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We discuss the constraints coming from current observations of type Ia supernovae on cosmological
models which allow sudden future singularities of pressure (with the scale factor and the energy density
regular). We show that such a sudden singularity may happen in the very near future (e.g. within 10�
106 years) and its prediction at the present moment of cosmic evolution cannot be distinguished, with
current observational data, from the prediction given by the standard quintessence scenario of future
evolution. Fortunately, sudden future singularities are characterized by a momentary peak of infinite tidal
forces only; there is no geodesic incompleteness, which means that the evolution of the universe may
eventually be continued throughout until another ‘‘more serious’’ singularity such as a big crunch or big
rip.
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Over the past decade observations of high-redshift
type Ia supernovae (SNIa) have provided strong evidence
that the expansion of the universe is accelerating, driven in
the standard paradigm by some form of dark energy [1,2].
Current data [2] continue to leave open the possibility that
dark energy exists in the form of phantom energy, which
may violate all energy conditions [3]: the null (%c2 � p �
0), weak (%c2 � 0 and %c2 � p � 0), strong (%c2 � p �
0 and %c2 � 3p � 0), and dominant energy (%c2 � 0,
�%c2 � p � %c2) conditions (where c is the speed of
light, % is the mass density in kg m�3, and p is the pres-
sure). Phantom matter may dominate the universe in the
future and drive it towards a big-rip (BR) singularity in
which all matter will be dissociated by gravity [4]. This is
dramatically different from the standard picture of future
cosmic evolution which suggests an asymptotically empty
de Sitter state driven by the cosmological constant or
quintessence [5] and leading to the violation of the strong
energy condition only.

Phantom-driven scenarios have encouraged the study of
other exotic possibilities for the future evolution of the
universe. One of these possibilities appears in those models
which do not assume any explicit form for the equation of
state p � p�%�, leaving the evolution of the energy density
and pressure unconstrained. This freedom may result in a
so-called sudden future singularity (SFS) of pressure [6]
which violates only the dominant energy condition. The
nature of a sudden future singularity is different from that

of a standard big-bang (BB) singularity, and also from a
big-rip singularity, in that it does not exhibit geodesic
incompleteness and the cosmic evolution may eventually
be extended beyond it [7,8]. The only physical character-
istic of these singularities is a momentarily infinite peak of
the tidal forces in the universe. In more general models this
peak may also appear in the derivatives of the tidal forces.
It is interesting to note that these types of singularities are,
in a way, similar to yet another type, which was termed
finite density singularities [9]. However, the crucial differ-
ence is that finite density singularities occur as singularities
in space rather than in time, which means that even at the
present moment of cosmic evolution they could exist
somewhere in the universe [10]. We will not discuss in
detail finite density singularities in this paper since they
basically appear in cosmological models without homoge-
neity. On the other hand, it is worth mentioning that the
sudden future singularities are quite generic since they may
arise in both homogeneous [11] and inhomogeneous [12]
models of the universe.

In order to obtain a sudden future singularity, consider
the simple framework of an Einstein-Friedmann cosmol-
ogy governed by the standard field equations
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where the energy-momentum conservation law
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is trivially fulfilled due to the Bianchi identity. Here a�t� is
the scale factor, G is the gravitational constant, and the
curvature index k � 0, 	1. What is crucial in order to
obtain a sudden future singularity is that no link between
the energy density and pressure (the equation of state) is
specified. This allows us to integrate (3) only by quadra-
tures as
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Of course (4) reduces to the standard expression for energy
conservation, %a3�w�1� � const, provided a barotropic
equation of state, p � w%c2 for constant w, is assumed.
(The condition for phantom models, for example, is w<
�1.)

From Eqs. (1) and (2) one can easily see that a pressure
singularity p! �1 occurs when the acceleration �a!
	1, notwithstanding that the values of the energy density
% and the scale factor a�t� are regular. Since in that case
j p j >%, it is clear that the dominant energy condition is
violated. This condition can be achieved if the scale factor
takes the form [6]

 a�t� � as�1� �1� ��y
m � ��1� y�n
; y �

t
ts

(5)

with the appropriate choice of the constants �, ts, as, m, n.
Moreover, we can see that the rth derivative of the scale
factor (5) is given by
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and is related to the appropriate pressure derivative p�r�2�.
Thus, in general, it is possible that one has a pressure
derivative p�r�2� singularity which accompanies the
blowup of the rth derivative of the scale factor a�r�.
Observationally this could be manifested in, for example,
the blowup of the characteristics known as statefinders,
such as jerk, snap, etc. [13]. The pressure derivative singu-
larity p�r�2� appears when

 r� 1< n< r; r � integer; (7)

and for any r � 3 it fulfills all energy conditions. These
singularities are called generalized sudden future singular-
ities (GSFS) and are possible, for example, in theories with
higher-order curvature quantum corrections [14].

