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Bayesian probability theory is used to analyze the oft-made assumption that humans are typical
observers in the Universe. Some theoretical calculations make the selection fallacy that we are randomly
chosen from a class of objects by some physical process, despite the absence of any evidence for such a
process, or any observational evidence favoring our typicality. It is possible to favor theories in which we
are typical by appropriately choosing their prior probabilities, but such assumptions should be made
explicit to avoid confusion.
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An increasingly common kind of reasoning in funda-
mental cosmology starts from an assumption that some
property of human observers is typical in some class C of
objects in the Universe. This assumption is then used in
conjunction with a physical theory of cosmology to draw
conclusions about the properties of the Universe that we
should expect to observe. However, it is perfectly possible
(and not necessarily unlikely) for us to live in a universe in
which we are not typical. Indeed, there are many choices of
the class C (such as all compact objects with mass between
10 and 100 kg) for which we have data that definitively
establishes that humans are not typical. Any assumption of
typicality or mediocrity should therefore be carefully
scrutinized.

Such an examination seems especially timely because of
recent discussions drawing conclusions from the possible
existence (in a very large universe) of vacuum fluctuated
brains (also known as ‘‘Boltzmann brains’’ or ‘‘freak ob-
servers’’). Astounding conclusions have been drawn using
arguments that involve these possibilities, notably those of
Page [1–4] that the Universe must be limited in time and
space in order to avoid having too many fluctuated brains
that would make human observers untypical in any class
that includes these fluctuated brains. Some other recent
discussions of this issue include [5–9]. Early discussions
of the role of typicality in inflationary cosmology include
[10,11]. Previous criticism of typicality assumptions in-
cludes [12,13].

Typicality assumptions involving human observers in a
class containing other kinds of observers can be based on
different types of information. These include (1) empirical
extrapolations of data concerning extraterrestrial observ-
ers, (2) plausible guesses for the predictions of a more
fundamental theory, and (3) mere personal preference for
theories in which we are typical of something.

Since we currently have no data on extraterrestrial ob-
servers, there are no examples of type (1). An example of
type (2) is the oft-made assumption in multiverse cosmol-

ogy that the number of ordinary observers is proportional
to the number of galaxies, or to the number of baryons, or
to some other similar proxy. This paper does not criticize
such assumptions when they are clearly stated. However, it
will be argued that assumptions of type (3) are not well
justified, and can lead to ridiculous conclusions that will be
illustrated with simple examples.

To indicate where the paper is headed some of its con-
clusions are summarized below.

(i) A theory is not incorrect merely because it predicts
that we are atypical.

(ii) Theories are tested using our data as a collectivity of
human observers. What other observers might see,
how many of them there are, and what properties
they do or do not share with us are irrelevant for this
process.

(iii) No part of our data should be neglected in the
process of discriminating between competing theo-
ries unless it can be demonstrated that the relevant
probabilities are insensitive to it.

(iv) Two theories that predict our data with equal proba-
bility are indistinguishable on the basis of that data.
Cosmological models that predict that at least one in-
stance of our data exists (with probability one) some-
where in spacetime are indistinguishable no matter
how many other exact copies of these data exist.

(v) We have data that we exist in the Universe, but we
have no evidence that we have been selected by some
random process. We should not calculate as though
we were.

(vi) In a fundamental theory of quantum cosmology,
there is no need for any assumption of typicality to
predict what we might see. However typicality, and
the measures to implement it, may be implied by the
fundamental theory. In the absence of a manageable
candidate for such a theory, it can be useful to try to
guess such measures.

Bayesian probability theory is the basis for this analysis. In
addition to supporting the conclusions above, it will be
used to discuss some classes of mistakes that can be made
in applying the Bayesian procedure. These include neglect-
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ing relevant parts of our data, and making the selection
fallacy that we are randomly selected from some class C.

I. TESTING THEORIES USING BAYESIAN
PROBABILITIES

This section briefly reviews the elements of the Bayesian
framework for testing theories. (For a compact introduc-
tion, see [14]; for complete details, see [15]; for an elegant
presentation of the necessity of the Bayesian point of view,
see [16].) Suppose we have a set of theories that we wish to
discriminate between. For simplicity, assume the theories
form a finite discrete set fT1; . . . ; TNg, with any continuous
parameters binned. The specification of a theory is taken to
include both the dynamics and the initial conditions, so that
the theory contains enough information to make calculable
predictions. For simplicity, we assume that the set of
theories is complete, so that one of them must be true; if
this is not the case, the probabilities to be calculated are
relative rather than absolute.

