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We discuss geometrical properties of the horizon surface of five-dimensional rotating black holes and
black rings. Geometrical invariants characterizing these 3D geometries are calculated. We obtain a global
embedding of the 5D rotating black horizon surface into a flat space. We also describe the Kaluza-Klein
reduction of the black ring solution (along the direction of its rotation) which, though it is nakedly
singular, relates this solution to the 4D metric of a static black hole distorted by the presence of external
scalar (dilaton) and vector (‘‘electromagnetic’’) fields. The properties of the reduced black hole horizon
and its embedding in E3 are briefly discussed.
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I. INTRODUCTION

Black objects (holes, strings, rings, etc.) in higher di-
mensional spacetimes have attracted a lot of attention
recently. The existence of higher than 4 dimensions of
the spacetime is a natural consequence of the consistency
requirement in string theory. Models with large extra di-
mensions, originally proposed to solve such long-standing
fundamental ‘‘puzzles’’ as the hierarchy and cosmological
constant problems, became very popular recently. In these
models mini black holes and other black objects play a
special role serving as natural probes of extra dimensions.
This is one of the reasons why the questions about what
kind of black objects can exist in higher dimensions and
what are their properties are now discussed so intensively.

Higher dimensional generalizations of the Kerr metric
for a rotating black hole were obtained quite a long time
ago by Myers and Perry (MP) [1]. In a D-dimensional
spacetime the MP metrics, besides the mass M, also con-
tain ��D� 1�=2� parameters connected with the indepen-
dent components of the angular momentum of the black
hole. (Here �A� means the integer part of A.) The event
horizon of the MP black holes has the spherical topology
SD�2. This makes them in many aspects similar to the 4D
Kerr black hole. According to the Hawking theorem [2]
any stationary black hole in a 4D spacetime obeying the
dominant energy condition has the topology of the horizon
S2. Black hole surface topologies distinct from S2 are
possible if the dominant energy condition is violated [3].
Moreover, a vacuum, stationary black hole is uniquely
specified by its mass and angular momentum. Recent dis-
covery of different black ring solutions [4–12] (which
includes both one parameter and two parameters of rota-
tion and also black saturn) demonstrated that both the
restriction on the topology of the horizon and the unique-
ness property of black holes are violated in the 5D
spacetime.

In this paper we discuss the geometry of the horizon
surfaces of 5D black rings and 5D black holes with one
rotation parameter. A similar problem for the 4D rotating
black holes was studied in detail by Smarr [13]. We gen-
eralize his approach to the 5D case. After a brief summary
of known properties of 3D round spheres and tori in the flat
4D space (Sec. II), we consider a geometry of 3D space
which admits two orthogonal commuting Killing vectors
(Sec. III). In particular, we calculate its Gauss curvature. In
Sec. IV we apply these results to the horizon surface of 5D
rotating black holes with one rotation parameter. The
embedding of this 3D surface into the flat spacetime is
considered in Sec. V. The horizon surface geometry for a
5D rotating black ring is discussed in Sec. VI. This section
also considers a Kaluza-Klein reduction of the black ring
metric along the direction of its rotation which maps this
solution onto a black hole solution of 4D Einstein equa-
tions with the dilaton and ‘‘electromagnetic’’ fields. The
geometry and embedding of the horizon in the E3 for this
metric are obtained. Section VII contains the discussion of
the results.

II. SPHERE S3 AND TORUS S2 � S1 IN E4

A. Sphere S3

In this section we briefly remind the reader about some
known properties of a 3D sphere and a torus in a flat 4D
space.

Consider four-dimensional Euclidean space E4 and de-
note by Xi (i � 1; . . . ; 4) the Cartesian coordinates in it. A
3-sphere consists of all points equidistant from a single
point Xi � 0 in R4. A unit round sphere S3 is a surface
defined by the equation

P4
i�1 X

2
i � 1. Using complex co-

ordinates z1 � X1 � iX2 and z2 � X3 � iX4, one can also
equivalently define the unit 3-sphere as a subset of C2,

 S3 � f�z1; z2� 2 C2jjz1j
2 � jz2j

2 � 1g: (1)

We use the embedding of S3 in C2 to introduce the Hopf
coordinates ��;�;  � as
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 z1 � sin���ei�; z2 � cos���ei : (2)

Here � runs over the range �0; �=2�, and � and  can take
any values between 0 and 2�. In these coordinates the
metric on the 3-sphere is

 ds2 � d�2 � sin2�d�2 � cos2�d 2: (3)

The volume of the unit 3-sphere is 2�2. Coordinate lines of
� and  are circles. The lengths of these circles take the
maximum value 2� at � � �=2 for the� line and at � � 0
for the  line, respectively. These largest circles are geo-
desics. Similarly, the coordinate lines of the � coordinate
are geodesics. For the fixed values of � � �0 and  �  0

and � 2 �0; �=2�, this line is a segment of the length �=2
connecting the fixed points of the Killing vectors @� and
@ . Four such segments, � � �0, �0 � �,  �  0,  0 �

