

uL
r

��
r�

uL
r
	
j2

r3

�
1	

�
1

r2 	
2

L

�
uL

��
;

C � 1; D �
2j

r3 ;

(82)

where uL :� u� L and we have kept terms up to second
order in j. Based on this metric, we solve the AH equation
on the new slice as shown in Fig. 15. The new slice consists
of four parts: (1) v � 0, L � u; (2) u � L, 0 � v � L;

(3) v � L, 0 � u � L; (4) u � 0, L � v.
Correspondingly, the AH consists of u � h�1��r� on
slice (1); v � h�2��r� on slice (2); u � h�3��r� on slice (3);
v � h�4��r� on slice (4).

We consider the AH equation for h�r� :� h�2��r�. The
tangent vector of the null geodesic congruence from the
surface is given by

 �ku; kv; kr; k�� �
�
2;
C
2A
h2
;r;
C
A
h;r;�

CD
A
h;r

�
: (83)

and the condition of zero expansion becomes

 @rkr	
A;uk

u	A;vk
v	A;rk

r

2A
	
B;uk

u	B;vk
v	B;rk

r

2B
� 0;

(84)

or equivalently
 

h;rr 	
�
�3

A;v
A
	
B;v
B
	 4

C;v
C

�
h2
;r

4
	

�
�
A;r
A
	
B;r
B
	 2

C;r
C

�

�
h;r
2
	
A
C

�
A;u
A
	
B;u
B

�
� 0: (85)

The equation for h�1��r� is obtained by just changing u and
v in Eq. (85).

Now we explain the boundary conditions. At the inter-
section of the AH and the coordinate singularity u � L	
r2, we impose

 h�1�;r � �2B;r=B;u: (86)

with the same reason as that in Sec. II. At the intersection
of slices (1) and (2), we impose the condition that two null
vectors of both sides of the surface be parallel, which is
equivalent to

 h�1�;r h
�2�
;r � 4A; (87)

where we used C � 1 on v � 0. Similarly, at the intersec-
tion of slices (2) and (3), we impose

 h�2�;r h
�3�
;r � 4A=C: (88)

In the cases � � 
1, the functions A, B, and C are
symmetric with respect to u and v. Because D does not
appear in the AH equation and the boundary conditions,
the AH shape is symmetric with respect to the plane u � v.
Hence, we only have to study h�1��r� and h�2��r�, and the
boundary condition (88) is reduced to

 h�2�;r � 2
����������
A=C

p
: (89)

We also note that, because the functions A, B, and C do not
depend on the sign of j, the condition for the AH formation
is written in terms of jjj and L for each �. For this reason, j
is assumed to be positive without loss of generality in the
following.

The numerical procedure is as follows. First, we choose
some value of r0 and start solving h�1��r�with the boundary

u

gyraton1 r

r

v

gyraton2

r12

r0

r23

AH(1)

AH(2) AH(3)
AH(4)

FIG. 15 (color online). The new slice on which we study the
AH formation and the schematic shape of AH in the new slice.
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condition h�1��r0� � L	 r2
0 and (86). When h�1��r� be-

comes L at r � r12, we solve h�2� using the boundary
conditions h�2��r12� � 0 and h�2�;r � 4A=h�1�;r . When h�2�

becomes L at r � r23, we check whether the boundary
condition (89) is satisfied. Iterating these steps for various
values of r0, we can judge the existence of the AH and find
its location.

C. Numerical results

In order to test the reliability of the second-order ap-
proximation, we studied the condition of AH existence on
the old slice u � 0 � v and v � 0 � u using the exact
formula and the second-order formula for G�u; r� and
compared the two results. Figure 16 shows the regions of
AH formation on the �L; j�-plane obtained by the two
methods. The two results agree well and the difference is
O�j2�. This demonstrates the reliability of the second-order

approximation for the old slice. Later, we will discuss also
the reliability of the approximation for the AH study on the
new slice.

Now we show the results of the new slice. We first show
the case � � 	1 where the spins of two gyratons have the
same direction (i.e., the helicity of one gyraton is positive
and that of the other is negative). Figure 17 shows top
views of the AH shape for L � 0:3 and j � 0:05, 0.1, and
0.1129. We could not find the solution for j � 0:1130.
Similarly to the case of the old slice, there is some critical
value of the spin j�	�crit �L� for the AH formation. There are
two solutions for each j < j�	�crit �L�, which correspond to the
AH and the inner boundary of the trapped region, and they
coincide at j � j�	�crit �L�.