Bayesian analysis has three inputs: First is a prior
probability or prior P�Ti� for each theory. These priors
should be assigned before any data is obtained. Although
the priors can in principle be chosen arbitrarily, standard
practice is to try to make a choice that suitably reflects our
ignorance; for example, by assigning equal probabilities to
the discrete set of theories. In the terminology of Bayesian
theory, the choice should be ‘‘noninformative.’’ The exact
choice of priors is ultimately unimportant in situations
where there can be an arbitrarily large number of identical
trials. However, in areas like cosmology, where data is hard
to come by, priors can strongly influence the final con-
clusions.

Second there is the specification of the data D with
which we seek to discriminate between the theories. This
is the data of the collectivity of human observers doing the
Bayesian analysis.

The third input is the likelihood P�DjTi� that (upon
suitable observation) we will obtain a particular data set
D, given that the theory is Ti. An important point is that, for
each theory, the likelihood should be calculable. If we can
only estimate but not calculate a likelihood, then we should
enlarge our set of theories by introducing new parameters
that account for our ignorance of the likelihood, and allow
these parameters to vary over the new, larger, set of
theories.

Finally, there is the output—what we really want to
know—the posterior probability P�TijD�, the probability
of theory Ti, given the data D that we have obtained. The
posterior probabilities for the various theories are related to
the prior probabilities and the likelihoods by Bayes’ theo-
rem,

 P�TijD� �
P�DjTi�P�Ti�P
i
P�DjTi�P�Ti�

: (1.1)

This is the key formula of Bayesian analysis.

II. PRIORS FAVORING TYPICALITY

Our typicality can be enforced simply by choosing priors
that favor theories that imply that we are typical. A specific
example is useful to illustrate the dangers inherent in this
kind of reasoning (type 3 above).

Consider two theories of the development of planet-
based intelligent life, based on the appropriate physics,
chemistry, biology, and ecology. Theory A predicts that
there are likely to be intelligent beings living in the atmo-
sphere of Jupiter; theory B predicts that there are no such
beings. Because Jupiter is much larger than Earth, theory A
predicts that there are today many more jovians than
humans.

Would we reject theory A solely because humans would
not then be typical of intelligent beings in our solar sys-
tem? Would we use this theory to predict that there are no
jovians, because that is the only way we could be typical?
Such a conclusion seems absurd.

We could nevertheless enforce an assumption of typi-
cality by assigning a low prior probability to theory A, and
a high prior probability to theory B. Alternatively, we could
choose priors that favor theory B, so that the Earth is more
typical of the planets in the solar system.1 However, any a
priori favoring of either theory is contrary to the standard
scientific practice of assigning noninformative priors that
do not preselect conclusions before relevant data is
obtained.

III. DATA

A discussion of what is meant by ‘‘our data’’ necessarily
begins with a discussion of what is meant by ‘‘we,’’ ‘‘us,’’
and ‘‘our.’’ In this paper, ‘‘we’’ refers to the information
gathering and utilizing system (IGUS) that is engaged in
the process of gathering data, constructing alternative
theories, and using Bayesian analysis to discriminate be-
tween these theories. In this epoch, that is naturally the

1Assumptions of typicality have a long history. In 1698,
Huygens [17] wrote: ‘‘A Man that is of Copernicus’s Opinion,
that this Earth of ours is a Planet, carry’d round and enlighten’d
by the Sun, like the rest of them, cannot but sometimes have a
fancy, that it is not improbable that the rest of the planets must
have their Dress and Furniture, nay and their inhabitants too as
well as this Earth of ours.’’ Further he argues from the similar-
ities among species from distant parts of the Earth (such as
Europe and America) that we should be typical of the inhabitants
of other planets: ‘‘’Tis more probable that all the difference there
is between us and them, springs from the greater or less distance
and influence from that Fountain of Heat and Life the Sun; which
will cause a difference not so much in their Form and Shape, as
in their Matter and Contexture.’’ He then concludes that there
must be substances on the other planets serving the role of water
on this one: ‘‘I cannot say that they are exactly of the same
nature with our Water, but that they should be liquid their use
requires, as their beauty does that they should be clear.’’ In this
case, Huygens’ assumption of the typicality of the Earth obvi-
ously did not lead him to correct conclusions.
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human scientific IGUS on Earth (HSI). If we ever have
scientific exchanges with IGUSes elsewhere, the definition
would have to be enlarged.

