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A new model is studied which describes the quantum behavior of transitions through an isotropic
quantum cosmological bounce in loop quantum cosmology sourced by a free and massless scalar field. As
an exactly solvable model even at the quantum level, it illustrates properties of dynamical coherent states
and provides the basis for a systematic perturbation theory of loop quantum gravity. The detailed analysis
is remarkably different from what is known for harmonic oscillator coherent states. Results are evaluated
with regard to their implications in cosmology, including a demonstration that in general quantum
fluctuations before and after the bounce are unrelated. Thus, even within this solvable model the condition
of classicality at late times does not imply classicality at early times before the bounce without further
assumptions. Nevertheless, the quantum state does evolve deterministically through the bounce.
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I. INTRODUCTION

An understanding of high curvature regimes of a uni-
verse is likely to require a quantization of gravity which is
nonperturbative and background independent. Background
independence means that one does not base the theory on
preexisting causal or geometrical structures because they
are to be provided by the quantized gravitational field
itself. Not surprisingly, many difficulties in this new setting
have to be overcome even when the aim is ‘‘only’’ to verify
that a proposed theory will have the correct semiclassical
limit. One first has to determine appropriate semiclassical
states of the interacting quantum theory of gravity. Thus,
already in the definition of states in which the classical
limit is to be probed one has to face quantum dynamics.
Unlike perturbative quantizations on a background, no
exactly known free vacuum state is available which one
could use to determine properties of an interacting vacuum
state perturbatively. Vacuum or coherent states of general
interacting theories then have to be constructed anew,
which can show properties quite different from the well-
known (Gaussian) states of free theories or the harmonic
oscillator. Although it is often assumed, Gaussian states
may not capture the right semiclassical properties in any
given system. They may be assumed as ‘‘prepared’’ initial
states, but crucial deviations from Gaussian form can occur
especially in systems with long evolution times, for which
cosmology is the example par excellence.

Quantum gravity is not only an interacting quantum field
theory whose interacting semiclassical states are to be
determined, it also, in general, has no close relation to a
free quantum field theory as it is often exploited in effec-
tive field theories of particle physics. For correct predic-
tions it is, first of all, necessary to determine precise states
which capture semiclassical properties. In this paper, a

model, introduced in [1], is studied which is exactly solv-
able and includes characteristic effects of loop quantum
gravity, one candidate for a background independent quan-
tization [2–4]. The model itself is based on loop quantum
cosmology [5]. With new techniques [6,7], coherent state
properties can be determined explicitly. In this sense, the
model is analogous to the harmonic oscillator in quantum
mechanics and it has indeed the same solvability properties
as explained in more detail below. This will allow us to
perform a complete dynamical coherent state analysis,
demonstrating how properties can differ considerably for
distinct systems even when one considers only solvable
models. The model we study is not only illuminating in this
regard, but it also is of direct physical interest since it
describes nonsingular cosmological bounce models.

Bouncing solutions of cosmological models have re-
cently received much attention. Although they are gener-
ally very special, they can indicate how transitions through
the classical big bang singularity may be possible. Many
different examples exist by now, which have most system-
atically been developed in loop quantum cosmology. Most
arguments are based on ‘‘effective’’ equations which im-
port some quantum effects into classical equations, and
which sometimes allow exact analytical solutions (such as
in [1,8,9]) or can at least be studied numerically; see e.g.
[10–14]. Also in this context the above question of what a
semiclassical state of an interacting quantum theory looks
like is relevant, although it is often overlooked. It enters in
the derivation or justification of those effective equations
which are supposed to capture properties of semiclassical
states. If the correct type of semiclassical states is not
known, one cannot be sure to have included all relevant
corrections to the classical equations in the right way. As a
by-product, our solvable model presents the first case of a
complete set of effective equations in quantum cosmology.

Our model, used to illustrate semiclassical state issues,
is solvable exactly at the quantum level [1]. This is much*Electronic address: bojowald@gravity.psu.edu
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stronger than having analytical solutions of effective equa-
tions since full states, including not only expectation values
but also fluctuations and higher moments, are under full
control. In this sense, the system is comparable to a har-
monic oscillator. A complete analysis becomes possible,
including e.g. the evolution of coherent states and their
long-term dynamical properties. This is especially relevant
in the light of recent numerical analyses of related models
where initial Gaussian states without squeezing were
evolved [15]. We will see that the coherent state structure
of the model is much richer than that of unsqueezed
Gaussian states, with squeezing influencing the general
behavior significantly. This is an instructive example for
the importance of a dedicated coherent state analysis,
rather than taking over harmonic oscillator properties to a
new model.

The model is paradigmatic for background independent
quantum gravity obtained from a loop quantization where
the usual free field theory basis is not available. Since the
bounce model is exactly solvable, it can provide a pertur-
bative basis for quantum gravity including all possible
interactions and degrees of freedom. Thus, the form of
coherent states determined here is relevant not only for
the model itself but for quantum gravity in general. At this
stage, perturbative inhomogeneities are not included ex-
plicitly and thus the question of how they evolve through a
bounce is not addressed in this paper. We rather show and
emphasize that even the unperturbed isotropic situation
poses several important questions for how quantum fluc-
tuations of the isotropic mode evolve through a bounce. We
follow a general method, summarized in Sec. II. The
solvable models relevant for cosmology are introduced
and analyzed in Sec. III, and discussed more broadly in
Sec. IV.

II. THE METHOD

In what follows, we will not use a fixed, or any, repre-
sentation of our quantum system on a specific Hilbert
space. Rather, we take an algebraic viewpoint and treat
the algebra of basic operators, such as �q̂; p̂� � i@ in quan-
tum mechanics, together with the Hamiltonian Ĥ as pri-
mary. The quantities we are most interested in are
expectation values hq̂i � hq̂i, hp̂i � hp̂i in a given state
 , which we often drop as a label if no confusion can arise,

and fluctuations and correlations �q �
�����������������������
hq̂2i � hq̂i2

p
,

�p �
������������������������
hp̂2i � hp̂i2

p
and Cqp �

1
2 hq̂ p̂�p̂ q̂i � hq̂ihp̂i.

Higher moments, involving higher than quadratic powers
of basic operators, could be included by the same means
although we will not need to do so here. Nevertheless, it is
important to note that, would we determine all the mo-
ments, we could reconstruct the state  provided that the
moments satisfy appropriate conditions. The most basic
such condition is Heisenberg’s uncertainty relation
��q�2��p�2 � C2

qp � @
2=4 (also called Schrödinger-

Robertson uncertainty relation in this form) which will
be used frequently below. As in [6], we call all fluctuations,
correlations and higher moments quantum variables since,
unlike expectation values, they describe typical quantum
properties.

Determining the evolution of moments is thus sufficient
to find properties of states. One can sidestep the explicit
construction of states in a representation by deriving and
solving equations of motion for moments directly, such as
dhp̂i=dt � h�p̂; Ĥ�i=i@ and d��p�2=dt � h�p̂2; Ĥ�i=i@�
2hp̂idhp̂i=dt. In general, this set of equations is highly
coupled because, unless �p̂; Ĥ� is linear in basic operators,
h�p̂; Ĥ�i is a function of expectation values and quantum
variables. The quantum variables, in turn, will satisfy
equations of motion involving moments of higher degree.
(See [6,16] for examples.) This coupling describes the
backreaction of spreading and deformations on the peak
trajectory of a state, which is a crucial quantum effect. It is,
for instance, the reason for the usual nonlocality in time of
effective actions.

This is the place where solvability properties of a model
become important. If Ĥ is quadratic, for instance, �p̂; Ĥ�
and �q̂; Ĥ� will be linear in q̂ and p̂ and hq̂i and hp̂i will not
couple to quantum variables. As is well-known for the
harmonic oscillator, the spreading of states then does not
influence the peak motion at all and no nontrivial quantum
corrections arise in effective equations. More generally,
this happens whenever basic operators taken together
with the Hamiltonian form a linear commutator algebra.
Our solvable bounce model is precisely of this type.

It is then feasible to solve equations of motion for hq̂i,
hp̂i and any desired quantum variables directly without
taking the detour of first computing a state in a chosen
representation. Many representation dependent difficulties
can be avoided, such as explicit formulas for inner products
and normalizations [17]. Instead, properties of the Hilbert
space structure, such as the self-adjointness of operators,
can be implemented straightforwardly through reality con-
ditions for the solutions of hq̂i, hp̂i and quantum variables.