�, form the largest circle of length 2�.
The surfaces of constant � are flat tori T2. For instance,

� � �0 can be cut apart to give a rectangle with horizontal
edge length cos�0 and vertical edge length sin�0. These
tori are called Hopf tori and they are pairwise linked. The
fixed points of the vectors @� and @ (� � 0 for @� and
� � �=2 for @ ) form a pair of linked great circles. Every
other Hopf torus passes between these circles. The equa-
torial Hopf torus is the one which can be made from a
square. The others are all rectangular. Also we can easily
see that the surfaces of constant � or constant  are half 2-
spheres or topologically disks.

B. Torus T 3 � S2 � S1

The equation of a torus T 3 � S2 � S1 in E4 is

 X2
1 � X

2
2 �

� ������������������
X2

3 � X
2
4

q
� a

�
2
� b2: (4)

The surface T 3 is obtained by the rotation of a sphere S2 of
the radius b around a circle S1 of the radius a (a > b). In
this paper we call T 3 a flat space torus. Let us emphasize
that the word torus is commonly used for the topological
product of circles. Such a space can be obtained, for
example, from a unit cube in E3 through proper identifica-
tion of the opposite boundary planes. This space has the
topology S1 � S1 � S1 and a flat metric. However, the
geometry of the flat space torus (S2 � S1) is determined
by its embedding in E4 and it is not flat. Let us define
toroidal coordinates as

 X1 �
� sin�̂
B

cos�; X2 �
� sin�̂
B

sin�;

X3 �
� sinh�
B

cos ; X4 �
� sinh�
B

sin ;

(5)

where B � cosh�� cos�̂. The toroidal coordinates
��; �̂; �;  � change in the following intervals:

 0<�<1; 0 	 �̂ 	 �; 0 	 �;  	 2�:

(6)

The flat metric in these coordinates takes the form

 ds2 �
�2

B2 �d�
2 � sinh2�d 2 � d�̂2 � sin2�̂d�2�: (7)

In these coordinates the surface of constant � � �0 is a
torus T 3 and one has

 � �
�����������������
a2 � b2

p
; cosh�0 � a=b: (8)

Introducing new coordinates y � cosh� and x � cos�̂, one
can also write the metric (7) in the form [7]
 

ds2 �
�2

�y� x�2

�
dy2

y2 � 1
� �y2 � 1�d 2 �

dx2

1� x2

� �1� x2�d�2

�
: (9)

The points with �< �0 lie in the exterior of T 3. The
induced geometry on the 3-surface � � �0 is
 

ds2 �
a2 � b2

�a� b cos�̂�2
��a2 � b2�d 2

� b2�d�̂2 � sin2�̂d�2��: (10)

This metric has two Killing vectors, @� and @ . The first
one has two sets of fixed points, � � 0 and � � �, which
are circles S1. The second Killing vector, @ , does not have
fixed points. The 3-volume of the torus T 3 is 8�2ab2.

Since the sections  � const are round spheres, instead
of �̂ it is convenient to use another coordinate, � 2 �0; ��,

 sin� �

�����������������
a2 � b2
p

sin�̂

a� b cos�̂
: (11)

Using this coordinate one can rewrite the metric (10) in the
form

 ds2 � �a� b cos��2d 2 � b2�d�2 � sin2�d�2�: (12)

Once again we can easily see that the surfaces of constant �
are flat tori T2 except for � � 0 or � � �, which are
circles. The surfaces of constant  are 2-spheres whereas
the surfaces of constant � are 2-tori.

Sometimes it is convenient to consider special foliations
of T 3 [14]. This foliation is a kind of ‘‘clothing’’ worn on a
manifold, cut from a stripy fabric. These stripes are called
plaques of the foliation. On each sufficiently small piece of
the manifold, these stripes give the manifold a local prod-
uct structure. This product structure does not have to be
consistent outside local patches; a stripe followed around
long enough might return to a different, nearby stripe. As
an example of foliations let us consider the manifold R3.
The foliations are generated by two-dimensional leaves or
plaques with one coordinate as a constant. That is, the
surfaces z � constant would be the plaques of the folia-
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tions, and in this case there is a global product structure.
Similarly, one can consider the foliations of S2 � S1.
Figure 1 shows the transverse Reeb foliations of the cylin-
drical section of S2 � S1 [14]. We can see the stacking of
spherically shaped plaques giving rise to the cylindrical
section.