‘‘Our data’’ D includes every scrap of information that
the HSI possesses about the physical universe: every record
of every experiment, every astronomical observation of
distant galaxies, every available description of every leaf,
etc., and necessarily every piece of information about the
HSI itself, its members, and its history. The choices of
coarse graining used to define this information, the level of
accessibility demanded, etc., are inevitably subjective but
assumed here to be fixed. The data must all be expressed in
physical terms in the language of the theories being tested
so that the likelihoods P�DjTi� can be computed.

All the information possessed by the HSI should be
included in D unless it can be demonstrated that the
posterior probabilities P�TijD� are insensitive to it. Of
course, we can practically test theories only if we can
assume that this is the case for most of our data. The
important point is that any such assumption can be checked
by experiment or calculation. To arbitrarily neglect some
pieces of data in favor of others is unscientific and risks
contradiction when the neglected data is later considered.

What are the implications of this for typicality? It is our
data that is used in a Bayesian analysis to discriminate
between theories. What other hypothetical observers with
data different from ours might see, how many of them there
are, and what properties they might or might not share with
us (defining some notion of typicality) are irrelevant for
this process. In particular the number of vacuum fluctuated
brains with different data (for example with disordered
observations as discussed by Page [1,2]) is irrelevant. As
far as Bayes’ theorem is concerned, the only other observ-
ers that matter are ones that have exactly the same data D.

Observers with identical data may occur in multiple
places in a large universe. For example, in contemporary
inflationary models, we may know that we are 14 Gyr from
the nucleation of our pocket universe. But we know neither
the location of that pocket universe in spacetime or how
many others like it with identical data may have been
nucleated elsewhere. Vacuum or thermal fluctuations that
produce identical data must also be considered. These
unknown locations and origins must be summed over in
calculating the likelihoods P�DjT�. All we know is that
there exists at least one such region containing our data.
This idea is illustrated with simple models in the following
sections.

Beyond testing theories, questions sometimes arise like
‘‘What would be the probability to observe a cosmic
microwave background (CMB) at a temperature of 3 K if
we did not already know the value of this temperature?’’ In
such cases the data D (which includes the observation of a
3 K CMB) must be divided into a part that could have
varied and a notion of ‘‘us’’ that could not. There is addi-
tional ambiguity, and additional subjective choice, in mak-

ing this division. At one extreme, the 3 K could be included
in the meaning of ‘‘us’’ (no division), in which case ‘‘we’’
could never have observed anything else, by definition. At
the other extreme, ‘‘us’’ could be defined to be an object
less than 200 kg, in which case we could be talking about
the CMB temperature a rock might have received. Most
physicists would make less extreme choices, but it is
important to recognize that the answers to such questions
depend on the choice.

IV. LIKELIHOODS AND THE SELECTION
FALLACY

Return for the moment to the human/jovian model and
assume that each theory is able to predict a probability for
the number of humans H and jovians J alive today. The
question then becomes, what is the data? We know that the
actual number of humans today is H� � 6:57� 109. (For
simplicity, assume that this number is known exactly.) We
know nothing at all about the actual number of jovians
today; this data has not yet been obtained. Thus, the like-
lihood that a theory Ti predicts the data D that we actually
have in this case is given by summing over the mutually
exclusive probabilities for different numbers of jovians,
with the number of humans fixed to its known value,

 P�DjTi� �
X1
J�0

P�H�; JjTi�: (4.1)

The likelihood for the data is independent of the number of
jovians predicted by the theory, simply because we have
not observed the number of jovians.