III. A SOLVABLE BOUNCE MODEL AND ITS
PROPERTIES

A free isotropic scalar field� couples to gravity through
the Friedmann equation

 

3

8�G
c2 ����

p
p
�

1

2
p�3=2p2

�: (1)

We use canonical variables, explained in more detail in
[18], whose relation to the scale factor a, the scalar � and
their derivatives in proper time � is c � da=d� (extrinsic
curvature), p3=2 � a3 (volume) and p� � p3=2d�=d�.
Geometrically, p is the isotropic component of a densitized
triad and can be positive or negative for the two triad
representations. In what follows, we assume positive p
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without loss of generality and drop absolute values. More-
over, for later convenience we rescale � by

���
2
p

and drop
factors of 8�G=3 such that fc; pg � 1. Solving (1) for p�,
which is a constant of motion, yields p� / 	cp, allowing
four possible choices for the signs: c can be positive
(expanding universe) or negative (contracting universe),
and for each case p� can take any sign (such that � runs
opposite or along coordinate time �). We can interpretH �
cp as the Hamiltonian which generates the flow in the
variable �, playing the role of internal time. The depar-
ametrized Hamiltonian constraint then reads p� �H � 0.

This Hamiltonian is quadratic, although not of the har-
monic oscillator form, and thus solvable as explained
above. Unlike for the harmonic oscillator, the Hamil-
tonian does not have a definite sign. One can easily under-
stand the behavior of solutions, and of the energy spectrum
of the quantum theory, by performing a canonical trans-
formation to new canonical variables ��; q� in which c �
1��
2
p ��� q�, p � 1��

2
p ��� q�. The Hamiltonian then be-

comes the upside-down harmonic oscillator H � 1
2�

2 �
1
2 q

2 which obviously allows positive as well as negative
energy solutions. Classical solutions can easily be deter-
mined as ���� � A cosh�� B sinh�, q��� �
B cosh�� A sinh�. In terms of the integration constants
A and B, the Hamiltonian is H � 1

2 �A
2 � B2�. Cor-

responding solutions in the original variables are c��� �
1��
2
p �A� B�e�, p��� � 1��

2
p �A� B�e��.

Since we assume positive p, solutions as functions of q
can only be incoming from the left of the upside-down
potential, where � is positive and q negative. This assump-
tion implies A� B> 0. The sign of H then depends on
whether we describe an expanding or contracting universe,
c > 0 implying H � 1

2 �A� B��A� B�> 0 while c < 0
implies H < 0. In the first case, p� < 0 and � runs oppo-
site to proper time, while it runs along proper time for a
collapsing universe. The opposite case would be realized
had we chosen the opposite sign for H. The behavior of
solutions is illustrated in Fig. 1.

This Hamiltonian is directly quantized, following the
rules of quantum mechanics, in the Wheeler-DeWitt ap-
proach [19,20]. It is thus helpful to recall the properties of
the resulting quantum system as derived in [1] using the
method summarized in Sec. II. The quadratic Hamil-
tonian implies that the system is solvable, which can be
exploited to determine explicit solutions hĉi��� � c1e�

and hp̂i��� � c2e
�� for expectation values of the basic

operators ĉ and p̂, in full agreement with the classical
solutions. Although the functional expressions for expec-
tation values agree with classical solutions, a difference to
the classical case is that states may be superpositions of
positive and negative eigenfunctions of Ĥ even though the
expectation value of p̂ is either contracting or expanding
[21]. We will later discuss the effect of possible admixtures
of negative to positive energy states in solutions.

Moreover, fluctuations can be solved explicitly by the
same methods. They are ��c����2 � c3e

2�, ��p����2 �
c5e�2� and Cqp��� � c4 for the correlation. While fluc-
tuations are not constant, they satisfy ��c�=hĉi � const
and ��p�=hp̂i � const. Uncertainty relations require
c3c5 � c

2
4 �

1
4 @

2. Typically, �c and �p are thus of the
order

���
@
p

, although the precise value requires more specific
information about the state. For dimensional reasons, this
must involve the only available scale H such as in the form
�p �

�������
@H
p

and �c �
����������
@=H

p
. In contrast to the harmonic

oscillator where the ground state provides specific values
for fluctuations, no distinguished state is available for the
Hamiltonian encountered here. Later on we will see that
the loop quantization does provide more information
which one can use to estimate fluctuations. Still, the infor-
mation will not be as complete as it is for the harmonic
oscillator ground state.

The key feature of a loop quantization is that its repre-
sentation does not provide a c-operator but only operators
for almost periodic functions of c [22] (i.e. countable
superpositions of exp�i�c� with � 2 R). This is sufficient
for constructing a Hamiltonian operator which is well-
defined and agrees with the classical one, cp, in low
curvature regimes where c
 1. A loop quantization can
thus be understood as implying that c in the classical
Hamiltonian is replaced by sinc when it is quantized.
Instead of sinc one could, of course, choose any other
almost periodic function which reduces to c when c
 1.
The freedom can be restricted by relating the model to
quantizations of the Hamiltonian constraint as it can be

p>0

p>0

p<0

p<0

expanding

contracting

FIG. 1. Illustration of positive and negative energy solutions in
an upside-down harmonic oscillator potential V�q� � � 1

2 q
2.

The sign of the corresponding triad variable p is indicated.
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defined in the full theory [23]. This distinguishes the use of
sinc as it follows from the original derivations in [18],
although other choices remain [24]. In any case, the result-
ing Hamiltonian is no longer quadratic in the variables
�c; p� and thus appears quite complicated. However, if

we introduce the operators p̂ and Ĵ :� p̂ dexp�ic� , the
linear Hamiltonian operator Ĥ � � 1

2 i�Ĵ� Ĵ
y� reduces

to the classical Hamiltonian when curvature c is small,
and it depends on c only through exp�ic� which is required
by loop quantum cosmology. It can be viewed as a quan-
tization of p sinc in a specific factor ordering.

A linear Hamiltonian usually simplifies the dynamics
very much, but only if the basic variables in which it is
linear form a closed algebra (see [6] for a discussion in the
general context of effective equations). Since we trans-
formed from canonical variables �c; p� to noncanonical
ones �p; J�, the system is not guaranteed to simplify even
with a linear Ĥ. Fortunately, as one can easily check the
variables do satisfy the closed sl�2;R� algebra

 �p̂; Ĵ� � @Ĵ; �p̂; Ĵy� � �@Ĵy;

�Ĵ; Ĵy� � �2@p̂� @
2:

(2)

which includes the Hamiltonian as a linear combination of
Ĵ and Ĵy [25]. This is the reason for the exact solvability of
the system which we will use below. Representations of
sl�2;R� do not allow one to have a purely positive spectrum
for i�Ĵ� Ĵy�. Thus, any representation space contains
positive and negative energy solutions and we will have
to discuss appropriate restrictions on states to rule out
superpositions of negative energy contributions to positive
energy states if superpositions of expanding and collapsing
universe branches are not to be allowed.

Before analyzing equations of motion we note that the
system can be generalized by performing a canonical trans-
formation such as � :� pkc, v :� p1�k=�1� k� and using
the new canonical variables ��; v� instead of �c; p� in the
definition of p̂ and Ĵ. Properties of the system to be
discussed below are not affected by this reinterpretation
of the variables. Such transformations can be motivated by
taking into account features of nearly isotropic but inho-
mogeneous lattice states of loop quantum gravity and
possible dynamical refinements of the underlying lattice
[26,27]. The special value k � 0 then corresponds to a
fixed lattice as realized in [18,22], while k � �1=2, intro-
duced independently in [27], corresponds to a refinement
such that the number of lattice vertices increases linearly as
a function of volume.

A. Equations of motion

As discussed before, the system can much more easily
be understood if we do not first solve for wave functions,
subject to i@ _ � Ĥ , and then compute expectation values
and fluctuations from solutions. Instead, using a more

algebraic point of view we derive equations of motion
directly for expectation values, fluctuations and higher
moments and solve them [6,16].

