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We have investigated the thermodynamical properties of dark energy. Assuming that the dark energy
temperature T � a�n and considering that the volume of the Universe enveloped by the apparent horizon
relates to the temperature, we have derived the dark energy entropy. For dark energy with constant
equation of state w>�1 and the generalized Chaplygin gas, the derived entropy can be positive and
satisfy the entropy bound. The total entropy, including those of dark energy, the thermal radiation, and the
apparent horizon, satisfies the generalized second law of thermodynamics. However, for the phantom with
constant equation of state, the positivity of entropy, the entropy bound, and the generalized second law
cannot be satisfied simultaneously.

DOI: 10.1103/PhysRevD.75.123516 PACS numbers: 95.36.+x, 98.80.Cq

Results from numerous and complementary observa-
tions show an emerging paradigm ‘‘concordance cosmol-
ogy’’ indicating that our Universe is spatially flat and
composed of about 70% dark energy (DE) and about
25% dark matter. The weird DE is a major puzzle of
physics now. Its nature and origin have been an intriguing
subject of discussions in the past years. The DE has been
sought within a wide range of physical phenomena, includ-
ing a cosmological constant, quintessence, or an exotic
field called phantom [1]. Except for the known fact that
DE has a negative pressure causing the acceleration of the
Universe, its nature still remains a complete mystery. In the
conceptual set up of DE, one of the important questions
concerns its thermodynamical properties. It is expected
that the thermodynamical consideration might shed some
light on the properties of DE and help us understand its
nature.

The topic of the DE entropy, temperature, and their
evolution by using the first law of thermodynamics was
widely discussed in the literature [2–10]. It was found that
the entropy of the phantom might be negative [6–8]. The
existence of negative entropy of the phantom could be
easily seen from the relation Ts � �� p between the
temperature T, the entropy density s, the energy density
�, and the pressure p. Negative entropy is problematic if
we accept that the entropy is in association with the mea-
sure of the number of microstates in statistical mechanics.
The intuition of statistical mechanics requires that the
entropy of all physical components to be positive.

Besides, if we consider the Universe as a thermodynamical
system, the total entropy of the Universe including DE and
dark matter should satisfy the second law of thermody-
namics. The generalized second law (GSL) for phantom
and nonphantom DE has been explored in [8]. It was found
that the GSL can be protected in the Universe with DE. The
GSL of the Universe with DE has been investigated in
[9,10] as well. In order to rescue the GSL of thermody-
namics, Bekenstein conjectured that there exists an upper
bound on the entropy for a weakly self-gravitating physical
system [11]. Bekenstein’s entropy bound has received
independent support [12]. A holographic entropy bound
[13] was subsequently built, and it was argued to be a real
conceptual change in our thinking about gravity [14]. The
idea of the holographic entropy bound was found to be a
useful tool in studying cosmology [15].

In the discussion of thermodynamical properties of the
Universe, it is usually assumed that the physical volume
and temperature of the Universe are independent, and by
using the integrability condition @2S=@V@T � @2S=@T@V
and the first law of thermodynamics, one obtains the
constant comoving entropy density. However, if we apply
this treatment in the Universe with DE, we find some
problems of the DE thermodynamics [10]. Naively, we
may think the DE temperature is equal or proportional to
the horizon temperature TH. It was found that the equation
of state of DE is uniquely determined and the phantom
entropy is negative [10]. Therefore, a general DE model is
not in thermal equilibrium with the Hawking radiation of
the horizon. Besides, although the GSL can be valid for
w>�1, for the phantom with w<�1, it was found that
the GSL breaks down due to the negative temperature
deduced in the formalism where the volume and the tem-
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perature are assumed to be independent [10]. In summary,
for the phantom, we either run into the negative entropy
problem or the GSL is violated. It is more realistic to
consider that the physical volume and the temperature of
the Universe are related, since in the general situation they
both depend on the scale factor a�t�. In the cosmological
context, the apparent horizon is important, since on the
apparent horizon there is the well-known correspondence
between the first law of thermodynamics and the Einstein
equation [16]. On the other hand, it was found that the
apparent horizon is a good boundary for keeping thermo-
dynamical laws [9]. Considering the apparent horizon as
the physical boundary of the Universe, it was found that
both the temperature and entropy can be positive for DE,
including phantom. Furthermore, by considering the real-
istic case that the physical volume and the temperature are
related, the GSL is proved to be always satisfied within the
volume of the apparent horizon [10]. Thus, in studying the
DE thermodynamics, it is more appropriate to consider the
Universe in which the volume and the DE temperature are
related.