It is important to note that there is an alternative, in-
correct computation of the likelihood that favors typicality.
The invalid reasoning goes as follows. ‘‘I observe that I am
human. I might, however, have been jovian. If there are H
humans and J jovians, the probability that I observe myself
to be human is H=�H � J�. Therefore, I should multiply
the probability P�H; JjTi� that there are H humans and J
jovians by a factor of H=�H � J� to account for the proba-
bility that I have observed myself to be human and not
jovian. Then I compute the likelihood as

 P�DjTi� �
X1
J�0

H�

H� � J
P�H�; JjTi�; (4.2)

instead of (4.1). The factor of H�=�H� � J� in (4.2) results
in likelihoods that (when used in Bayes’ theorem) disfavor
theories that predict H� J, and hence lead to the con-
clusion that humans should be typical. This is the kind of
argument made in [5,6], and would seem to be a natural
interpretation of [1– 4].2

2However, in private discussions, Page says the typicality
factors arise naturally in his theory of quantum mechanics
[18], in which the basic quantities are operators representing
the conscious perceptions of observers. These ideas are not
discussed here.
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The factor of H�=�H� � J� would be correct if we (or
some outside agency) had performed an experiment that
had (somehow) selected a single intelligent being in the
solar system, with equal a priori probability for each, and
that we or the outside agency knew the result of this
selection. However, noticing that we are human is not
equivalent to performing such an experiment. For example,
it would certainly be incorrect to conclude that, since each
of the two authors of this paper is human, the correct factor
to multiply by is �H�=�H� � J��2. This is because the
probability that one of us is human is obviously not inde-
pendent of the status of the other. Thus, whatever selection
is performed when one of us notices that he is human, it is
surely not equivalent to a random selection of a single
intelligent being anywhere in the solar system.

In fact, there has been no selection at all. Intelligent
beings on Earth notice that they exist, call themselves
‘‘humans,’’ and count up how many there are. Whatever
may or may not be happening on Jupiter is entirely irrele-
vant. This leads immediately to Eq. (4.1) for the likelihood,
which does not favor or disfavor typicality of humans. If
we now set all priors equal, P�Ti� � 1=N with N the
number of theories, we immediately find P�TijD� /
P�DjTi�. That is, the probability that a theory is correct is
directly proportional to the probability that it predicts the
correct number of humans, independent of the number of
jovians.

To compute likelihoods as though we had been ran-
domly selected by some physical process, when there is
no evidence for such a process, commits what might be
called the selection fallacy. We are not a disembodied
entity that was randomly selected to have a particular
physical description; instead, we are the meaning of a
transcription of ‘‘we’’ into the language of physical theory.

As shown above, the correctly computed likelihood does
not favor typicality of humans. However, we can, if we
wish, implement an assumption of typicality through the
choice of priors. We do this by identifying the set of
theories that predicts that P�H; JjTi� is small whenever H
is much less than J. Then we assign these theories small
values of P�Ti�. For example, we could choose P�Ti� /
�Hi=� �Hi � �Ji� (or some power of that), where �Hi and �Ji are

the mean number of humans and jovians that are predicted
by theory Ti.

As was mentioned earlier, there is nothing wrong in
principle with any choice of priors. However, choosing
priors that favor one or another prediction (that we happen
to like) goes against standard scientific practice, and sim-
ply represents an unsupported (by data) personal prefer-
ence for a certain result.

V. A SIMPLE COSMOLOGICAL MODEL

A simple (highly idealized) cosmological model will
further illustrate the key issues.

Consider a model universe which has N cycles in time,
k � 1; . . . ; N. In each cycle the universe may have one of
two global properties: red (R) or blue (B), which could be
thought of as (for example) two different possible values of
the CMB temperature. To further simplify the discussion,
the only relevant observables are assumed to be (1) the
value of the property and (2) the existence of an observing
system that is able to determine this value. In each cycle,
the probability for such an observing system to exist is
taken to be pE; this probability is assumed to be indepen-
dent of whether the universe is red or blue in that cycle.
Furthermore, observations are assumed to be perfectly
accurate, so that if red is observed in any cycle, then the
universe is red in that cycle, and conversely.

Two competing theories of this model universe are
proposed. One, all red or AR, in which all the cycles are
red, and another, some red or SR, in which some number of
particular cycles are red and the rest are blue. We (an
idealized observing system) seek to discriminate between
these two theories on the basis of our data.