III. GEOMETRY OF THREE-DIMENSIONAL
SPACE WITH TWO ORTHOGONAL COMMUTING

KILLING VECTORS

As we shall see, both metrics of the horizon surface of a
5D black ring and a black hole with one rotation parameter
can be written in the form

 ds2
H � f���d�2 � g���d�2 � h���d 2: (13)

Here f, g, and h are non-negative functions of the coor-
dinate � . One can use an ambiguity in the choice of the
coordinate � to put f � 1. For this choice � has the mean-
ing of the proper distance along the �-coordinate line. We
call such a parametrization canonical. The coordinates �
and  have a period of 2� and � 2 ��0; �1�. @� and @ are
two mutually orthogonal Killing vectors. If g��� [h���]
vanishes at some point, then the Killing vector @� (@ )
has a fixed point at this point. The metric (13) does not
have a conelike singularity at a fixed point of @ if at this
point the following condition is satisfied:

 

1

2
������
hf
p

dh
d�
� 1: (14)

A condition of regularity of a fixed point of @� can be
obtained from (14) by changing h to g.

By comparing the metric (13) with the metric for the 3-
sphere (3), one can conclude that (13) describes the geo-
metric of a distorted 3D sphere if g and h are positive
inside some interval ��1; �2�, while g vanishes at one of its
end points (say, �1) and h vanishes at the other (say, �2).
Similarly, by comparing (13) with (12) one concludes that,
if, for example, g is positive in the interval ��1; �2� and
vanishes at its ends, while h is positive everywhere on this
interval, including its ends, the metric (13) describes a
topological torus.

For the metric (13), the nonvanishing components of the
curvature tensor are

 R���� �
g0�fg�0

4fg
�

1

2
g00; (15)

 R� � �
h0�fh�0

4fh
�

1

2
h00; (16)

 R� � � �
g0h0

4f
: (17)

Here �0� denotes the differentiation with respect to the
coordinate � .

Denote by eia (i, a � 1, 2, 3) 3 orthonormal vectors and
introduce the Gauss curvature tensor as follows:

 Kab � �Rijkleiae
j
be

k
aelb: (18)

The component Kab of this tensor coincides with the
curvature in the 2D direction for the 2D plane spanned
by eia and ejb. One has

 

X3

b�1

Kab � Rije
i
ae
j
a;

X3

a�1

X3

b�1

Kab � R: (19)

For the metric (13) the directions of the coordinate lines
�, �, and  are eigenvectors of Kab and the corresponding
eigenvalues are Ka

 K �
R����
fg

; K� �
R� � 
fh

; K� �
R� � 
gh

:

(20)

These quantities are the curvatures of the 2D sections
orthogonal to the  , �, and � lines, respectively. For
brevity, we call these 2D surfaces  , �, and � sections.

For the unit sphere S3, from (3) one can easily see that

 K � K� � K� � 1: (21)

However, for the torus S2 � S1, from (12) we have

 

FIG. 1. This picture shows the transverse Reeb foliations of the
cylindrical section of S2 � S1. The two-dimensional spherical
shaped stripes or ‘‘plaques’’ are stacked, giving rise to a cylin-
drical section of the 3-torus. (courtesy: http://kyokan.ms.u-
tokyo.ac.jp)
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 K �
1

b2 ; K� � K� �
cos�

b�a� b cos��
: (22)

Thus we see that K always remains positive, while K�
andK� are positive in the interval �0 	 � < �=2�. Thus the
equatorial plane (� � �=2) divides the torus in two
halves, one in which all the sectional curvatures are posi-
tive and the other in which two of the sectional curvatures
are negative. In fact, the surface � � �=2 is topologically
S1 � S1 with the metric

 ds2 � a2d 2 � b2d�2: (23)

Equations (19) imply

 R�� � K� � K ; R�� � K � K�;

R  � K� � K�:
(24)

 R � 2�K� � K� � K �: (25)

From the above expression it is clear that K < 0 if g0 and
ln�fg=�g0�2�0 have opposite signs. Similarly, K� < 0 im-
plies that h0 and ln�fh=�h0�2�0 have opposite signs. For
K� < 0, g0 and h0 must have the same sign.

Let us consider now Euler characteristics of the two-
dimensional sections of the horizon surface. We denote by
�a the Euler characteristic for the 2-surface xa � const. By
using the Gauss Bonnet theorem we have

 2��a �
ZZ

M
KadA�

Z
@M

kgds: (26)

Here dA is the element of area on the surface and kg is the
geodesic curvature on the boundary. If the surface has no
boundary or the boundary line is a geodesic, then the last
term vanishes. For the metric (13) simple calculations give

 2�� � ��
�
g0������
fg
p

�
�1

�0

�
Z
@M

kgds; (27)

 2��� � ��
�
h0������
fh
p

�
�1

�0

�
Z
@M

kgds; (28)

 �� � 0: (29)

Thus we see that the Gaussian curvatures of sections
completely describe the topology and geometry of the 3-
horizons.

