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In a companion paper, we have introduced a model of scalar field dark energy, Cuscuton, which can be
realized as the incompressible (or infinite speed of sound) limit of a k-essence fluid. In this paper, we study
how Cuscuton modifies the constraint sector of Einstein gravity. In particular, we study Cuscuton
cosmology and show that even though Cuscuton can have an arbitrary equation of state, or time
dependence, and is thus inhomogeneous, its perturbations do not introduce any additional dynamical
degree of freedom and only satisfy a constraint equation, amounting to an effective modification of gravity
on large scales. Therefore, Cuscuton can be considered to be a minimal theory of evolving dark energy, or
a minimal modification of a cosmological constant, as it has no internal dynamics. Moreover, this is the
only modification of Einstein gravity to our knowledge, that does not introduce any additional degrees of
freedom (and is not conformally equivalent to the Einstein gravity). We then study two simple Cuscuton
models, with quadratic and exponential potentials. The quadratic model has the exact same expansion
history as �CDM, and yet contains an early dark energy component with constant energy fraction, which
is constrained to �Q & 2%, mainly from WMAP Cosmic Microwave Background and Sloan Digital Sky
Survey Lyman-� forest observations. The exponential model has the same expansion history as the Dvali-
Gabadadze-Poratti self-accelerating brane-world model, but generates a much smaller Integrated Sachs-
Wolfe effect, and is thus consistent with the Cosmic Microwave Background observations. Finally, we
show that the evolution is local on superhorizon scales, implying that there is no gross violation of
causality, despite Cuscuton’s infinite speed of sound.
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I. INTRODUCTION

The nature of the current acceleration of cosmic expan-
sion is among the most outstanding puzzles in theoretical
physics. Various cosmological observations such as the
dimming of distant supernovae Ia [1,2], anisotropies in
the Cosmic Microwave Background (CMB) [3], and the
large scale structure of the Universe (e.g. [4]) can be most
easily explained by having an exotic dark energy compo-
nent with negative, nearly constant and uniform, pressure
which dominates the energy density of the Universe.

While the simplest model of vanilla dark energy, i.e. a
cosmological constant, remains consistent with all the
present observations [4], many models of nonminimal
dark energy have been developed in anticipation of any
future failure of cosmological constant in explaining the
data. However, all the models that predict an observable
dark energy density evolution suffer from an extreme fine-
tuning problem, requiring incredibly light mass scales
(� 10�33 eV) that are hard to protect from quantum
corrections.

In a companion paper [5], we developed a new model of
field theoretical dark energy, Cuscuton, that while gener-

ally nonuniform, lacks any dynamical degree of freedom.
This protects the theory from quantum corrections at low
energies, and thus makes it a perfect candidate for an
evolving dark energy in the current era. The name
Cuscuton (pronounced käs-kü-tän), is derived from the
Latin name for the parasitic plant of dodder, Cuscuta.
Classically, it is a new kind of constraint system, allowing
a novel class of constrained dynamics.

The Cuscuton action for the scalar filed ’ can be written
as

 S �
Z
d4x

�������
�g
p

��2
�����������������������������
jg��@�’@�’j

q
� V�’��; (1)

where � is an (arbitrarily defined) energy scale. One can
show that Cuscuton is an incompressible k-essence fluid
[6,7], i.e. it has an infinite speed of sound, raising questions
about the causality of the theory. However, in [5], we show
that there is no breakdown of causality, as the perturbations
lack (symplectic) dynamics, and thus do not carry
information.

Given that Cuscuton acts as a constraint system, it is
interesting to ask how a minimal coupling of Cuscuton to
gravity will modify interaction of gravity with matter. In
particular, as is well known, the scalar perturbations about
the Friedmann-Robertson-Walker (FRW) metric represent
the general relativistic space-time constraints for matter
coupled to gravity. A nontrivial choice of Cuscuton poten-
tial will modify the constraint equations, leading to ob-
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servable consequences in cosmology. We aim to character-
ize these observables associated with the scalar
perturbations.