Next we show the case � � �1, where the spins of two
gyratons are oppositely directed (i.e., the helicities of
gyratons are both positive or negative). Figure 18 shows
top views of the AH shape for L � 0:3 and j � 0:1, 0.15,
0.1581. For j & 0:1, only one solution is found. Hence,
there is an AH but no inner boundary of the trapped region.
For 0:15 & j � 0:1581, two solutions are found for each j.
Thus, the inner boundary of the trapped region appears for
these values of j. For j � 0:1582, there was no solution.
The critical value j���crit �L� of AH formation for � � �1 is
larger than j�	�crit �L�. Thus in the case � � �1, the AH is
allowed to form in a larger parameter regime compared to
the case � � 	1.

We studied the critical value j���crit�L� as functions of L for
the cases� � 
1. Before showing the obtained results, we
comment on the reliability of the second-order approxima-
tion. In order to evaluate the error, we checked the maxi-
mum values of �2a, �2b, and �2c on the AH at the critical
line. In the case � � 	1, max��2a� � 0:32, max��2b� �
0:20, and max��2c� � 0:14 are satisfied for arbitrary L.
Therefore the expected error is about 20%. In the case
� � �1, they are found to be max��2a� ’ 0:38,
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FIG. 17. The top view of the AH (solid lines) and the inner boundary of the trapped region (dashed lines) in the case � � 	1 for
L � 0:3 and j � 0:05, 0.1, and 0.1129.
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FIG. 16. The critical lines for AH formation on the �L; j�-plane
for the old slice. The results obtained by the exact formula and
by the second-order approximation (denoted by ‘‘Exact’’ and
‘‘Approx.’’, respectively) are compared. The two results agree
well and the error is O�j2�.
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max��2b� ’ 0:13, and max��2c� ’ 0:12 for L & 0:3, and
thus the expected error is about 30% for L & 0:3. However,
for L � 1:0, their values grow large: max��2a� ’ 0:96,
max��2b� ’ 0:97, and max��2c� ’ 0:95, and the approxi-
mation obviously breaks down at L * 0:9. Thus unfortu-
nately we cannot trust the shape of the critical line for
L * 0:9 in the case � � �1. To summarize, we can trust
the shape of the AH critical line of � � 	1 for arbitrary L
and that of � � �1 for L & 0:3 with the error discussed
above.

Figure 19 shows the parameter regions in the
�L; j�-plane that allows the AH formation on the new slice
in the cases � � 
1, together with that on the old slice. In
both cases, j���crit�L� goes to zero in the limit L! 0. The

critical line of � � 	1 crosses the L-axis at L � 1, which
is much larger compared to L � 1=e in the case of the old
slice. Although the error in j���crit �L� grows large for L *

0:9, the critical line of � � �1 does not seem to cross the
L-axis for 0 � L< 1. Hence, the allowed regions of the
new slice is much larger than that of the old slice for both
� � 
1. At the end of the previous section, we stated our
expectation that the large difference between the allowed
regions of the (2a) and (2b) cases is due to the artificial
effect of the slice choice. It is now confirmed, since the
allowed region of the (2b) case has become much larger by
just changing the slice. Comparing the two cases � � 
1,
j���crit �L� is greater than j�	�crit �L�. Therefore, the AH forma-
tion in the case � � �1 is allowed in a larger parameter
region compared to the case � � 	1, and the condition of
the AH formation depends on the relative helicities of
incoming gyratons. To briefly summarize, on the new slice,
the condition of the AH formation is roughly expressed as
L� 0:5 and j & 0:1 in the case � � 	1 and L� 0:5 and
j & 0:15 in the case � � �1.