Suppose that we (a particular observing system) observe
red. Our data D is then �E;R�, which in the context of the
model could be more fully described as ‘‘there is at least
one cycle in which an observing system exists and the
universe is red.’’ Using this data we carry out a Bayesian
analysis to discriminate between the two theories assuming
equal priors for simplicity. The probability that there is at
least one cycle with �E;R� is the same as one minus the
probability of the negation of this, which is the probability
that no observing system exists in a cycle in which the
universe is red. Since the probability for an observing
system not to exist in any one cycle is 1� pE, the like-
lihoods are

 P�E;RjT� � 1� �1� pE�
NR�T�; (5.1)

where NR�T� is the number of red cycles in theory T,
equaling N when T is AR. Assuming equal priors, (1.1)
yields the posterior probabilities

 P�TjE;R� �
P�E;RjT�

P�E;RjAR� � P�E;RjSR�
; (5.2)

where T is either AR or SR.
A number of limiting cases of the likelihoods (5.1) and

their consequent posterior probabilities (5.2) are of interest.
If pE is close to 1, then P�E;RjT� 	 1 for both theories.

That is not very surprising, since the probability is high for
there to be an observing system in every cycle. The proba-
bility that there is at least one red cycle with an observing
system is therefore also high in both theories. Thus our data
do not discriminate between the two theories, and indeed
p�TjE;R� 	 1=2 for both.

Another case where our data does not discriminate
between the two theories occurs when pE < 1, and NR is
large in both theories to make �1� pE�NR�T� � 1, so that
P�E;RjT� 	 1 for both theories. Even though there may be
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many more red cycles in the AR theory than the SR theory,
the probability that there is at least one red cycle with an
observing subsystem approaches one for both theories
when NR becomes large in both. In this case, our data is
not enough to discriminate between the two theories. This
is important because inflationary theories can be expected
to imply large numbers of any conceivable situation.

If pE � 1=N, then P�E;RjT� 	 NR�T�pE, and the re-
sulting posterior probabilities are

 P�ARjE;R� �
1

1� fR
; P�SRjE;R� �

fR
1� fR

;

(5.3)

where fR 
 NR�SR�=N is the fraction of red cycles in the
SR theory. In this case, if fR is small, the AR theory is
strongly favored.

In the small pE limit, the result (5.3) is the same as it
would be if it was assumed that we were the unique
observing system existing in the Universe, but that we
did not know the cycle k in which we were located. More
specifically, were we unique, the probability that we were
in cycle k observing R would be 1=N if cycle k is red in
theory T, and zero if it is blue. Summing these probabilities
over k yields (5.3).

Confusingly, this result is also the same under the as-
sumption that our location is randomly selected from the N
possible cycles. This notion presupposes that we exist
separately from our physical description. But we are not
separate from our physical description in our data; we are
the physical system described, and no random selection has
been made. In contemporary inflationary models, we are
very unlikely to be unique as physical systems within the
infinite multiverse. In this case, reasoning as if we had been
randomly selected will not give correct results, as the
above example shows.

The implications of this simple model for typicality can
now be discussed. To emphasize that other observers with
data different from ours are irrelevant for predicting what
we observe, the likelihoods (5.1) can be calculated in a
different way. First consider the probability P�nR; nBjT�
that there are nR observing systems in red cycles and nB
observing systems in blue cycles,
 

P�nR; nBjT� �
NR�T�

nR

 !
NB�T�

nB

 !

� pnR�nBE �1� pE�
N�nR�nB ; (5.4)

where NB�T� and NR�T� are the number of blue and red
cycles in each theory. Our data is ‘‘there is at least one red
cycle containing an observing system.’’ This is related to
(5.4) by

 P�E;RjT� �
XNR�T�
nR�1

XNB�T�
nB�0

P�nR; nBjT�; (5.5)

which, as is easily shown, yields (5.1). The elementary but
important point is that the number of observing systems
measuring blue must be summed over. The value of that
number therefore does not affect the probability for our
data.