In this work we will investigate the thermodynamical
properties of DE by assuming that the physical volume and
the temperature are not independent. Now again it is
natural to think that the DE is in thermal equilibrium
with the Hawking radiation of the apparent horizon. In
this case, we found that the DE entropy is the dominant
entropy component and it becomes negative even for DE
with w>�1 [10]. Recall that the radiation temperature in
the Universe scales as T � a�1, so we assume here that the
DE temperature has a similar behavior T � a�n to avoid
the negative entropy problem, where n is an arbitrary
constant. It is not necessary to take n � 1 to ensure that
the DE is in equilibrium with the thermal radiation, since
their dispersion relations could be completely different
[6,10]. From the above discussions, it is reasonable to
expect that a physically acceptable entropy of DE should
be positive and satisfy the entropy bound. It should also
satisfy the property required by the GSL. Since the usual
thermal radiation temperature in the Universe decreases as
the Universe expands, we expect that the DE temperature
also preserves this property.

By using the first law of thermodynamics TdS � dE�
pdV for the DE, and considering the volume of the
Universe within the apparent horizon V � 4�~r3

A=3 and
the total DE E � �V, we can express the DE entropy as
[10]

 TdS � �
2�
3

�
8�G

3

�
�3=2

��5=2
t ��t � 3pt�d�; (1)

where the Friedmann equation and the energy conservation
law have been used in the derivation, and �t and pt denote
the total energy density and pressure, respectively. Taking
the derivative with respect to time on both sides of the
above equation, we have

 

_S � 2�
�
8�G

3

�
�3=2

��5=2
t ��t � 3pt�H��� p�=T: (2)

It can be seen that _S � 0 (< 0) if ��� p�=T � 0 (< 0)
during the radiation dominated era (RD) and the matter
dominated era (MD), and _S � 0 (> 0) if ��� p�=T � 0
(< 0) during DE domination. In the phantom domination,
the apparent horizon entropy decreases as the Universe
expands [10]. This requires _S > 0 and j1� 3wjTH=2>
T > 0 to protect the GSL. Thus in the phantom domination
era, the temperature of the phantom has to be positive to
rescue the GSL.

The radiation entropy can be obtained as usual, Sr � sV,
where s � �=a3 is the physical entropy density and � is
the constant comoving entropy. For DE with constant
equation of state w, using the Friedmann equation, the
entropies of the radiation and the apparent horizon are

 Sr � Sr0x
�3�t�x�

�3=2; (3)

 SA � SA0�t�x�
�1; (4)

where �t�x� � �m0x�3 ��r0x�4 ��w0x�3�1�w� and
x � a=a0. To get the DE entropy we need to solve
Eq. (1) by assuming T � T0�a=a0�

�n. In the evolution of
the Universe, the solution to Eq. (1) is given in the form

 

Sw
Sr0

�r0Tw0

�w0Tr0
�

8>>><
>>>:

9�1�w�
4�n�3�1�w���

�3=2
r0 xn�3�1�w�;

Sw1 �
9�1�w�

8�n�3=2�3w��
�3=2
m0 xn�3=2�3w;

Sw2 �
9�1�w��1�3w�
8�n�3�1�w�=2��

�3=2
w0 xn�3�1�w�=2;

(5)

for the RD, MD, and DE domination, respectively, where
Sw1 and Sw2 are integration constants.

As we mentioned previously, the intuition of the statis-
tical mechanics requires positive entropy. We expect that
this should also hold for the entropy of DE if it is supposed
to keep the same microscopic meaning. From Eq. (5) we
learn that for DE with constant equation of state w>�1,
non-negative Sw can be obtained if n > 3w� 3 during RD.
During DE domination, if n >�3�1� w�=2, then Sw !
�1when a! 1. Thus, to get positive entropy for the DE,
the parameter n should be chosen within the range �6<
3w� 3< n<�3�1� w�=2< 0.

This parameter range of n can be further constrained if
we express the solution of Eq. (1) as
 

Sw
Sr0
�

3

4
�1� w�

�w0

�r0

Tr0
Tw0

�
x�3�n�3w�t�x�

�3=2

� �n� 3w�
Z a=a0

0
x�4�n�3w�t�x��3=2dx

�
: (6)