The reason why the allowed region in the case � � 	1
is limited to 0 � L � 1 is understood as follows. In the
case j � 0, the AH solution is given by

 h�1��r� � h�4��r� � L	 2r2 log�r=r12�;

�r12 � r �
���
e
p
r12�;

(90)

 h�2��r� � h�3��r� � 2 log�r=r12�; �r12 � r � 1�;

(91)

with r12 � 1=
����
L
p

. Although the AH is expected to con-
verge to this solution in the limit j! 0, we should take
care of the presence of the singularity uv � r2, where the
perturbative quantities diverge. For L> 1, the singularity
crosses the surface (91), invalidating it to be an AH. Hence
j � 0 and j � 0	 are different for L> 1, and no AH exists
for small j. On the other hand, for 0 � L � 1, the surface
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FIG. 19. The critical lines for the AH formation for the new
slice for � � 	1 (lower solid line) and for � � �1 (upper solid
line). The critical line for the old slice is also shown (dashed
line). In both cases � � 
1, the AH formation is allowed in a
larger region on the �L; j�-plane compared to the old slice. The
allowed region of � � �1 is larger than that of � � 	1. In the
case � � �1, the perturbative quantity becomes large at L *

0:9 and the shape of the critical line cannot be trusted there
(dotted line).
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FIG. 18. The top view of the AH (solid lines) and the inner boundary of the trapped region (dashed lines) in the case � � �1 for
L � 0:3 and j � 0:1, 0.15, and 0.1581. For j � 0:1, there is no inner boundary of the trapped region.
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(90) and (91) is the AH in the limit j! 0, because the
singularity does not cross the surface. Hence, it is natural
that the region of the AH formation is restricted to 0 �
L � 1. Although we could not specify the allowed region
for � � �1 around L ’ 1, the above discussion would
hold also for this case. Hence, if the exact solution for
region IVA is found, the allowed region for � � �1 will
turn out to be restricted to 0 � L � 1.3

D. Gravitational field in the region IVA

We discuss the properties of gravitational field in region
IVA in more detail, because it helps us to understand the
reason for the different allowed regions in the cases � �

1. For this purpose, we study the ‘‘gravitational force’’
acting on the null geodesics u, r, � � const and v, r, � �
const.

Let us consider a null geodesic congruence u � u0, r �
r0, 0 � � � 1. The section of the congruence and v �
const is a loop and the quantity

 r�u0;r0�
loop �v� � r0�1	 �2b�u0; v; r0�=2� (92)

gives a radius of the loop (i.e., the proper circumference
divided by 2�). We define the ‘‘gravitational force’’
F�u0;r0��v� toward the symmetry axis by

 F�u0;r0��v� :�
@2r�u0;r0�

loop

@v2 : (93)

The force is attractive if F�u0;r0��v�< 0 and repulsive if
F�u0;r0��v�> 0. Similarly we consider another congruence
v � v0, r � r0, 0 � � � 1 and introduce its loop radius
r�v0;r0�

loop �u�. Then another kind of force is defined by

 F�v0;r0��u� :�
@2r�v0;r0�

loop

@u2 : (94)

The two forces are calculated as

 F�u;r��v� �
�2

4r3

�
2�u��v� 	 1	 �

u2�3� x�

r2�1� x�3

�
; (95)

 F�v;r��u� �
�2

4r3

�
2�v��u� 	 1	 �

v2�3� x�

r2�1� x�3

�
: (96)

The delta function of the first term in the square brackets of
each formula comes from the new shock field at u � 0 �
v � L and v � 0 � u � L [see Eqs. (78) and (79)].

In the case � � 	1, both F�u;r��v� and F�v;r��u� are
positive outside of the singularity x � 1. Hence, the gravi-
tational field is repulsive in the whole region IVA. On the
other hand, in the case � � �1, the coefficients of the
delta functions in Eqs. (95) and (96) are negative, indicat-
ing that the new shock fields are attractive. The third term
in the square brackets is also negative. If x is close enough
to 1, the third term exceeds the second term and the force
becomes negative. Hence, around the singularity x � 1,
there is always the attractive region of the gravitational
force. If x is close to 0, the third term is smaller than 1 and
the gravitational field is repulsive in such a region.
Therefore, both attractive and repulsive regions exist for
� � �1.

Let us look at the behavior of the loop radius r�u0;r0�
loop �v�.