IV. A 5D ROTATING BLACK HOLE WITH ONE
ROTATION PARAMETER

A. Volume and shape of the horizon surface

For the five-dimensional MP black hole with a single
parameter of rotation, the induced metric on the horizon is
[1]

 ds2 � r2
0ds

2
H; (30)

 ds2
H � f���d�2 �

sin2�
f���

d�2 � �1� �2�cos2�d 2: (31)

Here f��� � �1� �2sin2�� and r0 is the length parameter
related to the mass M of the black hole as

 r2
0 �

8
����
�
p

GM
3

: (32)

The metric (31) is in the Hopf coordinates and hence the
coordinate � varies from 0 to�=2. The rotation is along the
� direction. The quantity � � jaj=r0 characterizes the
rapidity of the rotation. It vanishes for a nonrotating black
hole and takes the maximal value � � 1 for an extremely
rotating one. In what follows we put r0 � 1, so that �
coincides with the rotation parameter. Different quantities
(such as lengths and curvature components) can be easily
obtained from the corresponding dimensionless expres-
sions by using their scaling properties.

For � � 0 the horizon is a round sphere S3 of the unit
radius. In the presence of rotation this sphere is distorted.
Its 3-volume is V3 � 2�2

���������������
1� �2
p

. In the limiting case of
an extremely rotating black hole, � � 1, V3 vanishes.

The coordinate lines of � and  on this distorted sphere
remain closed circles. The length of the circle correspond-
ing to the � coordinate changes from 0 (at � � 0) to its
largest value (at � � �=2)

 l� �
2����������������

1� �2
p : (33)

Similarly, the length of the circles connected with the  
coordinate changes from its maximal value (at � � 0)

 l � 2�
���������������
1� �2

p
(34)

to 0 at � � �=2. A line �; � const on the distorted
sphere is again a geodesic:

 l� � 4E���; (35)

where E is the complete elliptic integral of the second
kind.

The lengths l , l�, and l� as the functions of the rotation
parameter � are shown at Fig. 2 by lines 1, 2, and 3,
respectively. All these lines start at the same point
�0; 2��. In the limit of the extremely rotating black hole
(� � 1), the horizon volume vanishes, l � 0, l� � 4, and
l� infinitely grows.

B. Gaussian curvature

Calculations of the eigenvalues Ka of the Gaussian
curvatures give

 K �
�1� �2�1� 3cos2���

f���3
; K� � K� �

1

f���2
:

(36)

From these relations it follows that the quantity K is
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negative in the vicinity of the ‘‘pole’’ � � 0 for 1=2<�<
1, while the other two quantities, K� and K�, are always
positive. This is similar to the 4D Kerr black hole where the
Gaussian curvature of the two-dimensional horizon be-
comes negative near the pole for �> 1=2. This is not
surprising since the 2D section  � const of the metric
is isometric to the geometry of the horizon surface of the
Kerr black hole.

The Ricci tensor and Ricci scalar for the metric on the
surface of the horizon of the 5D black hole are

 R�� � R�� �
2�1� �2�1� cos2���

f���3
; (37)

 R  �
2

f���2
; R �

2�3� �2�3� cos2���

f���3
: (38)

The components of the Ricci tensors R�� and R�� become

negative for certain values near the pole � � 0, when �>
1=

���
2
p

, while the Ricci scalar is negative when �>
��������
3=4

p
.

It is interesting to note that the surfaces of constant � or
constant  are topologically disks with Euler character-
istics equal to unity. The boundaries of these disks are on

� � �=2. It is easy to check from Eqs. (27) and (28) that
boundary terms of the Gauss Bonnet equation vanish on
this boundary. This shows that the boundary, which is the
equatorial line on the deformed hemisphere, is a geodesic
of the induced metric. Another important point is, while
approaching the naked singularity limit (� � 1), the
Gaussian curvatures of all the three sections, as well as
the negative Ricci scalar, blow up along the ‘‘equator’’
(� � �=2). This shows the extreme flattening of the hori-
zon along the equatorial plane, before the horizon shrinks
to zero volume.

V. EMBEDDING

A. Embedding of the horizon in 5D pseudo-Euclidean
space

Let us discuss now the problem of the embedding of the
horizon surface of a rotating 5D black hole into a flat space.
We start by reminding the reader that a similar problem for
a 4D (Kerr) black hole was considered a long time ago by
Smarr [13]. He showed that, if the rotation parameter of the
Kerr metric �< 1=2, then the 2D surface of the horizon
can be globally embedded in E3 as a rotation surface. For
�> 1=2 such an embedding is possible if the signature of
the 3D flat space is ��;�;��. The reason why a rapidly
rotating black hole horizon cannot be embedded in E3 is as
follows. Let us consider a 2D geometry which has a
symmetry generated by a Killing vector field �. Suppose
� has a fixed point ‘‘P’’ where it vanishes. It is then
possible to show that if a vicinity of such a fixed point is
to be embedded in E3 then the Gaussian curvature at P must
be non-negative (see for example [15]). The Gaussian
curvature at the pole of the horizon of a rotating black
hole becomes negative for �> 1=2. In a recent paper [15]
a global embedding of the horizon of a rapidly rotating
black hole into E4 was constructed.