If n > 3w, the second term in the above equation is nega-
tive, which might lead Sw to be negative. Therefore, we
need to restrict 3w� 3< n< 3w to ensure the positivity
of Sw. Note that for radiation, n � 3w � 1, Eq. (6) reduces
to Eq. (3). Since n < 0, the dark energy temperature will
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increase with the scale factor a, and at the present moment
Tw0 	 Tr0. During RD and MD, it can be seen that both
DE entropy and the radiation entropy increase. However, if
one notes that _Sw= _Sr � 3�1� w��wTr=�4�rTw�< 1, the
DE entropy increases slower than the radiation entropy.
During the DE domination, both the DE entropy and the
radiation entropy decrease, Sw ! Sw2 > 0, and Sr ! 0
when a! 1, so Sw > Sr in the future. Since the apparent
horizon entropy increases during the DE domination, _SA �
3�1� w�SAH, _Sw � �n� 3�1� w�=2�SwH, and _Sr �
3�1� 3w�SrH=2, so the GSL is always respected for DE
with constant equation of statew>�1. To see these points
more clearly, we solve Eq. (2) numerically by choosing
w � �0:9, �m0 � 0:3, �w0 � 0:7, and �r0 �
8:35
 10�5. The results for n � �5:0 and n � �3:5 are
shown in Fig. 1. The numerical results confirm that by
constraining 3w� 3< n< 3w, Sw is positive. It is easy to
see that the DE entropy and the radiation entropy are much
smaller compared to the apparent horizon entropy, thus the
entropy bound is always held. Although the radiation
entropy and the DE entropy may decrease in the DE
domination, due to their very small scale, their decreasing
behaviors can be overcome by the increase of the entropy
on the apparent horizon. Thus, including the total entropy
in the Universe and the entropy of the apparent horizon, we
find that the GSL is protected.

Now we come to consider the phantom with constant
equation of state w<�1. In the RD and MD eras, if n <
3w� 3, Sw is positive but it decreases starting from 1 as
the Universe expands. The entropy bound is violated at
very early times. If n >�3�1� w�=2, Sw is negative dur-
ing RD and MD and Sw ! 1when a! 1, so in the future
although the GSL can be protected, the entropy bound will
be violated. If 3w� 3< n<�3�1� w�=2, Sw is nega-
tive. Thus, for the phantom with constant equation of state,
it seems impossible to get a viable thermodynamics. The
requirements of the positivity of DE entropy, the entropy
bound, and the GSL cannot be met simultaneously. In [8],
the authors used the future event horizon to study the
phantom thermodynamics and found that the GSL could
be respected if the phantom entropy is negative. The prob-
lem with the future event horizon is that for the Universe
with DE with equation of state w � �1, the thermody-
namical description breaks down on the event horizon [9].

Furthermore, the definitions of the event horizon tempera-
ture and entropy could be less certain than a guess. Even if
we use the similar temperature and entropy definitions of
the apparent horizon for the future event horizon, the first
law of the thermodynamics is not satisfied [9].

In the above discussion we have concentrated on DE
with a constant equation of state. To study the thermody-
namics of a dynamic DE, we will use the generalized
Chaplygin gas (GCG) [17] as an example. When the
Universe is dominated by the GCG, the entropies of the
apparent horizon and the radiation read [10]

 SA � SA0��1
c ; (7)

 Sr � Sr0

�
a
a0

�
�3

��3=2
c ; (8)

where �c � ��wc0 � �1� wc0��a=a0�
�3�1����1=�1���.

The entropy for the GCG can be obtained by solving
Eq. (1), which can be expressed as

 

Sc
Sr0

Tc0

Tr0
�

8>><
>>:

9
4�n�3� �1� wc0�

1=�1�����5=2
r0 xn�3; RD;

Sc1 �
9

8�n�3=2� �1� wc0�
�1=2�1�����1

r0 x
n�3=2; a a0;

Sc2 �
9

4�n�3�3�� �1� wc0���wc0�
�1�1=2�1�����1

r0 x
n�3�1���; a	 a0;

(9)

where Sc1 and Sc2 are integration constants. To have Sc �
0, the parameter n must satisfy the condition �3< n<
3�1� ��. Numerical results show that this condition is not
enough. For example, if we choose wc0 � �0:88 and � �
1:57, which are the best fitting values from observations

[17], we find that Sw is negative after MD when n � 2. At
late times, a! 1 and Sc ! Sc2. For positive entropy, Sc
will be greater than Sr at late times since Sr ! 0. The
range of n to keep Sc positive can be more confined by
numerical calculation. Choosing appropriate n to ensure Sc
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FIG. 1 (color online). The evolution of Sw for w � �0:9 and
Sr. The dotted line is for �Sw=Sr0� 
 �Tw0 
 10�16=Tr0� with
n � �5:0, the dash-dotted line is for �Sw=Sr0� 
 �Tw0 

10�8=Tr0� with n � �3:5, the dashed line is for Sr=Sr0, and
the solid line is for the apparent horizon entropy SA=Sr0.
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to be positive, we have shown the numerical results in
Fig. 2 on the evolution of entropies of GCG, radiation,
and the apparent horizon. When n < 0, Tc increases with
the expansion of the Universe and the numerical results
show that Sc can be less than Sr during the RD and MD eras
if Tc0=Tr0 is large enough. If n > 0, then Tc decreases as
the Universe expands and Sc increases faster than Sr during
the RD and MD eras. When n � 1, the GCG and the
radiation temperatures evolve in the same way and Sc
can be larger than Sr during MD as shown in Fig. 2. It is
clear from Fig. 2 that compared to the apparent horizon
entropy, Sr and Sc are negligible, thus the entropy bound
can be protected for the GCG case. In addition, the GSL
can also be saved in the GCG case, since the total entropy
evolves basically in the same way as the entropy of the
apparent horizon. Though in the GCG dominated period Sr
decreases as the Universe expands, owing to its negligible
value compared to the apparent horizon entropy, its de-
crease can be overcome by the increase of the apparent
horizon.