Let us now return to the case of r � 2, for which 1<
n< 2 and we obtain sudden future singularity models of
pressure (and obviously all of its higher derivatives) which
lead to violation of the dominant energy condition. In such
models, expressed in terms of the scale factor (5), the
evolution begins with the standard BB singularity at t �
0 for a � 0, and finishes at SFS for t � ts where a � as �
a�ts� is a constant. [Note that we have changed the original
parametrization of Ref. [6] for the scale factor (5) using
A � �as.]

The standard Friedmann limit (i.e. models without an
SFS) of (5) is achieved when �! 0; hence � becomes the
‘‘nonstandardicity’’ parameter of SFS models.
Additionally, notwithstanding Ref. [6] and in agreement
with the field equations (1) and (2), we assume that � can
be both positive and negative leading to a deceleration or
an acceleration [cf. (6)] of the universe, respectively.

It is important to our discussion that the asymptotic
behavior of the scale factor (5) close to the BB singularity
at t � 0 is given by a simple power law aBB � ym, simu-
lating the behavior of flat k � 0 barotropic fluid models
with m � 2=�3�w� 1�
. This allows us to preserve all the
standard observed characteristics of early universe cosmol-
ogy—such as the cosmic microwave background, density
perturbations, nucleosynthesis, etc.—provided we choose
an appropriate value of m. On the other hand, close to an
SFS the asymptotic behavior of the scale factor is non-
standard, aSFS � as�1� ��1� y�n
, showing that aSFS �
as for t � ts (i.e. y � 1) at the SFS. Notice that one does
not violate the energy conditions if the parameter m lies in
the range

 0<m � 1 �w � �1=3�: (8)

This range of values is, in fact, equivalent to a standard
(neither quintessencelike nor phantomlike) evolution of the
universe. However, with no adverse impact on the field
equations (1) and (2), one could also extend the values ofm
to lie in the complementary ranges [7] m> 1 (i.e. �1<
w<�1=3) for quintessence, and m< 0 (i.e. w<�1) for
phantom, although these ranges may lead to violation of
the strong and weak energy conditions, respectively.

We will next calculate the luminosity distance as a
function of redshift, and hence the redshift-magnitude
relation, for SFS models. This will allow us to establish
whether these models are a realistic possibility for the
future evolution of the universe, and more specifically
whether current cosmological observations of high-
redshift supernovae are consistent with values of the con-
stant n in the range 1< n< 2, as required in order that the
scale factor will display an SFS (or, more generally, a
GSFS for r� 1< n< r). We will then explore the range
of values for the other SFS model parameters which are
consistent with current observational constraints on stan-
dard cosmology, and thus determine limits on how far into
the future an SFS might occur. In fact, as we will see below,
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we need to consider only two further parameters: � and
y0 � t0=tS, where t0 is the current age of the universe in the
SFS model. Notice that, in view of (8), it is reasonable to
take m � 2=3 as is the case for the standard dust-
dominated evolution. This implies that, at early times,
our SFS model reduces to the Einstein–de Sitter universe.

We proceed within the framework of Friedmann cos-
mology, and consider an observer located at r � 0 at
coordinate time t � t0. The observer receives a light ray
emitted at r � r1 at coordinate time t � t1. We then have a
standard null geodesic equation

 

Z r1

0

dr����������������
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; (9)

with the scale factor a�t� given by (5). Using (5) again, the
redshift is given by

 1� z �
a�t0�
a�t1�

�
�� �1� ��ym0 � ��1� y0�

n

�� �1� ��ym1 � ��1� y1�
n ; (10)

where y0 � y�t0� and y1 � y�t1�. The luminosity distance
is defined as

 DL � r1a�t0��1� z�: (11)

Neglecting extinction and k corrections, the observed and
absolute magnitudes of a source at redshift z and luminos-
ity distance DL are related by

 m�z� � M� 5log10H0 � 25� 5log10DL�z�; (12)

which, with the help of Eqs. (9)–(11), allows a redshift-
magnitude relation for SFS cosmological models to be
constructed. It is obvious that Eq. (9) has to be integrated
numerically in order to establish the relation between t0
and t1, which can then be inserted into (10) and (11) to
constrain the SFS model parameters. As a first step we
determine the dependence on the SFS model parameters of
the Hubble law, which replaces Eq. (12) when z � 0, i.e.
cz � H0DL, where
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is the present value of the Hubble parameter, which we can
take as 72 km s�1 Mpc�1 [1].