For expectation values, now simply denoted as p :� hp̂i,
J :� hĴi and �J :� hĴyi in an arbitrary normalized state,
equations of motion follow immediately by taking expec-
tation values of Heisenberg equations of motion, or by
using the Schrödinger equation for the state appearing in
the expectation value,

 _p �
1

i@
h�p̂; Ĥ�i � �

1

2
�J� �J�; (3)

 

_J �
1

i@
h�Ĵ; Ĥ�i � �p�

1

2
@ � _�J: (4)

That these equations form a closed system is a conse-
quence of the linear nature of the variables and
Hamiltonian. In general, the evolution of expectation val-
ues would also depend on all higher moments of the state:
During evolution the state spreads and deforms, which then
backreacts on the peak position of a wave packet. This
backreaction is the dynamical essence of a quantum sys-
tem, captured in effective equations.

In fact, a state is characterized not just by its expectation
values of basic operators but also by the infinitely many
quantum variables which specify fluctuations and higher
moments of a state. Fluctuations (and correlations) can be
defined, as usually, by

 Gpp :� hp̂2i � p2; (5)

 GJJ :� hĴ2i � J2; (6)

 G �J �J :� hĴy2i � �J2; (7)

 GpJ :� 1
2hp̂ Ĵ�Ĵ p̂i � pJ; (8)

 Gp �J :� 1
2hp̂Ĵ

y � Ĵyp̂i � p �J; (9)

 GJ �J :� 1
2hĴĴ

y � ĴyĴi � jJj2: (10)

Since we use partially complex variables there are initially
more than three independent fluctuations. However, reality
conditions to be imposed later at the quantum level will
lead to additional relations and reduce the number of
independent degrees of freedom to the correct value.
Higher moments are defined analogously, using totally
symmetric orderings in expressions where both p̂ and Ĵ
are involved.

Fluctuations are not expectation values of a single op-
erator and their equations of motion do not follow directly
as before. But they can easily be derived using linearity and
the Leibniz rule. We have, e.g.,

 

_Gpp �
1

i@
h�p̂2; Ĥ�i � 2p _p (11)
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 � �1
2hp̂ Ĵ�Ĵ p̂�p̂Ĵ

y � Ĵyp̂i � p�J� �J� (12)

 � �GpJ �Gp �J (13)

and similarly

 

_G JJ � �2GpJ; _G �J �J � �2Gp �J; (14)

 

_GpJ � �1
2G

JJ � 1
2G

J �J �Gpp; (15)

 

_Gp �J � �1
2G

�J �J � 1
2G

J �J �Gpp; (16)

 

_G J �J � �GpJ �Gp �J: (17)

Higher moments also are subject to equations of motion
which follow analogously.

For our solvable system, all these equations of motion
are linear in the quantum variables and only finitely many
ones are coupled to each other. They can thus be solved
straightforwardly, such as

 p��� � 1
2�Ae

�� � Be�� � 1
2@; (18)

 J��� � 1
2�Ae

�� � Be�� � iH (19)

(using � 1
2 i�J�

�J� � H :� hĤi) for the expectation val-
ues. To decouple the six equations for fluctuations, we first
note that _GJ �J � _Gpp and 1

2 �
_GJJ � _G �J �J� � _Gpp implies

 GJ �J �Gpp � c1; (20)

 

1
2G

JJ � 1
2G

�J �J �Gpp � c2; (21)

with constants c1 and c2. Moreover, only two sets of two
coupled equations, one for Gpp and GpJ �Gp �J,
 

_Gpp � �GpJ �Gp �J;

d

dt
�GpJ �Gp �J� � �c1 � c2 � 4Gpp

and one for GpJ �Gp �J and GJJ �G �J �J,
 

d

dt
�GpJ �Gp �J� � �

1

2
�GJJ �G �J �J�;

d

dt
�GJJ �G �J �J� � �2�GpJ �Gp �J�

remain. They yield

 Gpp��� � 1
2�c3e

�2� � c4e
2�� � 1

4�c1 � c2�; (22)

 GJJ��� � 1
2�c3e

�2� � c4e
2�� � 1

4�3c2 � c1�; (23)

 

� i�c5e
� � c6e

���; (24)

 G �J �J � 1
2�c3e�2� � c4e2�� � 1

4�3c2 � c1�; (25)

 

� i�c5e
� � c6e

���; (26)

 GpJ��� � 1
2�c3e�2� � c4e2�� � i

2�c5e� � c6e���; (27)

 Gp �J��� � 1
2�c3e�2� � c4e2�� � i

2�c5e� � c6e���; (28)

 GJ �J��� � 1
2�c3e

�2� � c4e
2�� � 1

4�3c1 � c2�; (29)

with further constants of integration.

B. Physical inner product properties

Although we are not dealing explicitly with states, prop-
erties of the Hilbert space must be reflected in the structure
of our quantum variables. The equations of motion, for
instance, are only valid if we understand the quantum
variables to be defined with normalized states since hji �
1 has been used, for instance when taking an expectation
value of �Ĵ; Ĵy� � �2@p̂� @

2 to compute _J in (4). The
system is, initially, defined through the Friedmann equa-
tion as a constraint on the space where both the metric and
scalar field degrees of freedom are quantized. After quan-
tizing this equation, it is reinterpreted as describing rela-
tional motion in �. Loop quantum cosmology provides the
kinematical inner product on the original Hilbert space
where the constraint operator is defined, but not immedi-
ately one on the solution space. Such a physical inner
product can be difficult to determine explicitly in a repre-
sentation of states. It can be derived, for instance, by
requiring that basic operators are self-adjoint if they cor-
respond to real classical variables. This then directly im-
plies that all quantum variables defined from self-adjoint
operators must be real, which in our procedure is the
analog of using the physical inner product in deriving
expectation values through states. Since such reality con-
ditions can be imposed directly for quantum variables,
implementing physical inner product properties at this
level can be much more straightforward than at the level
of states. One reason is the representation independence of
the formalism which allows one to avoid looking for a
representation of states in which a computation of the
physical inner product may be feasible. This is especially
useful for quantum gravity where the general physical
inner product problem is one of the major issues.

1. Reality conditions

In our case, we use one complex classical variable J �
peic, and thus cannot refer to a self-adjoint quantization of
c directly since no such operator exists at all in a loop
quantization. Reality conditions implementing the physical
inner product must be formulated in a more complicated
way: In addition to the simple adjointness relation p̂y � p̂
quantizing the real variable p, we have a nonlinear relation

 ĴĴy � p̂2 (30)
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which follows from the fact that eic must be quantized to a
unitary operator for c to be real. (However, ĴyĴ � p̂2 in the

ordering chosen for the definition of Ĵ � p̂ceic .)
Taking expectation values of this equation, we obtain a

relation between quantum variables and expectation val-
ues: using the commutation relations (2) in

 GJ �J � 1
2hĴĴ

y � ĴyĴi � jJj2 � hĴĴyi � @p� 1
2@

2 � jJj2;

(31)

we have

 hĴĴyi � GJ �J � @p� 1
2@

2 � jJj2 � hp̂2i � Gpp � p2

(32)

and thus

 jJj2 �
�
p� 1

2@

�
2
� Gpp �GJ �J � 1

4@
2 � 1

4@
2 � c1: (33)

This condition mixes expectation values and quantum
variables, but depends on fluctuations only through the
constant c1. An initial state thus determines how the reality
conditions between expectation values are realized. The
relation (33) is then preserved in time since GJ �J �Gpp �
c1 is constant as derived in (20). If fluctuations are small, as
in semiclassical states, we have jJj2 � p2 �O�@� which,
as it should, is the classical relation satisfied up to quantum
corrections.

2. Sign of the energy

Although not directly related to the physical inner prod-
uct, we include in this section a discussion of the require-
ment of a definite sign for the Hamiltonian in superposed
states. One may or may not wish to allow superpositions of
expanding and contracting universe branches in quantum
cosmology, but arguments using the physical inner product
in analogy to the Klein–Gordon equation suggest that only
energy eigenstates of a definite sign should be allowed in
superpositions [15]. For a linear system, we did not ex-
plicitly take an absolute value of the Hamiltonian operator,
which implies that in general we are not guaranteed that
only positive energy solutions enter states corresponding to
our solutions. In a language more suitable to quantum
cosmology, ‘‘positive energy’’ means that at any fixed
time � we should not allow superpositions of expanding
and contracting branches of a universe (while at different
times the universe certainly does not need to be always
expanding or always contracting). To rule out significant
contributions from a superposed branch we have to pose
further conditions for our quantum variables ensuring that
they arise from expectation values in states which are
superpositions of only positive energy eigenstates (or
only negative energy eigenstates). In general, expressing
the positivity of operators through expectation values can
be complicated.