Ignoring a factor, the change in r�u0;r0�
loop �v� is presented by

b�u0; v; r0�. Figure 20 shows the behavior of b�u0; v; r0�
for r0 � 1 and u0 � 0,0.5, 1 for the two cases � � 
1.
Because of the delta function in the force (95), b�u0; v; r0�
is not smooth at v � 0 for u0 > 0 in both cases. In the case
� � 	1, b�u0; v; r0� suddenly increases at v � 0 and
blows up, since the force is repulsive everywhere. In the
case � � �1, b�u0; v; r0� suddenly decreases at v � 0 due
to the attractive force. For v > 0, the behavior of
b�u0; v; r0� strongly depends on the value of u0. If u0 is
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FIG. 20. The behavior of the function b�u0; v; r0� in the cases � � 	1 (left) and � � �1 (right) for r0 � 1 and u0 � 0, 0.5, 1. The
value of b�u0; v; r0� is directly related to the radius r�u0 ;r0�

loop �v� of the light ray congruence u � u0, r � r0, 0 � � � 2�. The light rays
quickly bend at v � 0 due to the delta functions in Riemann curvature (78) and (79) in both cases but the bending directions are
opposite. b�u0; v; r0� continues to increase in the case � � 	1, while its behavior strongly depends on u0 in the case � � �1.

3This discussion holds only for a collision of gyratons with
singular sources, Eqs. (3) and (4). In the collision of realistic
beam pulses, the singularity is not produced at uv � r2 and the
regions of AH formation might become different from Fig. 19.
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large, the light ray feels repulsive force at the beginning but
later feels attractive force.

Now we discuss the reason for j���crit �L� � j�	�crit �L�, i.e.,
the difference between the allowed regions for the AH
formation of � � 
1. In the case � � 	1, the gravita-
tional field in region IVA is repulsive everywhere. If j is
increased, the repulsive force exceeds the attractive force
generated by the energy, causing the disappearance of the
trapped region. On the other hand, in the case � � �1
there are both attractive and repulsive regions. Figure 21
shows the sign of two forces F�u;r��v� and F�v;r��u� on
slice (2), i.e. 0 � v � L � u. The slice is divided into
three regions: region ���� where F�u;r��v�<F�v;r��u�<
0, region ��	� where F�u;r��v�< 0<F�v;r��u�, and region
�		� where 0<F�u;r��v�<F�v;r��u�. This figure shows
that the gravitational force is attractive around the singu-
larity x � 1 and repulsive for r� L. For L� 1, the
attractive region is a tiny portion just around the singularity
and the force is repulsive almost everywhere on the sur-
face. The repulsive force becomes dominant as j is in-
creased, resulting in disappearance of the AH. Although
the attractive region becomes large for L ’ 1, the attractive
force does not help the AH formation effectively since
there is the constraint j���crit �L � 1� � 0 coming from the
size of the singularity x � 1 as discussed in the previous
subsection. Therefore, also in the case � � �1, the spin j
makes the AH formation more difficult. However, in the
case � � �1, the repulsive force is obviously smaller than
that of the case � � 	1 for a fixed j value. Hence, a larger
value of j is needed for the disappearance of the AH. This
explains our result j���crit �L� � j�	�crit �L�.

VI. SUMMARY AND DISCUSSION

In this paper, we studied the AH formation in the head-
on collision of gyratons. We introduced four gyraton mod-
els in Sec. II: a spinless p-gyraton, an AS-gyraton, and
spinning a- and b-gyratons. The energy and spin profiles of
each gyraton are given in Eqs. (7)–(10). For a spinless
p-gyraton and an AS-gyraton, the energy profile is a step
function with width L and a delta function, respectively.
For a- and b-gyratons, the energy profile is a delta function
and the spin profile is a step function with width L. The
difference between a- and b-gyratons is the relative loca-
tions of the energy and spin profiles. We introduced the
null geodesic coordinates for each gyraton, and discussed
the property of its gravitational field. Especially, a spinning
gyraton has a repulsive gravitational field around its center.