We derive general scalar perturbation equations in the
presence of Cuscuton and show analytically and numeri-
cally how the constraints are modified. We show that
Cuscuton models can have an expansion history identical
to that of �CDM but with different CMB and matter power
spectra due to gravitational potential evolution mimicking
that of tracker models of quintessence. We also find that
Cuscuton can exactly replicate the expansion history of the
Dvali-Gabadadze-Poratti (DGP) self-accelerating cosmol-
ogy, while predicting similar small angle CMB and matter
power spectra, at a few percent level. The main difference
between the DGP self-accelerating cosmology and
Cuscuton will show up due to the anisotropic-stress-
induced boost in the Integrated Sachs-Wolfe (ISW) effect
for the DGP model. Finally, we briefly consider the issue of
causality in the scalar sector and find that a Yukawa-like
exponential falloff of Cuscuton effects beyond the

�����
_H

p

scale protects the gravitational phenomenology from gross
anomalies in the long wavelength limit. We show that the
usual Bardeen parameter remains approximately constant
in the long wavelength limit.

The paper is organized as follows: In Sec. II, we com-
pute the background evolution, followed by linear pertur-
bations in Sec. III. We then study how the matter power
spectrum and the ISW effect are affected by Cuscuton in
Sec. IV, and discuss current observational constraints.
Before presenting our conclusions in Sec. VI, we also
discuss causality of linear Cuscuton perturbations in
Sec. V. Throughout this paper, we use the reduced
Planck’s constant Mp � �8�GN�

�1=2 � 2	 1018 GeV.

II. BACKGROUND EVOLUTION

Starting with the Cuscuton action [Eq. (1)] in a flat
Friedmann-Robertson-Walker metric

 ds2 � dt2 � a�t�2dxidxi; (2)

and a homogenous field configuration, i.e. ’ � ’�t�, the
action takes the form

 S �
Z
a3dt��2j _’j � V�’��: (3)

Varying the action with respect to ’ yields the background
field equation

 �3�2H� sgn� _’� 
 V0�’� � 0: (4)

One implication of Eq. (4) is that V�’� always decreases
(increases) with time in an expanding (collapsing) uni-
verse. Equation (4), in combination with the Friedmann
(or G0

0 Einstein) equation in a flat universe

 H2 �
�tot

3M2
p
; (5)

yields

 

�M2
p

3�4

�
V 02�’� � V�’� � �m; (6)

where �m is the background density of ordinary matter in
the Universe. Notice that the Cuscuton kinetic term does
not contribute to its energy density.

In Fig. 1, we show different possibilities for the
Cuscuton potential in the V � V 0 phase space.
Equation (6) implies that for a positive matter density
(�m > 0; weak energy condition), assuming a flat universe,
we should have

 V�’�<
�M2

p

3�4

�
V 02�’�: (7)

The excluded region is shown by the shaded area in Fig. 1,
while the light line shows a constant �m > 0 contour.

The continuity equation for matter density _�m �
�3H��m 
 pm�, in combination with Eq. (4) and the
time derivative of Eq. (6), assuming the null energy con-
dition �m 
 pm > 0, gives:

 3�2Hj _’j
�
2M2

P

3�4 V
00�’� � 1

�
� � _�m > 0; (8)

which puts an additional constraint on the potential:

 V00�’� �
1

2

dV02�’�
dV�’�

>
3�4

2M2
p
: (9)

FIG. 1 (color online). Different possible Cuscuton potentials in
the V � V 0 phase space. The shaded region is excluded in a flat
FRW cosmology, as it requires negative matter density, �m
[Eq. (6)]. The dark solid, dashed and dotted lines are quadratic
potentials with zero, positive and negative bare cosmological
constants. The dark arrows show the time evolution of the field in
a flat universe, and the points show the asymptotic state of the
field, if present. The light solid line shows a constant �m > 0
contour. As we show in the text, in addition to avoiding the
excluded region, the potentials should be shallower than the
constant �m contour in the V � V0 plane.
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Therefore, all the allowed potentials need to be shallower
than the constant density contours (light line) in Fig. 1.