If the number of red cycles is infinite in both models,
then the two theories are not distinguished by our data even
if the number of fraction of red cycles is small in SR. That
is because our data is that there is at least one red cycle. As
the number of red cycles approaches infinity, that becomes
a certainty in both theories. Even though the typical ob-
serving system in the SR theory is observing blue, our data
provides no evidence that we are typical.

In such cases it is tempting to reason as follows: In the
SR theory with mostly blue cycles we are more likely to
observe blue than red. Since we observe red we should
reject this theory. This is the kind of argument made by [5]
against eternal deSitter space. This, however, is an instance
of the selection fallacy, and in more familiar situations
leads to absurd conclusions such as those discussed earlier.

VI. DERIVING MEASURES

After a sufficient time, an isolated quantum system with
(sufficiently complex interactions) will come to equilib-
rium, and the predictions for the probabilities of certain
variables like total energy, momentum, and number will be
given by an equilibrium density matrix. In principle there is
no need for an equilibrium density matrix. Were the initial
state known and powers of computation unlimited, the state
could be evolved forward by the appropriate time and the
probabilities calculated directly. However, the power, util-
ity, and perhaps even the necessity of a notion of equilib-
rium and the density matrix that defines it are well known.
The important point is that such a density matrix cannot be
posited arbitrarily; it follows from the dynamics in princi-
ple, and its form can be checked (see, e.g., [19]).

Similarly, in a complete quantum theory of the Universe,
there is in principle no need for any further assumption
about typicality of human observers, or a measure imple-
menting that notion of typicality. The probabilities for our
observations would follow from a theory of the dynamics,
the initial quantum state, and an accurate quantum descrip-
tion of human beings, their knowledge, and their data [20].

However, we presently lack even one example of such a
complete theory, and in practice calculations of the history
and observations of human observers are well beyond
current and foreseeable abilities to compute. It then be-
comes useful to make plausible hypotheses of what such a
complete theory might predict, and (as mentioned above)
to expand the family of theories being tested to include
these hypotheses. For example, inflationary cosmology
frequently assumes a classical spacetime that models dis-
tributions of bubbles nucleated in quantum events. Our
location in this spacetime is unknown. To calculate the
probabilities of what we might see, it becomes convenient
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to posit a distribution of positions in space and time
together with a measure to define it. This distribution can
in principle be checked in a complete theory of quantum
cosmology. It might even be possible to infer a distribution
for where other observers are located in the Universe and a
measure to define that.

In a Bayesian analysis of such situations, priors must be
assigned to candidates for a complete theory, and also to
different hypotheses of what it will predict. In the example
of inflationary cosmology, priors would be assigned to
different measures and typicality assumptions. In
Bayesian terms, debates about which measure is correct
are discussions of these priors. The important thing is that
these priors can be improved through the usual process of
Bayesian updating after acquiring more data or by firming
up predictions by better calculation. That is in contrast to
priors which merely express personal preference for theo-
ries in which we are typical.

VII. CONCLUSION

The course of physics, both theoretically and experi-
mentally, is guided by prejudice as to the nature of the
theory sought for. We favor theories that are simple, beau-
tiful, precisely formulable mathematically, economical in
their assumptions, comprehensive, unifying, explanatory,
accessible to existing intuition, etc. Most importantly we
favor theories that are successful in predicting new data
beyond what we have at the moment. The bases for such
prejudices do not lie in logic but rather previous experience
with constructing successful theories.

Especially in areas far from immediate experiment, it is
important to distinguish facts, logical deduction, and prej-
udices. Bayesian analysis provides a framework for doing
this. Data are the domain of facts, likelihoods are the
domain of logical deduction, and the priors are the domain
of theoretical prejudice.

This paper has analyzed typicality assumptions using the
Bayesian framework. The main conclusions have already
been given in the introduction and we will not repeat them
here. At the present, there are no observational data sup-
porting an assumption that we are typical in some class of
observers, and our understanding of biological evolution is
insufficient to supply a theoretical justification through the
likelihoods. Many calculations that produce likelihoods
that favor our typicality do so via the selection fallacy;
this can lead to absurd conclusions, as the human/jovian
model shows.

On the other hand, a preference for typicality can legiti-
mately be made through a suitable choice of priors.
However, such choices should be made explicit, so that
others can properly evaluate the conclusions that are ulti-
mately reached.
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