Then the problem of the head-on collisions of two
gyratons was set up and the AH was studied on the slice
u � 0 � v and v � 0 � u in Secs. II, III, and IV. The
studied collision cases and obtained results are summa-
rized in Table I. In all cases two gyratons are assumed to
have the same energy. Case (0) is the collision of two
identical spinless p-gyratons. In this case the energy dura-
tion L should be smaller than some critical value for the
AH formation. In cases (1a) and (1b), we studied the
collision of spinning a- and b-gyratons with an AS-
gyraton, respectively. We obtained the conditions for the
AH formation in terms of the spin duration L and the spin
j. They are shown in Fig. 10 and roughly summarized as in
Table I. (Here j > 0 is assumed since the AH formation
does not depend on the spin direction.) In both cases, there
was a critical value jcrit�L� for the AH formation for a given
L. We found no significant difference between the two
cases. In cases (2a) and (2b), we studied the collision of
two spinning a- and b-gyratons, respectively. Two gyratons
were assumed to have the same spin duration L and abso-
lute value of the spin j. We obtained the conditions for AH
formation in terms of L and j. They are shown in Fig. 13
and roughly summarized as in Table I. (Here j > 0 is
assumed and the relative direction of two spins � is not
specified, since the AH formation does not depend on the
directions of two spins on the studied slice.) We found that
the allowed region on the �L; j�-plane in the (2b) case is
much smaller than that in the (2a) case.

In Sec. V, we focused our attention on the gravitational
spin-spin interaction after collision in the (2b) case. We
solved a part of the future to the slice u � 0 � v and v �
0 � u (old slice) in the collision of gyratons with spins j
and �j (� � 
1), using a method of perturbation where j
is a small expansion parameter. The solved region is the
past to the collision of the energy flows, but the two spin
flows interact with each other in that region (see Fig. 14 for
details). Therefore we could study the spin-spin interac-
tion. Then we again studied the AH formation on the future
edge of the solved region (new slice) and compared the
obtained results to those of the old slice. It was found that

2 1 0 1 2 3
r L

0.2

0.4

0.6

0.8

1

v L

FIG. 21. The sign of two forces F�u;r��v� and F�v;r��u� on
slice (2), i.e. 0 � v � L � u, for � � �1. The slice is divided
into three regions: region ���� where F�u;r��v�< F�v;r��u�< 0,
region ��	� where F�u;r��v�< 0<F�v;r��u�, and region �		�
where 0<F�u;r��v�<F�v;r��u�. The unit of r (horizontal line)
and the unit of v (vertical line) is the spin duration L and the gray
line indicates the singularity x � 1.
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the allowed region becomes larger by just changing the
slice (Fig. 19). Hence, the difference between the results of
old slice in cases (2a) and (2b) was due to the artificial
effect of choosing a slice on which we study the AH.

Furthermore, we found the dependence on the relative
helicities of incoming gyratons. In the case � � 	1 where
two spins have the same direction (i.e., helicities have
opposite signs), the gravitational field is repulsive every-
where due to the spin-spin interaction. On the other hand,
in the case � � �1 where two spins have the opposite
directions (i.e., helicities have the same sign), the spin-spin
interaction decreases the repulsive force and even changes
it into the attractive force in a part of the studied region.
Correspondingly the allowed region of the AH formation
for � � �1 is larger than that for � � 	1 (Fig. 19).

In the light of the above studies, we claim the following.
For the AH formation in the head-on collision of gyratons:
(i) the energy duration should be smaller than some critical
value (close to the system gravitational radius); (ii) the spin
duration should be at least of order of the system gravita-
tional radius (it should not be too small or too large);
(iii) the spin should be smaller than some critical value
that is a function of the spin duration. Further, (iv) the AH
formation in the collision of two gyratons with the oppo-
sitely directed spins is easier than that with the same
direction of spins.

Now we discuss the possible applications of the obtained
results for mini-black-hole production at the LHC in the
TeV gravity scenarios where Mp � TeV. Let us consider
the collision of two spinning particles, and use our result of
the (2a) case, i.e. the collision of two identical a-gyratons,
for the condition for the black hole formation as an ex-
ample. Restoring the length unit, it is written as L ’ rh�2p�
and J & 0:4� prh�2p�. We use the Lorentz contracted
proton size L� 1:5� 10�4 fm for the spin duration and
put J � @=2 as possible candidates for these values.
Substituting p � �few�Mp and rh�2p� � �few�@=Mp, we
find L� rh�2p� and

 0:4� prh�2p� � �few�@ * @=2 � J: (97)

Hence, the above two conditions are satisfied and the black

hole is expected to form in the head-on collision under our
assumption. Thus, the effect of spins of incoming particles
might not be significant for the black hole production rate.
Still, the spin might change the cross section of the black
hole production by a factor and studying this effect would
be interesting.