But for our purposes it is, fortunately, possible to pro-
ceed without technical complications. We will be inter-
ested in states which at some point (e.g. at late times) are
semiclassical. This restricts the values that fluctuations can
take compared to the magnitude of expectation values. It
refers, in particular, to p� as one of the matter variables.
We require that its fluctuation is small compared to its
expectation value which, through the dynamical equation,
implies the relation

 GHH :� hĤ2i � hĤi2 
 hĤi2: (34)

If this is realized and H � hĤi> 0, a state in the
H-representation, i.e. written as a superposition of
Ĥ-eigenstates, is sharply peaked at a large positive value
of H. Thus, there are no significant contributions from
negative energy states. (We will return to this issue in
Sec. III D 3.) Since H and GHH are constant during evolu-
tion, imposing (34) at one initial time ensures that it is
satisfied at all times.

We can express this condition in terms of the integration
constants derived before. From

 GHH � hĤ2i �H2 (35)

 

� �1
4hĴ

2 � ĴĴy � ĴyĴ� Ĵy2i � 1
4�J

2 � 2jJj2 � �J2�

� �1
4�G

JJ �G �J �J� � 1
2G

J �J � 1
2�c1 � c2�; (36)

we see that c1 � c2 must be small compared to H2. (But it
cannot be zero since Ĥ has continuous spectrum.) This is
the primary condition we have to impose not only for
semiclassicality but also to ensure that a state is dominated
by contributions of definite energy sign. Later, we will add
further semiclassicality conditions to restrict also the fluc-
tuations of other variables such as p.

C. Bouncing solutions

Our general solution (18) for p allows bouncing [28]
solutions for AB> 0 as well as ‘‘singular’’ solutions for
AB< 0 which reach p � 0 in finite time �. (Although
isotropic loop quantum cosmology is nonsingular for any
solution [29,30], additional correction terms become mani-
fest at small volume which are not included here in the
solvable model. The model itself thus breaks down before
p � 0 is reached. The singularity in our equations only
indicates that a deep quantum geometry regime is reached,
just as one commonly expects the general singularity prob-
lem to be resolved. Nevertheless, we keep solutions with
AB< 0 for now since they will be ruled out even within
our model shortly.) The internal time variable � has just
been chosen for convenience of the mathematical descrip-
tion, rather than referring to physical observers. For a
solution reaching p � 0 to be considered singular one
must also verify that proper time remains finite. We thus
need to interpret our relational solution (p and J as func-

MARTIN BOJOWALD PHYSICAL REVIEW D 75, 123512 (2007)

123512-6



tions of �) as a space-time geometry subject to modified
dynamics as it arises from the loop quantization.

We do not have any manifold picture, except for the
homogeneous spatial manifold we started with to reduce
the classical system. What is missing is a manifold for
the time extension, which is indispensable if we want to
compute a proper time interval. A time direction and
coordinate can be introduced by reverting back to the
Friedmann formulation of constrained dynamics. We in-
terpret the effective Hamiltonian density p�3=2hĤi2 �
p�3=2�ImJ�2 �

����
p
p

sin2c together with the matter contribu-
tion 1

2p
�3=2p2

� as an effective constraint [31]

 C � �
����
p
p

sin2c�
4�G

3
p�3=2p2

�

which generates coordinate evolution (in �) in a gauge
specified by the lapse function N, dp=d� � fp;NCg. For
proper time, � � �, we simply have N � 1 and thus

 dp=d� � fp;Cg �
����
p
p

sin�2c�:

From the equation

 sin�2c���� �
1�����������
p���

p dp���
d�

�
1�����������
p���

p dp
d�

d�
d�

(37)

and our solutions (18) and (19) we can then compute ����
by integrating

 

d�
d�
�

�����������
p���

q 2 sin�c���� cos�c����
dp=d�

�
�2

���
2
p
H

�Ae�� � Be� � @�3=2
(38)

(using J=p � cosc� i sinc). We can always assume that
either A � B> 0 (for a bouncing solution) or A � �B>
0 (for a nonbouncing one) since we only need to shift the
origin of � if jAj � jBj. This leaves us with two cases,

 ���� � �
A3=2

H

Z �
cosh3=2�z�dz (39)

for A � B and

 ���� � �
A3=2

H

Z �
sinh3=2�z�dz (40)

for A � �B. The integrals can be determined in terms of
elliptic functions, but we are only interested in the fact that
���� is finite at any finite value of � which can be seen
directly from the integrals. Thus, proper time remains finite
when p � 0 is reached.

Singular solutions could thus be possible. But not all
these solutions satisfy the reality condition (33) which still
has to be imposed. From its general form we obtain

 jJj2 � �p� 1
2@�

2 � �AB�H2 � 1
4@

2 � c1

and thus

 AB � H2 � c1 �
1
4@

2: (41)

For macroscopic values of H and small (or positive) c1

from fluctuations, we only have bouncing solutions with
AB> 0. Singular solutions can only be obtained for large
and negative c1 which is never realized for states which are
semiclassical at one time. Note, however, that c1 can be
large even if our condition GHH 
 H2 which is necessary
for solutions to respect positivity is realized since the latter
condition only constrains c1 � c2. Our discussion thus
shows that it is crucial to know and use the reality con-
ditions, or ultimately the physical inner product, to draw
conclusions about bouncing solutions versus nonbouncing
ones.

D. Uncertainty relations

Fluctuations cannot take arbitrary values but are re-
stricted by uncertainty relations. For each pair of self-
adjoint basic operators we have one uncertainty relation,
which in our case implies three relations since Ĵ� Ĵy and
i�Ĵ� Ĵy� are independent in addition to p̂. For each pair
�Â; B̂� of self-adjoint operators we have the general form

 GAAGBB � �GAB�2 � 1
4h�i�Â; B̂�i

2 (42)

of uncertainty relations in terms of quantum variables
whenever Â and B̂ are self-adjoint. The derivation is stan-
dard and recalled briefly in Appendix A1 for completeness.

Specifically, we have three pairs �p̂; Ĵ� Ĵy�, �p̂; i�Ĵ�
Ĵy�� and �Ĵ� Ĵy; i�Ĵ� Ĵy�� of different self-adjoint basic
operators. We obtain three inequalities involving Gpp and
the fluctuations

 GJ� �J;J� �J :� h�Ĵ� Ĵy�2i � �J� �J�2

� GJJ � 2GJ �J �G �J �J � 4Gpp � 2�c1 � c2�;

(43)

 Gi�J� �J�;i�J� �J� :� �h�Ĵ� Ĵy�2i � �J� �J�2 � 4GHH

� 2�c1 � c2�; (44)

 Gp;J� �J :� 1
2hp̂�Ĵ� Ĵ

y� � �Ĵ� Ĵy�p̂i � p�J� �J�

� GpJ �Gp �J; (45)

 

Gp;i�J� �J� :� i
2hp̂�Ĵ� Ĵ

y� � �Ĵ� Ĵy�p̂i � ip�J� �J�

� i�GpJ �Gp �J�; (46)

 

GJ� �J;i�J� �J� :� i
2h�Ĵ� Ĵ

y��Ĵ� Ĵy� � �Ĵ� Ĵy��Ĵ� Ĵy�i

� i�J� �J��J� �J�

� i�GJJ �G �J �J�: (47)

Using the explicit solutions, they are
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GppGJ� �J;J� �J � �Gp;J� �J�2 � 4c3c4 �
1
4�c1 � c2�

2 � @
2H2; (48)

 

GppGi�J� �J�;i�J� �J� � �Gp;i�J� �J��2 � �c1 � c2��c3e�2� � c4e2�� � 1
2�c

2
2 � c

2
1� � c

2
5e

2� � 2c5c6 � c2
6e
�2�

� 1
4@

2�J� �J�2 � 1
4@

2�A2e�2� � 2AB� B2e2��; (49)

 GJ� �J;J� �JGi�J� �J�;i�J� �J� � �GJ� �J;i�J� �J��2 � 4�c1 � c2��c3e
�2� � c4e

2�� � 2�c2
2 � c

2
1� � 4c2

5e
2� � 8c5c6 � 4c2

6e
�2�

� @
2�2p� @�2 � @

2�A2e�2� � 2AB� B2e2��: (50)

These uncertainty relations are the equations which
determine properties of semiclassical, near coherent states.
We will later discuss these relations, in particular, their
saturation, in more detail and give a complete analysis of
coherent states of this system. Before doing so we can
already note here that there are quite unfamiliar properties
compared to what one knows from harmonic oscillator
coherent states. The first relation (48) shows that there is
a type of uncertainty relation between the constants of
integration c3 and c4, one of which determines the
p-fluctuation before and one after the bounce. Thus, if
the uncertainties are very small at very late times, say,
they must have been very large at early times. This relation
also indicates that equally distributed fluctuations are
typically of the size

�����
c3
p
�

�������
@H
p

and thus ��p�=p ����������
Gpp
p

=p�
����������
@=H

p
.