It should be emphasized here that embeddings into
higher dimensional Euclidean or pseudo-Euclidean spaces
are often used as models to understand the global proper-
ties of the lower dimensional geometry. A well-known
example in which the embedding is done in a pseudo-
Euclidean space is a Lorentz (or hyperboloid) model of a
2D hyperboloid of revolution. The necessity of the choice
of the Minkowskian signature in the embedding space is
directly connected to the property that the Gaussian curva-
ture of a 2D hyperboloid of revolution is negative. In four-
dimensional geometry such an example is a Euclidean anti-
de Sitter space which is embedded in the 5D flat space with
a Minkowskian signature. In this section we consider such
embedding models for the horizon of a 5D rotating black
hole.

Since the 3D surface of a rotating 5D black hole has two
commuting orthogonal Killing vectors, it is natural to
consider its embedding into the flat space which has at
least two independent orthogonal 2-planes of the rotation.
In this case the minimal number of dimensions of the space

 

3
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α

FIG. 2. Lengths l (1), l� (2), and l� (3) as the functions of the
rotation parameter �.
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of the embedding is 5. We write the metric in the form

 dS2 � "dz2 � dx2
1 � dx

2
2 � dy

2
1 � dy

2
2; (39)

where " � 
1. By introducing polar coordinates �	;��
and �r;  � in the 2-planes �x1; x2� and �y1; y2�, respectively,
we obtain

 dS2 � "dz2 � d	2 � 	2d�2 � dr2 � r2d 2: (40)

Using 
 � cos� as a new coordinate, one can rewrite the
metric on the horizon (31) in the form

 ds2 � fd
2 � 	2d�2 � r2d 2; (41)

 f �
1� �2
2

1�
2 ; 	 �

���������������������

1� �2
2
p ; (42)

 r �
�������������������������������������
�1� �2��1�
2�

q
: (43)

Assuming that z is a function of 
, and identifying 	 and r
in (40) with (43), one obtains the metric (41) provided the
function z�
� obeys the equation

 

�
dz
d


�
2
� "

�
f�

�
d	
d


�
2
�

�
dr
d


�
2
�
: (44)

By substituting (43) into (44) one obtains

 

�
dz
d


�
2
� "

�2
2�3�2
2 � �4
4 � 3�

�1� �2
2�3
: (45)

It is easy to check that for j�j 	 1 and 0 	 
 	 1 the
expression on the right-hand side of (45) always has the
sign opposite to the sign of ". Thus one must choose " �
�1 and one has

 z �
1

2�

Z 1 �������������
1��2
2
p

dy

y3=2

�����������������������
1� y� y2

q
: (46)

Let us emphasize that this result is valid for both the slowly
and the rapidly rotating black holes.

B. Global embedding into E6

1. Construction of an embedding

It is possible, however, to find a global isometric embed-
ding of the 3-horizon of a rotating black hole in a flat space
with positive signature, if the number of dimensions is 6.
This embedding is analogous to the one discussed in [15]
for the rapidly rotating Kerr black hole.

Let us denote by Xi (i � 1; . . . ; 6) the Cartesian coor-
dinates in E6. We write the embedding equations in the
form

 Xi �
����
	0

ni� ~�� �i � 1; 2; 3�; (47)

 X4 � ���� cos ; X5 � ���� sin ; X6 � ����:

(48)

Here the functions ni obey the condition

 

X3

i�1

�ni� ~���2 � 1: (49)

In other words, the 3D vector ni as a function of ~�
describes a line on the unit round sphere S2. We require
this line to be a smooth closed loop [n�0� � n�2��] with-
out self-interactions. We denote

 	� ~�� �
�X3

i�1

�ni
; ~�
�2
�

1=2
: (50)

Then dl � 	� ~��d ~� is the line element along the loop. The
total length of the loop is

 l0 � 2�	0 �
Z 2�

0
	� ~��d ~�: (51)

We define a new coordinate � as

 � �
1

	0

Z ~�

0
	� ~��d ~�: (52)

It is a monotonic function of ~� and has the same period 2�
as ~�. The induced metric for the embedded 3D surface
defined by (47) and (48) becomes

 ds2 �

��2
;�

	2
0

� �2
;� � �

2
;�

�
d�2 � �2d�2 � �2d 2: (53)

Now comparing Eqs. (31) and (53) we get

 ���� �
sin���������������������������

1� �2sin2�
p ; ���� �

���������������
1� �2

p
cos�; (54)

 ���� �
Z �

0
cos�

�������������������������������������������������
1�

1

	2
0�1� �

2sin2��3

s �
d�: (55)

We choose the functions ni in such a way that

 	2
0 �

1

�1� �2�3
; (56)

so that the function ���� remains real valued for all �;
hence we can globally embed the horizon in E6.