In summary, in this work we have investigated the
thermodynamical properties of DE. In calculating the DE
entropy we have considered the volume of the Universe
enveloped by the apparent horizon and assumed that the
physical volume and the temperature are related. The

apparent horizon is a good boundary for studying cosmol-
ogy, since on the apparent horizon there is the well-known
correspondence between the first law of thermodynamics
and the Einstein equation [16]. Furthermore, it has been
found that the apparent horizon is good in keeping thermo-
dynamical laws [9]. Assuming that the temperature of the
DE has the form T � a�n, we have derived the evolution of
the DE entropy. For DE with constant equation of state
w>�1, we have found the appropriate range of n for
keeping the DE entropy positive, which is the requirement
of the statistical understanding of the concept of entropy. In
this range of n, the entropy bound and the GSL can also be
protected. The negative point is that the allowed range of n
for giving a physically acceptable DE entropy leads the DE
temperature to increase as the Universe expands, which is
different from the behavior of the thermal temperature that
decreases with the expansion of the Universe. This conflict
could be overlooked since the DE temperature and the
thermal temperature may have different dispersion rela-
tions [6,10], and it is not necessary that these two different
temperatures behave accordingly. In the era of phantom
domination, the GSL requires that the phantom entropy
increases as the Universe expands, and the phantom tem-
perature T satisfies the condition j1� 3wjTH=2> T > 0.
Since the horizon entropy decreases to zero as the Universe
expands, the holographic entropy bound will be violated if
the phantom entropy is positive. For the phantom with
constant equation of state w<�1, we found that there is
no common range of n so that the positivity of the entropy,
the entropy bound, and the GSL can all be satisfied. The
physical requirement on the DE entropy does not favor the
phantom with constant equation of state. We have also
extended our investigation to the dynamical DE by using
the GCG as an example. We have found that by appropri-
ately choosing parameters, we can have positive DE en-
tropy, and meanwhile we can protect the holographic
entropy bound and the GSL. Within the allowed parameter
range for physically acceptable DE entropy, the DE tem-
perature can decrease and it can even scale in the same way
as the radiation temperature does as the Universe expands.

Y. G. G. is supported by Baylor University, NNSFC
under Grants No. 10447008 and No. 10605042, CMEC
under Grant No. KJ060502, and SRF for ROCS, State
Education Ministry. The work of B. W. was partially sup-
ported by NNSF of China, the Ministry of Education of
China, and the Shanghai Education Commission.

[1] T. Padmanabhan, Phys. Rep. 380, 235 (2003); P. J. E.
Peebles and B. Ratra, Rev. Mod. Phys. 75, 559 (2003);
V. Sahni, Lect. Notes Phys. 653, 141 (2004); E. J.

Copeland, M. Sami, and S. Tsujikawa, Int. J. Mod.
Phys. D 15, 1753 (2006).

[2] M. D. Pollock and T. P. Singh, Classical Quantum Gravity

−12 −10 −8 −6 −4 −2 0 2 4 6 8
−120

−100

−80

−60

−40

−20

0

ln(a/a
0
)

ln
 (

S
/S

A
0)

n=−2
n=−1
n=1
n=2
S

r
/S

r0
S

A
/S

A0

FIG. 2 (color online). The evolutions of Sc, Sr, and SA with
wc0 � �0:88 and � � 1:57. The dotted lines, for �Sc=SA0� 

�Tc0=Tr0�, from top to down are n � �2, n � �1, n � 1, and
n � 2. (Note that Sc is negative after MD when n � 2.) The
dashed line is for Sr=SA0, and the solid line is for SA=SA0.

YUNGUI GONG, BIN WANG, AND ANZHONG WANG PHYSICAL REVIEW D 75, 123516 (2007)

123516-4



6, 901 (1989); A. V. Frolov and L. Kofman, J. Cosmol.
Astropart. Phys. 05 (2003) 009.

[3] I. Brevik, S Nojiri, S. D. Odintsov, and L. Vanzo, Phys.
Rev. D 70, 043520 (2004); S. Nojiri and S. D. Odintsov,
Phys. Rev. D 70, 103522 (2004); B. Guberina, R. Horvat,
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