1. Saturation

Of particular interest is the case of coherent states which
saturate the uncertainty relations. For the harmonic oscil-
lator, such states are squeezed Gaussian states of the form
 �q� � exp��z1q2 � z2q� z3� with three complex num-
bers zi such that Rez1 > 0 (see Appendix A 2 for a listing
of fluctuations and correlations). While Rez3 is fixed by
normalization and Imz3 is only a phase factor, z1 � �1 �
i�1 and z2 � �2 � i�2 determine the peak and fluctua-
tions of the state. As is well-known, these states even
describe dynamical coherent states of the harmonic oscil-
lator, i.e. their form is preserved during evolution.
Saturation of the uncertainty relation leaves two free sec-
ond moments such as one spread parameter Gqq and
squeezing Gqp. Unsqueezed states imply �1 � 0 � Gqp

and only one free parameter specifies the width of the
Gaussian.

Our system is different and no operator for c (which
would be an analog of q̂) exists. We have to work with
exponentials instead, and thus even kinematical coherent
states change compared to the harmonic oscillator. For
dynamical coherent states the form must anyway be differ-
ent since we are not dealing with the harmonic oscillator
Hamiltonian. Thanks to the solvability of our model we are
still able to determine properties of dynamical coherent
states explicitly. This provides an instructive example of
how properties of coherent states, and physical implica-

tions, can change when a system is not closely related to a
harmonic oscillator.

We thus look at saturation of our uncertainty relations
(48)–(50), first removing the �-dependence. Subtracting
(50) divided by four from (49) yields

 c2
2 � c

2
1 � 4c5c6 � �@

2AB: (51)

The coefficients of e�2� and e2� in (49) then yield two
more independent relations

 �c1 � c2�c3 � c2
6 �

1
4@

2A2; (52)

 �c1 � c2�c4 � c2
5 �

1
4@

2B2 (53)

in addition to (48) which becomes

 4c3c4 �
1
4�c1 � c2�

2 � @
2H2: (54)

There are thus four equations for six variables, such that
two remain free as in the case of Gaussians. Note, however,
that the reality condition relates one of these, c1, to the
expectation values, or the constants A, B andH. Thus, only
one combination of the uncertainty parameters is free,
which we can take as c1 � c2 � 2��H�2, and saturated
states are more restricted than for the harmonic oscillator.
(This is a consequence of the nonlinear reality condition
which relates some fluctuations to expectation values.)

Without loss of generality we can assume A � B for
bounces or A � �B for nonbouncing solutions since it
simply amounts to choosing the origin of time � such
that the bounce (or the transition through p � 0) occurs
at � � 0. Subtracting (52) and (53) then gives

 �c1 � c2��c3 � c4� � c2
6 � c

2
5 (55)

which shows that p-fluctuations are the same before and
after the bounce, i.e. c3 � c4, if and only if also jc5j � jc6j
(recall that c1 � c2 � 2��H�2 cannot be zero). This case
will be discussed below.

Using A � 	B, we can combine (51)–(53) to obtain a
further A-independent relation

 �c1 � c2��c3 � c4� � �c5 	 c6�
2 	 1

2�c
2
2 � c

2
1� � 0: (56)

Solving for c3 � c4 and combining it with (55) gives

 c3 �
	c5 � c6

c1 � c2
c6 	

1

4
�c1 � c2�; (57)
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 c4 �
c5 	 c6

c1 � c2
c5 	

1

4
�c1 � c2� (58)

in terms of only c1, c2, c5 and c6. Using this in (54) and combining it with (51), we have

 @
2H2 �

1

4
�c1 � c2�

2 � 4c3c4 � 	4
�
c5 	 c6

c1 � c2

�
2
c5c6 	

c1 � c2

c1 � c2
�c5 	 c6�

2 �
1

4
�c1 � c2�

2

� 	

�
c5 	 c6

c1 � c2

�
2
�4c5c6 � c2

1 � c
2
2� �

1

4
�c1 � c2�

2 � @
2A2

�
c5 	 c6

c1 � c2

�
2
�

1

4
�c1 � c2�

2 (59)

and thus (with c1 � c2 � 2��H�2 > 0)

 jc5 	 c6j �
H
A�c1 � c2�: (60)

This shows that it is impossible to have both c5 and c6 zero,
i.e. Gp;i�J� �J� � 0 and there are always correlations be-
tween p and H which evolve in time. Together with (51),
(57), and (58), this last relation allows us immediately to
express all parameters in terms of only c1 and c2, and all
relations for saturation are solved.

We now ask whether it is possible to have a coherent
state which behaves semiclassically at one (late) time and
has identical fluctuations before and after the bounce. We
thus focus on the case c5 � 	c6. This assumption allows
us to solve (60) directly for c5,

 jc5j � jc6j �
H
2A
�c1 � c2� (61)

and to insert it in (57),

 c3 � c4 �
H2

2A2 �c1 � c2� 	
1

4
�c1 � c2�: (62)

Consistency with (54) implies

 4c2
3 � @

2H2 �
1

4
�c1 � c2�

2

�

�
H2

A2 �c1 � c2� 	
1

2
�c1 � c2�

�
2
: (63)

Coherent states with identical fluctuations before and after
the bounce are thus possible if and only if

 

H4

A4
�c1 � c2�

2 �
H2

A2 �c
2
2 � c

2
1� � @

2H2: (64)

Using c1 � c2 � 2��H�2 and c1 � c2 � �2��H�2 �
2c1 � �2��H�2 � 2H2 	 2A2 � 1

2 @
2 [imposing the real-

ity condition (41)], we must then solve

 

H2�A2

H2 ��H�4�
A2�H2�A2� 1

4@
2�

H2 ��H2��
A4

H2

@
2

4
� 0

giving

 ��H�2 � 	
A2�H2 � A2 � 1

4 @
2�

2�H2 � A2�

� �

��������������������������������������������������������������������������������
A4�H2 � A2 � 1

4 @
2�2 � A4�H2 � A2�@2

q
2�H2 � A2�

�
�A2��H2 � A2 � 1

4 @
2� � �jH2 � A2 � 1

4 @
2j�

2�H2 � A2�
:

(65)

Here we distinguished the two roots of the quadratic
Eq. (64) by � � 	1 since another 	 has already been
used for the two cases A � 	B.

Depending on the signs involved there are four possibil-
ities to have positive solutions for ��H�2:

(1) A � B, in which case there is a further distinction
(a) A2 <H2 � 1

4 @
2: Only � � 1 is allowed, im-

plying ��H�2 � A2.
(b) A2 >H2 � 1

4 @
2: Both signs for � are al-

lowed,
(i) � � �1 implies ��H�2 � A2 as

above;
(ii) � � 1 implies

 ��H�2 �
A2

A2 �H2

@
2

4
(66)

(2) A � �B, which allows only one choice of signs for
a positive

 ��H�2 �
A2

H2 � A2

@
2

4
: (67)

There are two cases where ��H�2 � A2 which can satisfy
the basic condition ��H�2 
 H2 only if A2 
 H2. Thus c1

must be of the order H2. This can only happen if the
bounce scale p�0� � A� 1

2 @ is small compared to the total
energy, i.e. the universe enters the deep Planck regime
during the bounce. However, large c1 (and thus large c2

since c1 � c2 must remain small) of the order H implies,
using (62), that c3 is of the order H, too, and �p is not
small compared to p (in fact, not even smaller). This case
does not give rise to semiclassical states at any time.