2. A special example

To give an explicit example of the above-described
embedding let us put

 n1 �
cos ~�
F

; n2 �
sin ~�
F

; n2 �
a sin�N ~��

F
; (57)

 F �
��������������������������������
1� a2sin2�N ~�

q
�: (58)

Here N � 1 is a positive integer. For this choice the value
of 	0 is
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 	0 �
1

2�

Z 2�

0

������������������������������������������������������������
a2cos2� ~���N2 � 1� � a2 � 1

q
1� a2sin2� ~��

d ~�: (59)

For N � 1, 	0 � 1. For N > 1 the above integral can be
exactly evaluated to give

 	0 �
2

�
k1�N2��a2k2

1; ik2� � �N2 � 1�K�ik2��; (60)

 k1 �
1��������������

1� a2
p ; k2 � a

���������������
N2 � 1

1� a2

s
: (61)

Here K and � are elliptic integrals of the first and third
kind, respectively. For a fixed value of N, 	0 is a mono-
tonically growing function of a (see Fig. 3). This figure
shows the length of the closed loop �n1� ~��; n2� ~��; n3� ~���
on a unit sphere [as described by Eqs. (57) and (58)] as a
function of the parameters N and a. It can be easily seen
from Eq. (55) that the length of this loop has to be greater
than 2� (i.e. the equatorial circumference) for the embed-
ding in E6 to exist. In principle, we can have an arbitrarily
long closed loop on a unit sphere. As a special example we

consider a ‘‘transverse wave’’ loop around the equator of
the sphere with N as the frequency of the wave and a as the
amplitude. From Fig. 3 it is clear that we can have an
arbitrarily long loop by making the frequency arbitrarily
large. For a fixed value of a the value of 	0 increases
monotonically with N. The asymptotic form of 	0 for large
values of a can be easily obtained as follows. Notice that
for large a the denominator in the integral (59) is large
unless ~� is close to 0,�, or 2�. Near these points cos ~� can
be approximated by 1, and the expression for 	0 takes the
form

 	0 �
aN
2�

Z d ~�

1� a2sin2 ~�
�

aN��������������
1� a2
p : (62)

Using these properties of 	0, one can show that for large
enough values of N and a the quantity 	0 can be made
arbitrarily large, so that the condition (56) is satisfied and
we have the global embedding of the horizon surface for
any �< 1.

VI. A 5D ROTATING BLACK RING

A. Horizon surface of a black ring

Now we consider properties of horizon surfaces of sta-
tionary black strings in an asymptotically 5D flat spacetime
[4]. In this paper we would only consider the balanced
black ring in the sense that there is no angular deficit or
angular excess causing a conical singularity. The ring
rotates along S1 and this balances the gravitational self-
attraction. The geometry of a balanced rotating black ring
has been studied in [10]. We focus here mainly on the
properties of the geometrical invariants in light of the
discussions in Sec. III. The metric of the rotating black
ring is [5,6]
 

ds2 � ��F�x�=F�y��
�
dt� r0

���
2
p
���������������

1� �2
p �1� y�d ~ 

�
2

�
r2

0

�x� y�2
��F�x��G�y�d ~ 2 � �F�y�=G�y��dy2�

� F�y�2��dx2=G�x�� � �G�x�=F�x��d�2��; (63)

where

 F��� � 1�
2�

1� �2 �; G��� � �1� �2��1� ���:

(64)

The quantity r0 is the radius scale of the ring. The parame-
ter � 2 �0; 1� determines the shape of the ring. The coor-
dinate x changes in the interval �1 	 x 	 1, while
y�1 2 ��1; �2��=�1� �2��. The black ring is rotating in
the ~ direction. The positive ‘‘y’’ region is the ergosphere
of the rotating black ring while the negative ‘‘y’’ region lies
outside the ergosphere with spatial infinity at x � y � �1.

The metric (63) has a coordinate singularity at y � 1=�.
However, after the transformation
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3

2

1

2
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6

0 1 2 3 4 5 6

a

FIG. 3. 	0 as a function of a for the values of N from 2 (line 2)
to 7 (line 7).
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 d � d ~ � J�y�dy;

dv � dt� r0

���
2
p
���������������

1� �2
p �1� y�J�y�dy;

(65)

with J�y� �
��������������
�F�y�

p
=G�y�, the metric is regular at y �

1=�. In these regular coordinates one can show that the
surface y � 1=� is the horizon.