We also revisit the study by Giddings and Rychkov [11],
because our study is related to the assumption they made.
In that paper the collision of quantum wave packets
with width L was considered. Their result is that if
@

2=�rhM
2
p� � L� rh, the higher-curvature correction is

small and the predictions by general relativity are reliable.
The latter inequality L� rh was imposed by the expecta-
tion that the gravitational field of such a wave packet would
be sufficiently close to that of the AS particle and thus the
AH would form in a collision of such two wave packets.
Our result of the (0) case, i.e. the collision of two identical
p-gyratons, explicitly demonstrates the accuracy of this
expectation. Moreover, because we found the AH also for
L & 1:4rh, the condition can be relaxed to @

2=�rhM
2
p� �

L & rh. Note that this criterion holds also for wave packets
of spinning particles, if their energy is sufficiently large,
p� Mp. Our results of the (2a) and (2b) cases, i.e. the
collisions of two identical spinning a- and b-gyratons,
show that j2 & L is necessary for the AH formation for
small L. Restoring the length unit and adopting J � @=2, it
is rewritten as @

2=�16rhp2� & L. However, this does not
provide a new condition since the original condition
@

2=�rhM
2
p� � L implies @

2=�16rhp
2� & L for p� Mp.

Therefore, our results do not contradict the claims in [11].
The important remaining problems are as follows. The

first one is to explore the case � � �1 further. This is
because the condition of the black hole formation is ex-
pected to be different from that of the AH formation. In the
case � � 	1, however, the critical value of j for the black
hole formation will remain finite, because both the gravi-
tational field generated by the spin source and the spin-spin
interaction are repulsive. On the other hand, in the case
� � �1, the repulsive gravitational field of each incoming
gyraton is weakened and becomes even attractive in some
part of the spacetime by the spin-spin interaction as shown
in Sec. IV. Hence, there is the possibility that later the

TABLE I. Summary of the obtained results. For each case, the condition of AH formation was
found in terms of L [the energy duration in the (0) case and the spin duration in other cases] and
the spin value j � J=2prh�2p� (assumed to be positive). The unit of the length is rh�2p� � 4Gp.

Collision type Slice (�) Gyraton 1 Gyraton 2 Condition of AH formation

(0) 
 
 
 p p L & 1:4
(1a) 
 
 
 a AS L� 1 j & 0:25
(1b) 
 
 
 b AS L� 1 j & 0:25
(2a) 
 
 
 a a L� 1 j & 0:2
(2b) Old b b L� 0:15 j & 0:1
(2b) New (	 1) b b L� 0:5 j & 0:1
(2b) New (� 1) b b L� 0:5 j & 0:15
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gravitational field turns to be attractive everywhere and the
critical value of j blows up.

The next problem is the collision of gyratons with a
nonzero impact parameter. In these grazing collisions, new
effects of the spin-orbit interaction will appear. Moreover,
the properties of spin-spin interaction might change. Let us
recall Eq. (62), the acceleration ~aSS due to the spin-spin
interaction between weakly gravitating bodies. In the graz-
ing collisions, the spins are orthogonal to the relative
location vector and ~aSS is calculated as ~aSS � ��3=
r

4��

� ~S1 
 ~S2� ~n. Therefore in the aligned (respectively antia-
ligned) case, the spin-spin interaction becomes attractive
(respectively repulsive), which is opposite to the head-on
collision case. Therefore it is expected that the nonzero
impact parameter would make the interactions more com-
plicated but more interesting.

It is also important to simulate the collision of gyratons
with realistic sources. In this paper, we assumed that each
incoming gyraton has a singular source, Eqs. (3) and (4),
and studied only the spacetime regime where the matter

interaction is not important (i.e., uv < r2 in Sec. V). In a
realistic situation, however, the source of an incoming
gyraton is a beam pulse with a finite radius �rs. Then, the
matter interaction determines the spacetime structure
within the light cone of the source collision, and the
condition for the black hole formation will depend on the
properties of matter interaction. In order to study this
effect, we should solve the Einstein equations together
with the field equations for the sources.

Finally, the generalization for the higher-dimensional
case is necessary to obtain the results that can be directly
applied for the black hole production at accelerators in the
TeV gravity scenarios.
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