Dark lines in Fig. 1 show different quadratic potentials
of the form

 V�’� � V0 

1
2m

2’2: (10)

Interestingly—as we will show in Sec. IV—a quadratic
potential leads to a tracking behavior. In this case, the
quadratic term of the potential always maintains a constant
fraction of the total density of the Universe. The dark solid
line shows a quadratic potential with no bare cosmological
constant (V0 � 0). For a positive bare cosmological con-
stant (V0 > 0; dashed line), it is interesting to notice that
the potential never reaches its minimum, and is stalled at
the boundary of the �m < 0 region (shaded area).
Therefore, the effective value of the cosmological constant
is larger than its bare value. Finally, a potential with a
negative bare cosmological constant (V0 < 0; dotted line)
results in a bounce, as V0, and thus the expansion rate goes
to zero, and changes sign subsequently.

Another interesting example is an exponential potential
of the form

 V�’� � V0 exp
�
�

�
�2rc
M2
p

�
’
�
: (11)

Direct substitution in Eqs. (4) and (5) yields

 H �
1

2rc



�����������������������
1

4r2
c



�m
3M2

p

s
; (12)

which is exactly the same as the background dynamics in a
(flat) DGP [8] 5D self-accelerating brane-world model [9].
However, this is only a coincidence, as the detailed dy-
namics of metric perturbations cannot be identical. For
example, the anisotropic stress always vanishes in
Cuscuton models, which follows from the use of 3
 1D
Einstein equations for linear perturbations of a scalar field.
On the contrary, the anisotropic stress is generically non-
vanishing (see e.g. [10] and references therein) in DGP
models. Nevertheless, this coincidence can be used to
examine the observable differences between dark energy
and modified gravity models with exact same background
dynamics.

Before concluding this section, it is important to empha-
size that Cuscuton is classically a theory of modified
gravity, rather than Einstein gravity with additional scalar
field degree of freedom. This can even be seen at the level
of background equations, as combining Eqs. (4)–(6), (for
_’< 0) we can write the modified Friedmann equation as

 H2 �
1

3M2
p
f�m 
 V�V

0�1�3�2H��g; (13)

where V 0�1 is the inverse function of V 0�’�. We see that, in
general, H2 is no longer linearly dependent on the energy
density �m and the exact nonlinearity is controlled by the

choice of function V�’�. Moreover, unlike in ordinary
Einstein-Hilbert action coupled to a homogeneous scalar
degree of freedom, the modified Friedmann equation is
fixed once �m is fixed, i.e. one does not need to specify
initial/boundary conditions for ’.

To obtain intuition for how the modification works, let
us again consider the quadratic potential. If V�’� �
1
2m

2’2, it is simple to check that Eq. (13) is identical to
the ordinary Einstein-Hilbert Friedmann equation with a
renormalized Planck’s constant

 M2
p ! M2

p �
3�4

2m2 : (14)

This is a manifestation of Cuscuton modification of
gravity.

This renormalization of the Planck mass is reminiscent
of a similar effect for Lorentz-Violating vector fields [11],
as well as the exponential quintessence model (see
Sec. IV B), although, in contrast to Cuscuton, both models
do introduce an additional dynamical degree of freedom.

III. LINEAR PERTURBATIONS IN CUSCUTON
COSMOLOGY

A. Linearized field equation

Varying the Cuscuton action with respect to ’ in a
general curved space-time yields

 

�
g�� �

@�’@�’

X

�
r�r�’
��2

����
X
p

V 0�’� � 0; (15)

where X � @�’@�’, and r� denotes covariant derivative.
Assuming a linearly perturbed FRW metric in the longitu-
dinal gauge

 ds2 � �1
 2��dt2 � a�t�2�1� 2��dxidxi; (16)

we can evaluate the field equation at the linear order in
field/metric perturbations:

 3 _’� _�
H�� 
 a�2r2�’���2j _’jV00�’��’ � 0:

(17)

Here, r2 is the spatial Laplacian with respect to comoving
coordinates. It is interesting to note that the linear pertur-
bation equations do not include any second order time
derivative.