The case A � �B allows small �H. However, as we
already saw, the reality condition allows such solutions
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only if c1 � �H
2 � A2 � 1

4 @
2 is large and negative. For

states saturating the uncertainty relations, this implies that
c3 is of the same size as�c1 and thus too large for the state
to be semiclassical at any time.

For the last possibility (66), ��H�2 can be small com-
pared to H2. For instance, if c1 is of the order A@, which is
allowed for semiclassical states, we have ��H�=H �������
A@
p

=H �
����������
@=H

p
. Moreover, ��p�=p�

���������
@=A

p
such that

this final possibility does allow semiclassical states with
equal spread before and after the bounce. This confirms the
earlier indication that equally distributed fluctuations typi-
cally satisfy c3 � @H. Although there is a factor of @,
fluctuations are rather large due to the factor of H which,
for a universe with large matter energy, is a large number. It
is possible to have smaller fluctuations which are not
magnified by the matter energy, but only at one side of
the bounce and at the expense of having much larger
fluctuations at the other side of the bounce.

There is an easier way to have symmetric fluctuations if
one does not require that all uncertainty relations be satu-
rated. One can argue that (49) is of primary interest since it
determines the fluctuations of p and H, and that only this
relation should be saturated. If this is done, symmetric
fluctuations before and after the bounce are easily allowed.
However, this can only be put in by assumption and not be
inferred from conditions at one time after the bounce: only
one of the relevant parameters c3 or c4 is controlled by the
uncertainty relation at one late or early time � while the
other one would be suppressed exponentially by e�2j�j.
Symmetric fluctuations before and after the bounce can
thus not be proven but only be assumed for coherent states
of this system. Generically, even a universe which is semi-
classical at late times can have been highly quantum before

the big bang. Examples for one symmetric and the generic
nonsymmetric bounces are shown in Fig. 2.

2. Gaussian states

This seems to be in conflict with recent numerical results
[15,27,32] where the p-fluctuations turned out to be very
close to each other before and after the bounce. Indeed, this
gave rise to statements to the extent that the universe was as
semiclassical before the big bang as it is now. To resolve
the apparent contradiction we have to look at unsqueezed
Gaussian states as they were used by construction in those
numerical simulations (explicitly removing phase factors
so as to desqueeze states), but are not covered by our
preceding coherent state analysis. As emphasized before,
Gaussian states do not saturate the uncertainty relations in
this system. They are thus not coherent, and not distin-
guished as they would be for usual quantum mechanical
systems. Nevertheless, their properties are quite
interesting.

Let us thus assume that we have a state of the form
 �p� � N exp��z1p2 � z2p�, supported on integer p, with
Rez1 > 0. We again refer to real and imaginary parts of z1

and z2 according to z1 � �1 � i�1, z2 � �2 � i�2.
Although these states have the same form as in standard
quantum mechanics, the representation of basic operators
is different. For instance, we have

 hp̂i �
X
p

pj �p�j2; (68)

 hĴi �
X
p

p � �p� �p� @�; (69)

where we sum over integers and the shift by @ arises from

the action of ceic which is a shift operator in p. For states
which are nearly constant on the discrete scale of p, the
expressions can be seen as Riemann sums and approxi-
mated by Gaussian integrals which one can compute
explicitly.

We thus obtain

 p 
�2

2�1
; (70)

 

J 
�2 � �1@� i�1@

2�1
exp����2

1 � �
2
1�@

2=2�1

� i��2 � �2�1=�1�@�; (71)

 Gpp 
1

4�1
; (72)

 

GpJ 

�
1

4�1
�
�2

1

4�2
1

@
2 �

i�1@

4�1
�@� �2=�1�

�
� exp����2

1 � �
2
1�@

2=2�1 � i@��2 � �2�1=�1��;

(73)

 H

 δ

p(φ)

φ

FIG. 2. Two bouncing solutions for the expectation value of p̂
and the spread around it. Generic states have different spread
before and after the bounce (dashed lines), while unsqueezed
Gaussian initial states lead to solutions which are symmetric
around the bounce not only in their expectation values but also in
spreads (solid lines).
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GJJ 

�
exp����2

1 � �
2
1�@

2=�1�

�
1

4�1
�
�2

2

4�2
1

�
�2

1

�2
1

@
2 �

�2@

2�1
� i

�2�1@

�2
1

�
�
�2

2

4�2
1

�
@

2

4
�
�2

1

4�2
1

@
2

�
�2@

2�1
� i

�1@

2�1
�@� �2=�1�

�
exp����2

1 � �
2
1�@

2=�1 � 2i��2 � �2�1=�1�@�  GJ �J; (74)

 GJ �J 
1

4�1
�

@
2

2
�
�2@

2�1
�
�2

2

4�2
1

�

�
�2

2

4�2
1

�
�2@

2�1
�

@
2

4
�
�2

1@
2

4�2
1

�
exp����2

1 � �
2
1�@

2=�1�: (75)

These expressions involving J are much more messy than the corresponding ones for Gaussian states in standard quantum
mechanics. This is a consequence of the fact that Gaussian states for the system considered here are not natural at all.

Nevertheless, the expressions simplify somewhat if one assumes that the state is unsqueezed, �1 � 0. Moreover, for
semiclassical states we can use p� �p� @which implies �2=�1 � ��1=2

1 � @. Then, the leading order contribution to
the energy fluctuations, derived using

 ReGJJ �

��
1

4�1
�
�2

2

4�2
1

�
�2

2�1
@

�
e��1@

2
�
�2

2

4�2
1

�
@

2

4
�
�2

2�1
@

�
e��1@

2
cos�2�2@�  �

�2
2

4�1
@

2 cos�2�2@�

and

 GJ �J �
1

4�1
�

@
2

2
�
�2

2�1
@�

�2
2

4�2
1

�

�
�2

2

4�2
1

�
�2

2�1
@�

@
2

4

�
e��1@

2


�2
2

4�1
@

2;

is

 GHH � �
1

4
�GJJ �G �J �J� �

1

2
GJ �J 

�2
2

4�1
@

2cos2��2@�

(76)

and with H � ImJ  ��2 sin��2@�=2�1 we have

 

GHH

H2
 �1@

2cot2��2@� (77)

whose left-hand side is constant throughout the whole
evolution. At late and early times �2 becomes small such
that �1 / cot�2��2@�  sin2��2@�. This relates �1 which
determines the p-fluctuation to �2 which determines the
peak position of the wave packet. Thus, for unsqueezed
Gaussians we prove that the fluctuations before and after
the bounce are the same at times where sin2��2@� takes the
same value. Since the expectation value solutions (18) are
symmetric around the bounce point for any state, fluctua-
tions of unsqueezed Gaussian states are shown to be sym-
metric around the bounce.

This reconciles our calculations with the numerical cal-
culations of [15,27] and reinforces their validity. However,
it also demonstrates that the result of identical fluctuations
before and after the bounce is a consequence not of the
generic dynamics of semiclassical states, but relies on the
assumption that states are unsqueezed Gaussians. It is then
not very surprising to find symmetric spreads since there is
a single parameter determining the state, other than its
expectation values. The fact that GHH is constant then

implies directly that there is a fixed relation between this
parameter, �1, and the peak position. Since expectation
values are symmetric around the bounce for any solution,
the spread must satisfy the same symmetry in this restricted
case. As discussed before, there is no intrinsic basis in this
model to restrict states to such a form. They do not saturate
the uncertainty relations, and even if the Gaussian form is
assumed but general squeezing is allowed, fluctuations
before and after the bounce become independent of each
other. There is then an additional parameter �1 and only a
certain function of spread �1 and squeezing �1 is fixed at
the bounce-reflected point. This does not suffice to fix the
spread to be symmetric. The precise relation follows by
estimating GHH as above, now keeping �1 � 0. Then,
GHH=H2 � const with

 GHH 
�2

2

4�3
1

��2
1 � �

2
1�@

2cos2���2 � �2�1=�1�@�

and
 

H  �
�2

2�1
sin���2 � �2�1=�1�@�

�
�1

2�1
@ cos���2 � �2�1=�1�@�

provides the relation between �1 and �1 in terms of the
expectation values.