Similarly, we could derive an expression, in terms of the
SFS model parameters, for the deceleration parameter
q0 � �� �aa= _a2�0. However, in order to search the parame-
ter space for models which are admissible by current
observations, we write the product of H0 and q0 as

 q0H0 ��

�
�a
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�
0
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m�m� 1��1� ��ym�2

0 ��n�n� 1��1� y0�
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(14)

In order to obtain an accelerated universe at the present
moment of the evolution, this product should be negative.
Figure 1 shows an example plot of the product H0q0 as a
function of � and y0, with the other parameters fixed at
m � 2=3, n � 1:9993, t0 � 13:2457 Gyr. From the plot
we see that there are large regions of the parameter space
which admit cosmic acceleration. We have explored the
parameter space further with various configurations of m,
n, �, y0, t0, q0, andH0, and obtained the general conclusion
that there is a large class of SFS models which are compat-
ible with current acceleration.

Out of these admissible models we then searched for
those which are compatible with the redshift-magnitude
relation (12) observed for recent SNIa data [2], and hence
with the derived parameters of the standard ‘‘concordance
cosmology’’ (CC). We were able to identify SFS models
that are in remarkably tight agreement with current SNIa
data. As an illustrative example Fig. 2 shows luminosity
distance as a function of redshift for the CC model with
H0 � 72 km s�1 Mpc�1, �m0 � 0:26, and ��0 � 0:74,
and an SFS model with parameters m � 2=3, y0 �
0:999 36, � � �0:471, n � 1:9999. We see that the SFS
model mimics the CC model very closely over a wide
range of redshifts. In particular, it is clear that recent
SNIa data from the Tonry et al. ‘‘Gold’’ sample [1] and
Supernova Legacy Survey (SNLS) sample [2] cannot yet
discriminate between the CC and SFS models.
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FIG. 1 (color online). Parameter space �H0q0; �; y0� for fixed
values ofm � 2=3, n � 1:9993, t0 � 13:3547 Gyr of the sudden
future singularity models. There are large regions of the parame-
ter space which admit cosmic acceleration.
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Taking the current age of the universe in the SFS model
to be equal to the age of the CC model, i.e. t0 � 13:6 Gyr,
we find that the time to the sudden singularity is ts � t0 �
8:7 Myr, which is amazingly close to the present epoch. In
that context it is no wonder that these singularities are
called ‘‘sudden.’’ We have also checked that the larger
the value of r in (7) the later into the future a GSFS
appears. This means that the strongest of these singularities
which violates the dominant energy condition (i.e. an SFS)
is more likely to become reality.

Our remark about the effect of the sudden pressure
singularity seems in agreement with the result of
Ref. [15] which showed that the dominant energy condition
is now violated and that it became violated quite recently
(at redshift z� 0:2). Of course this violation may also be
due to phantom energy [3].

In conclusion, we have shown that a sudden future
singularity may happen in the comparatively near future
(e.g. within 10� 106 years) and its prediction at the
present moment of cosmic evolution cannot be distin-
guished, with current observational data, from the predic-
tion given by the standard quintessence scenario of future
evolution in the concordance model. Fortunately, sudden
future singularities are characterized by a momentary peak
of infinite tidal forces only; there is no geodesic incom-
pleteness which means that the evolution of the universe
may eventually be continued beyond the SFS until another
‘‘more serious’’ singularity such as a big crunch or a big
rip. One could then consider, more generally, a scale factor
of the form [7,16]
 

a�t� � A� ��as � A� �D�tr � ts�p � Etos 
ym

� �A�Dtpr ��1� y�n �D�tr � tsy�p � Etosyo;

(15)

where the constants m, o, p, A, D, E are chosen so that the
universe begins with a big bang at t � 0 where a � 0, next
faces a sudden future singularity at t � ts where a�ts� �
as, and then eventually continues to a big rip at t � tr
where a�tr� ! 1. All of the matter sources may be in-
volved since the constants in (15) can be taken as 0<m �
1 (quintessence), p < 0 (phantom), and o > 1 (standard
positive matter pressure).

Whether the universe will end in a big rip or a big crunch
is an open question. Moreover, unlike a sudden future
singularity, both a big-rip and a big-crunch singularity
would represent the real end of the universe. Fortunately,
as was shown in Refs. [4,17], a big-rip singularity is not
possible in the very near future: in order to reach it one
must wait about the same time as the current age of the
universe. Apart from that, it is still possible to avoid it due
to a negative tension brane contribution in a turnaround
cyclic cosmology [18].
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