The induced metric on the horizon of a rotating black
ring is given by

 ds2 � r2
0ds

2
H; (66)

 ds2
H �

p
k���

�
d�2

k���2
�

sin2�d�2

l���

�
� ql���d 2; (67)

 k��� � 1� � cos�; l��� � 1� �2 � 2� cos�; (68)

 p �
�2�1� �2�2

1� �2 ; q � 2
1� �

�1� ��1� �2 : (69)

In this metric the coordinates � and  have a period of 2�
and � 2 �0; ��. � � 0 is the axis pointing outwards (i.e.
increasing S1 radius), while � � � points inwards. The
volume of the horizon surface for the metric (67) is

 V � 8
���
2
p
�2�2

������������
1� �
p � ������������

1� �
p��������������

1� �2
p

�
3
: (70)

B. Gaussian curvature

The metric (67) is of the form (13), so that one can apply
to it the results of Sec. III. For example, its Gaussian
curvatures have the following eigenvalues (i �  , �, �) ,

 Ki �
k���2Fi�cos��

2��1� �2�2�1� �2�l���2
; (71)

where the functions Fi � Fi��� are defined as follows:
 

F � ��3� �2��2 � 2��4 � �2 � 2��

� 2��1 � �� 3�3;

F� � 8�2�3 � ��5�2 � 7��2 � 2�1� �2��

� ��3�2 � 1�;

F� � �3�2 � �6�2 � 3�� 2�� � ��3� �2�: (72)

From the above equations it is clear that for any value of
� and � the Gaussian curvature of the  sections (i.e. K )
always remains positive. This is absolutely similar to the
flat space torus case as described by (22). The sign of the
Gaussian curvatures for the other two sections, K� and K�,
depends on the values of � and �. For example, for � � 0,
both these curvatures are positive for all values of �. But as
we increase �,K� becomes negative for higher values of �,
and ultimately when � � �=2 it becomes negative for all �
and continues to be negative until � � �. On the other

hand, K� remains positive and grows with � for all � until
� � �=2, then starts becoming negative for higher values
of � and ultimately becomes negative for all � at � � �.

Let us emphasize that, because of the distortions due to
the rotation,K� andK� do not become negative at the same
value of � as it was for the flat space torus case. To get an
invariant measure of distortion produced due to rotation, let
us define two invariant lengths in the following way. We
know that an S2 � S1 surface can be divided in two halves.
In one, all the sectional curvatures are positive, and in the
other, at least one of the sectional curvatures is negative.
The length of a � �  � const line in these two halves is
invariant (coordinate independent) and gives a measure of
the distortion. Let � � �i �i � �;�� be the point where
Fi�cos�� vanishes. Then the two invariant lengths are

 �i1 � 2
����
p
p Z �i

0

d������������
k���3

p ; �i2 � 2
����
p
p Z �

�i

d������������
k���3

p :

(73)

It is easy to check from (12) that in the case of a flat space
torus we have �i1 � �i2. However, for the rotating black
rings they are different functions of the parameter �.
Figures 4 and 5 show the invariant lengths for �i � �;��
as function of �, respectively. We see that for i � �, �i2 <
�i1 for small �. However, as we increase � the difference
between them reduces, and ultimately at � � 0:615, �i2
overtakes �i1, whereas for i � �, �i2 is always greater than
�i1.

It is evident that both the and� sections are closed and
do not have a boundary. Calculating the Euler numbers for
these surface we get

 � � 2; �� � 0: (74)

This shows that the  section is a deformed 2-sphere with
positive Gaussian curvature. Its rotation in the  direction
generates the horizon surface of the rotating black ring.
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FIG. 4. ��1 and ��2 as a function of �.

VALERI P. FROLOV AND RITUPARNO GOSWAMI PHYSICAL REVIEW D 75, 124001 (2007)

124001-8



C. Kaluza-Klein reduction of the rotating black ring

The absence of the conelike singularities in the black
ring solution (63) is a consequence of the exact balance
between the gravitational attraction and the centrifugal
forces generated by the ring’s rotation. We discuss the
effects connected with the ring rotation from a slightly
different point of view. Let us write the metric (63) in the
following Kaluza-Klein form (see e.g. [16–18]):

 ds2
5 � ���1=3��h�
dx�dx
 ���Atdt� d��2�: (75)

The 4D reduced Pauli metric in this space is (a; b �
0; . . . ; 3)

 ds2
4 � habdx

adxa � �1=3�gabdx
adxb ��A2

t dt
2�: (76)

Here gab is the four-dimensional metric on the ~ section of
the 5D black ring. By comparison of (75) and (76) one has

 �2=3 � �2
~ 
� �

F�x�
F�y�

L�x; y�; (77)

 At �
��t:� ~ �

�2
~ 

�

���
2
p
���������������

1� �2
p

�1� y�
L�x; y�

; (78)

 L�x; y� �
�

2�2

1� �2 �1� y�
2 �

F�y�G�y�

�x� y�2

�
; (79)

where �t � @t, � ~ � @ ~ , and �� � @� are the Killing
vectors of (75). The quantities ln��� and At can be inter-

preted as a ‘‘dilaton field’’ and an ‘‘electromagnetic poten-
tial’’ in the 4D spacetime.