3. The role of superposed branches

One could suspect that nonsymmetric fluctuations are a
consequence of small admixtures of superposed expanding
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branches on an initial contracting one, while superposi-
tions of energy eigenstates of definite sign might always
have symmetric fluctuations. As illustrated in Fig. 3, we
choose two states j 1i and j 2i at � � ��0 which are
peaked at the same value p0 of p with the same
p-fluctuations. If the first state is expanding, h 1jĤj 1i �:

H > 0, while the second one is contracting, h 2jĤj 2i �

�h 1jĤj 1i< 0, they are sharply peaked at different H,

and thus h 1j 2i 
 1. Any superposition j i � �j 1i �

�j 2i�=
������������������
1� j�j2

p
, where j 2i presents an admixture of a

negative-H state, is then sharply peaked at p0. At� � �0,
expectation values of p̂ in the two states of the super-
positon have evolved away from each other and the com-
bined spread �p can be much larger than individual
spreads �1p and �2p measured in j 1i and j 2i,
respectively.

This can be analyzed more quantitatively: For simplic-
ity, we assume that the H-fluctuations of the two states are
nearly equal, �1H  �2H. In the state j i, we have
 

��H�2 � h jĤ2j i � h jĤj i2


1

1� j�j2
�hĤ2i1 � j�j

2hĤ2i2� �H
2

�
1� j�j2

1� j�j2

�
2

�
1

�1� j�j2�2
���1H�

2�1� j�j2�

� ��2H�2j�j2�1� j�j2� � 4j�j2H2�;

where subscripts of 1 and 2 at right brackets and � indicate
which state is used for the expectation values. Now assum-
ing ��1H�2  ��2H�2, we obtain

 

��H�2

H2

��1H�2

H2 � 4
j�2j

�1� j�j2�2
: (78)

Thus, the admixture changes the H-fluctuations only
slightly and preserves �H
 H if j�j is sufficiently small.
It would thus be allowed in our approximation, although
not in a superposition of only positive energy eigenstates.
We will now see how the admixture can influence spreads
of p̂ before and after the bounce.

While ��H�=H is constant in time, ��p�=p changes and
the initial value which by construction is close to ��1p�=p
is not conserved. Using the behavior of exact solutions of
expectation values, one can compute p-fluctuations at the
bounce-reflected point of the initial state. At this time, the
two states will, in the p-representation, have evolved away
from each other since one state corresponds to an expand-
ing branch and the other to a collapsing one. We have

 ��p�2 �
1

1� j�j2
�hp̂2i1 � j�j2hp̂2i2� �

�
hp̂i1 � j�j

2hp̂i2
1� j�j2

�
2

�
1

�1� j�j2�2
����1p�

2 � j�j2��2p�
2��1� j�j2� � j�j2hp̂i21 � j�j

2hp̂i22 � 2j�j2hp̂i1hp̂i2�

� ��1p�2
1� j�j2hp̂i22=hp̂i

2
1

1� j�j2
�

j�j2

�1� j�j2�2
�hp̂i1 � hp̂i2�2:

In the last step we used the fact that by construction j 2i is
in the expanding branch at all times considered, thus
��p�=p  const away from the bounce and ��2p�2 
hp̂i22��1p�2=hp̂i21 > ��1p�2. For instance, at the bounce-
reflected �0 of j 1i with large �0, we have

 hp̂i2��0�  p0e
2�0  hp̂i1��0��2p0=H�

2

and thus

-φ0 0 φ0
φ

0

p0

p0e2φ0

p

FIG. 3. Sketch of two wave functions with the same peak
position p0 at ��0, where one function represents a collapsing
branch, the other an expanding one. After the bounce of the first
solution at � � 0, the wave packets deviate strongly at �0. Both
wave packets are illustrated by their expectation values and
spreads, assumed to be symmetric around the bounce for the
sake of the argument.
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��p���0�
2

p��0�
2
�
��1p���0�

2

p��0�
2

1� 4j�j2p2
0=H

2

1� j�j2

�
16j�j2

�1� j�j2�2

�
p0

H

�
4 hp̂i1��0�

2

p��0�
2 : (79)

Because of the large factor p2
0=H

2 � 1 for an initial state
peaked at large volume, the p-fluctuation has grown much
more than theH-fluctuation if we pass through the bounce.

To verify that this implies nonsymmetric fluctuations we
have to compute �p at the bounce-reflected point of hp̂i,
which is not �0 due to the contribution from j 2i. From

 hp̂i �
hp̂i1 � j�j2hp̂i2

1� j�j2
 hp̂i1 � j�j2hp̂i2

for small j�j, we have

 hp̂i���  H cosh��
1

2
j�j2He��2�0

which has its minimum at �bounce � � log
���������������������������
1� j�j2e2�0

p
.

The bounce-reflected point for hp̂i is thus at �reflected �
�bounce � ��bounce � ���0�� � �0 � log�1� j�j2e2�0�.
Evaluating (79) at this point, for simplicity assuming
j�j2e2�0 � 1 which presents a characteristic example for
an admixture at large initial volume, gives

 

��p���reflected�
2

p��reflected�
2

��p����0�

2

p���0�
2

1

j�j2

�
j�j4 � j�j�4e�2�0

j�j4 � 2e�2�0 � j�j�4e�2�0

�
1

j�j2�1� j�j2�2

in terms of the initial values at��0. The additional inverse
powers of the small j�j compared to the spread of H show
the growth of p-fluctuations after the bounce, demonstrat-
ing that the superposition will not have symmetric spread.

One could thus suspect that such an admixture, which
would not violate our condition �H
 H if � is suffi-
ciently small, could be the reason for unequal dispersions
before and after the bounce, while solutions of exactly
positive H would have symmetric dispersions as explicitly
shown for unsqueezed Gaussians. This conjecture cannot
be true, however, because the solutions we studied earlier
only refer to expectation values and dispersions and, due to
the decoupling in our solvable model, are completely
independent of higher moments. The preceding construc-
tion of the admixture does provide states with suitable
initial dispersions and expectation values, but the specific

states j i � �j 1i � �j 2i�=
������������������
1� j�j2

p
also have fixed

higher moments. There are many other states having the
same expectation values and dispersions but different

higher moments, not corresponding to what one obtains
from an admixture of a negative energy state. Such states
allow for positivity as well as nonsymmetric dispersions,
which thus cannot be an artifact of a negative energy
admixture. In short, the calculation confirms the intuitive
expectation that an admixture does give nonsymmetric
spreads even if each state in the superposition has sym-
metric spreads. But it does not show the converse, namely,
that nonsymmetric fluctuations could only be caused by an
admixture of a negative energy state.

IV. CONCLUSIONS

A solvable model such as the one discussed here allows
a detailed analysis of dynamical coherent states which
would otherwise be difficult to handle. This provides valu-
able information for quantum cosmology, just as the har-
monic oscillator does traditionally for quantum optics (see,
e.g., [33]). Compared to the harmonic oscillator, our sys-
tem shows several new properties with implications for
cosmology.

A. Spreading of states

Although the spreads are not constant for solutions to
our system, ratios such as ��p�=p are nearly constant in
each pre- and post-bounce branch. Nevertheless, this ratio
can, and in general does, take different values in both
branches. Dynamical coherent states which exactly satu-
rate the uncertainty relations and have spreads symmetric
around the bounce point do exist but are not generic.
Nevertheless, they are distinguished in a certain sense
and can thus be seen as analogs of the harmonic oscillator
ground state (although no unique symmetric state exists).
Indeed, for such states the scale of fluctuations, ��p�=p ����������
@=H

p
, is determined more sharply than without the sym-

metry assumption.
Dynamical coherent states for the loop quantization are

not Gaussians which turn out to have different and rather
special properties. Nevertheless, Gaussian states can also
be analyzed straightforwardly in this setting, with results
being ultimately in agreement with recent numerical in-
vestigations. Interestingly, unsqueezed Gaussian states do
have identical spread before and after the bounce. They
cannot be coherent but may well serve as a special version
of semiclassical states. This illustrates how differently
coherent states in a new system can behave from those
well-known for the harmonic oscillator. It also shows that a
dynamical analysis of coherent and semiclassical states is
always necessary even to select suitable initial states to be
evolved. While dynamical coherent states are difficult to
describe in most systems, solvable models make this pos-
sible which is now also available for cosmological systems.