Since the original space contains points where �2
~ 

van-

ishes (or becomes infinite), the 4D metric (76) is singular at
these points. As we shall see, this metric describes a
distorted 4D black hole. From the 4D point of view this
distortion is induced by the dilaton field ln��� and the
electromagnetic field F
�, supported by sources located
at the singular points in the black hole exterior. Namely, the
presence of these sources and the absence of asymptotic
flatness explain the apparent ‘‘violation’’ of uniqueness
theorems.

The horizon for the 4D metric (76) is defined by the
condition

 htt � �2
t � ��2

~ 
��1��t:� ~ �

2 � 0: (80)

It is easy to show that this condition is equivalent to the
condition defining the horizon of the 5D metric. Thus both
horizons are located at y � 1=�.

To summarize, the 4D metric (76) obtained after the
reduction describes a static 4D black hole in the presence
of an external dilaton and ‘‘electromagnetic’’ field. The
dilaton field ln� [as well as the metric (76)] has a singu-
larity at the points where �2

~ 
either vanishes (at the axis of

symmetry, x � 1, y � �1) or infinitely grows (at the
spatial infinity, x � y � �1). Outside these regions the
dilaton field is regular everywhere including the horizon
where it takes the value

 �H �

�
2

1� �2

�
1� �
1� �

�
l���

�
3=2
: (81)

The ‘‘electromagnetic field strength,’’ which has non-
zero components

 Ftx � �At;x; Fty � �At;y; (82)

is regular everywhere and vanishes at the spatial infinity.
However, the F2 � FabF

ab invariant is well defined
throughout the spacetime but drops (towards negative in-
finity) at the axis of symmetry.

The metric ds2
1 on the 2D horizon surface for the re-

duced metric (76) is conformal to the metric ds2
0 of the 2D

section ~ � const of the black ring horizon, (67). These
metrics are of the form [k � k���, l � l���]

 ds2
� � ��=3

H
p
k

�
d�2

k2 �
sin2�d�2

l

�
; � � 0; 1: (83)

Both metrics ds2
� can be embedded in E3 as rotation sur-

faces. The embedding equations are

 X1 � m
 cos�; X2 � m
 sin�; X3 � m�;

(84)

where
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FIG. 5. ��1 and ��2 as a function of �.

SURFACE GEOMETRY OF 5D BLACK HOLES AND BLACK . . . PHYSICAL REVIEW D 75, 124001 (2007)

124001-9



 
 � k�1=2l�1=2��=4 sin�;

� �
Z �

0
�k�3l�=2 � 
2

;��
1=2d�;

m �
����
p
p

�
2

1� �2

�
1� �
1� �

��
�
:

(85)

The embedding diagrams for the metrics ds2
0 and ds2

1 are
shown in Fig. 6 by the left and right plots, respectively.
Both rotation surfaces are deformed spheres. The surface
with the geometry ds2

1 is more flattened at poles.

VII. DISCUSSION

In this paper we discussed and analyzed the surface
geometry of five-dimensional black holes and black rings
with one parameter of rotation. We found that the sectional
Gaussian curvature and the Ricci scalar of the horizon
surface of the 5D rotating black hole are negative if the
rotation parameter is greater than some critical value,
similarly to the case of the 4D Kerr black hole. However,

there is an important difference between the embeddings of
the horizon surfaces of 5D and 4D black holes in the flat
space. As was shown in [13], a rotating 2-horizon can be
embedded as a surface of rotation in a three-dimensional
Euclidean space only when the rotation parameter is less
than the critical value. For other examples of embeddings
of rotating horizons see [19–22]. For ‘‘supercritical’’ rota-
tion the global embedding is possible either in 3D flat
space with the signature of the metric ��;�;�� [13] or
in E4 with the positive signature [15]. For the 5D black hole
for any value of its rotation parameter the horizon surface
cannot be embedded in 5D Euclidean space as a surface of
rotation. Such an embedding requires that the signature of
the flat 5D space is ��;�;�;�;��. However, we found a
global embedding of this surface in 6D Euclidean space.

We calculated the surface invariants for the rotating
black ring and analyzed the effect of rotation on these
invariants. Finally, we considered the Kaluza-Klein reduc-
tion of the rotating black ring which maps its metric onto
the metric of the 4D black hole in the presence of external
dilaton and electromagnetic fields. Under this map, the
horizon of the 5D black ring transforms into the horizon
of the 4D black hole. The ‘‘reduced’’ black hole is static
and axisymmetric. Distorted black holes in the Einstein-
Maxwell-dilaton gravity were discussed in [23]. This paper
generalizes the well-known results of [24] for vacuum
distorted black holes. It would be interesting to compare
the reduced distorted black hole discussed in this paper
with solutions presented in [23].
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