As demonstrated, the techniques of [6] reviewed in
Sec. II provide an efficient way to derive coherent state
properties. Moreover, they allow one to see how properties
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can change under perturbations away from the solvable
model, such as by including a scalar potential. Although
this has not been dealt with in the present paper, our
detailed analysis of dynamical coherent states of the solv-
able system provides crucial information for the zeroth
order of such a perturbation theory.

B. Applications to cosmology

There is only scant information on properties of the
present state of our universe other than that it is, to a
high degree, semiclassical. But this does not tell us which
semiclassical or even coherent state describes it best. From
the harmonic oscillator or free quantum field theories one
is used to unsqueezed Gaussians to represent the vacuum
state. But the form of such states depends on the system
being looked at, and quantum cosmology is not close to
either the harmonic oscillator or free quantum field theory.
Moreover, there is no obvious vacuum state for quantum
cosmology, and even if a Hamiltonian should allow a
ground state, it is unlikely to describe a universe able to
expand to large volume. A dedicated analysis as done here
shows which coherent states are available and what their
generic properties are. These properties must be taken into
account for robust statements about quantum cosmological
systems.

For instance, we have seen that squeezing must be
allowed for generic states, which crucially changes prop-
erties such as the symmetry of spreads before and after a
bounce. In fact, squeezing of semiclassical states often
plays a large role for decoherence or the transition to
classical behavior (e.g. in the context of inflation [34–
36]). Thus, a semiclassical state at large volume of a
cosmological model should indeed be assumed to be
highly squeezed. Lacking additional input, robust cosmo-
logical conclusions can be drawn only with reference to
generic coherent states. Then, no strong restrictions on
fluctuations of a state before the bounce are justified. For
all we know, it could have been coherent but with large
quantum fluctuations.

C. Effective equations and the possibility not to bounce

Although we have proven that the solvable quantum
system is exactly described by the effective Hamiltonian

 H � hĤi �
1

2i
�J� �J� � p sinc

(determining the same equations of motion for p and J as
Ĥ does for hp̂i and hĴi) it is possible, depending on the
initial state, that the system does not bounce but reaches
p � 0 in finite proper time. This looks contradictory at first
sight since such an effective Hamiltonian implies the ef-
fective constraint equation

 H2 � p2sin2c / p2
�:

With p� constant and j sincj � 1 there must be a nonzero
lower bound for p, the bounce scale.

However, while the effective Hamiltonian of our linear
system does not receive corrections from quantum back-
reaction of fluctuations and other quantum variables, the
reality condition ĴĴy � p̂2 is nonlinear. Classically, this
condition implies that c is real and thus j sincj � 1. But the
reality condition (33) now receives quantum corrections of
second order in quantum variables which, for suitable
states, can remove the bounce. A state can then enter the
‘‘classically forbidden region’’ where j sincj> 1 while still
respecting the quantum reality condition.

As shown explicitly, zero volume is reached when the
parameter c1 is negative and large. While this can be
achieved respecting the positivity condition �H
 H,
such a state would never be semiclassical. Thus, any state
which is semiclassical at one time will give rise to a
bounce. These are all relevant states since a boundary
condition for modeling our universe, however distantly, is
always that there is at least one large volume regime in
which the state is semiclassical. But the possibility of states
which do not bounce demonstrates the nontriviality of the
result. Simply replacing _a2 in the Friedmann equation by a
bounded function is not enough; any such replacement
would have to be followed up by a coherent state analysis
which is much more nontrivial than an analysis of the
resulting effective Friedmann equation obtained by the
naive replacement. Loop quantum cosmology with a free
scalar passes this more stringent test and thus provides the
first example in loop quantum gravity where complete
effective equations have been computed.

We end by repeating that any physical statements de-
rived from a single model have to be confirmed by a
perturbation analysis around the model. This is feasible
in our case, as it is for perturbations around any solvable
model, but still requires detailed work which is now in
progress. Only such an analysis could justify the transfer of
results from single models to our own universe. It may well
be that this removes the bounce through backreaction of
quantum variables Ga;n on the expectation values. In par-
ticular, it is then conceivable that a state starts out perfectly
semiclassically at large volume where its expected volume
collapses, evolves for a long time to small volume and all
along picks up corrections from quantum backreaction.
Since also quantum variables evolve, it cannot be ruled
out without further analysis that the analog of c1 does
become negative and large close to the would-be bounce.
If this happens, the bounce is avoided for the self-
interacting state even if it starts out semiclassically by all
possible conditions one could pose. This is only one pos-
sibility out of many which can only be ruled out by
performing a comprehensive perturbation analysis for

MARTIN BOJOWALD PHYSICAL REVIEW D 75, 123512 (2007)

123512-14



which the results of this paper present the zeroth order
basis.
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APPENDIX A: UNCERTAINTY RELATIONS IN
QUANTUM MECHANICS

1. General derivation

Starting from the Schwarz inequality

 h 1j 1ih 2j 2i � jh 1j 2ij
2

applied to j 1i :� c�Aj i and j 2i :�d�Bj i with c�A :�
Â� hÂi one obtains

 h�c�A�2ih�d�B�2i � jhc�Ad�Bij2: (A1)

(Here, c�A is not a linear operator due to the dependence on
the state in hÂi, but j 1i is well-defined as a state obtained
from j i.) Writing

 

c�Ad�B � 1

2
�c�Ad�B�d�B c�A� � i 1

2i
�c�A;d�B�

and

 

1
2 h
c�Ad�B�d�B c�Ai � 1

2hÂ B̂�B̂ Âi � AB

�c�A;d�B� � �Â; B̂�
we have

 jhc�Ad�Bij2 � 1
4�hÂ B̂�B̂ Âi

2 � 2hÂihB̂i�2 � 1
4h�i�Â; B̂�i

2;

where we used self-adjointness of the operators to compute

the absolute square of the complex number hc�Ad�Bi. In
terms of quantum variables, we thus have the general form

 GAAGBB � �GAB�2 � 1
4h�i�Â; B̂�i

2 (A2)

of uncertainty relations whenever Â and B̂ are self-adjoint.

2. Saturation for Gaussian states

A general Gaussian state has the form  �q� �
exp��z1q

2 � z2q� z3� with three complex numbers z1 �
�1 � i�1, z2 � �2 � i�2 and z3 � �3 � i�3 such that
Rez1 > 0. While �3 can be dropped, determining only a

phase factor, �3 �
1
4 log2�1

� �
�2

2

4�1
is fixed by normaliza-

tion. The remaining parameters determine expectation val-
ues as well as fluctuations and correlations of q and p:

 hq̂i �
�2

2�1
; (A3)

 hp̂i �
�1�2 � �2�1

�1
@; (A4)

 Gqq �
1

4�1
; (A5)

 Gpp � �1@
2 �

�2
1

�1
@

2; (A6)

 Gqp � �
�1

2�1
@: (A7)

With these values, any Gaussian state saturates the uncer-
tainty relation,

 GqqGpp � �Gqp�2 � 1
4@

2: (A8)
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In that case, as with Ĵ here, one multiplies the metric with
momenta to ensure the existence of representations of the
resulting affine commutation relations where the metric is
positive definite. Although we use triad variables and do
not need to require positivity for them, there are repre-
sentations where p̂ is indeed positive definite. Also in
quantum optics, and even for the harmonic oscillator
itself, the sl�2;R� algebra plays a role [44–46].

[26] M. Bojowald, Gen. Relativ. Gravit. 38, 1771 (2006).

[27] A. Ashtekar, T. Pawlowski, and P. Singh, Phys. Rev. D 74,
084003 (2006).

[28] The bounce occurs at p  H which can be much larger
than @ although it is quantum effects which cause it.
Deviations from classical behavior occur in quantum
geometry due to large curvature which, for a large matter
content, can be realized even when the spatial volume is
still large compared to the Planck length.

[29] M. Bojowald, Phys. Rev. Lett. 86, 5227 (2001).
[30] M. Bojowald, in Proceedings of the XIIth Brazilian School

on Cosmology and Gravitation, edited by M. Novello
(AIP, New York, 2007).

[31] We emphasize that this way to derive an effective con-
straint is correct only due to the linearity in Ĵ of the
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