Taking the time derivative of Eq. (4), we find

 

j _’jV00�’�

�2
� �3 _H: (18)

This yields the following form for Eq. (17) in the Fourier
space:

 �’ �
3 _’� _�
H��

k2

a2 � 3 _H
; (19)

explicitly showing that, as pointed out in [5], Cuscuton
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perturbations simply follow metric perturbations in a
nonlocal way, and do not introduce any additional dynami-
cal degree of freedom. In other words, similar to the
homogenous Eq. (4), the field equation only amounts to a
constraint condition that relates metric and field
perturbations.

B. Linear Einstein equations: Modified gravity

The Einstein equations for scalar metric perturbations in
the presence of Cuscuton as well as ordinary (dust) matter
inhomogeneities are simply written as:

 a�2r2� � 3H� _�
H�� 
 �2M2
p�
�1���m 
 V 0�’��’�;

(20)

 

_�
H� � �2M2
p�
�1��2�’
 �m��; (21)

 

��
 4H _�
 �2 _H
 3H2�� � �2M2
p�
�1��2 sgn� _’�� _’

��2j _’j�� V 0�’��’�;

(22)

where � is the potential of the matter peculiar velocity
ui � a�1@�=@xi.

Transforming to the Fourier space, it is interesting to
note that �’ can be eliminated by combining the field
equations [Eqs. (4) and (19)] and the G00 equation
[Eq. (20)] to yield a modified law of gravity

 �
k2

a2

�
�


�
3H 


9H�2 _H 
 3H2�m�

2�k
2

a2 � 3 _H�

�
� _�
H��


 �2M2
p�
�1��m � 0; (23)

where �m � �m=�3M2
pH2� is the matter density in units of

the critical density of the Universe.
Thus we notice that �’ completely drops out of the

linear gravity (or Poisson) equation, although it modifies
the equation in a nonlocal way. This is another manifesta-
tion of Cuscuton being a theory of modified gravity, even
though it is a particular limit of k-essence.

It is important to note that this modification (or screen-
ing of gravity) does not affect Newtonian gravity on small
subhorizon scales, i.e. as long as k2

a2 � H2, _H.
We should point out that the only other modification of

Einstein gravity that does not introduce a new degree of
freedom (to the best of our knowledge), known as
Modified-Source Gravity [12], is conformally equivalent
to the Einstein gravity. Moreover, Modified-Source
Gravity can be constructed by a nonlinear local modifica-
tion of the matter Lagrangian, where, in terms of the
modified Lagrangian, (and in contrast to Cuscuton) the
gravity reduces to Einstein gravity.

C. Linear Einstein equations: Modified dynamics

Let us consider the modified dynamics of the gravita-
tional potential, �, in the presence of Cuscuton and pres-
sureless dark matter. Plugging Eq. (19) into Eq. (22), after
straightforward manipulations, we arrive at
 

�1
 C2� ��
 �4H 
 C1 
 C2H 
 C3� _�




�
3H2 
 _H � 3

2�mH2 
 C1H
 C2
_H 
 C3H

�
� � 0;

(24)

 C1 �
3� �H 
 3H _H�

k2

a2 � 3 _H
; C2 �

3�2 _H 
 3H2�m�

2�k
2

a2 � 3 _H�
;

C3 �
3�2H�ka�

2 
 3 �H��2 _H 
 3H2�m�

2�k
2

a2 � 3 _H�2
;

(25)

which is the desired differential equation for �. Note that
in the limit of pure matter dominated case without
Cuscuton modification of gravity, we have

 �m ! 1; and 2 _H 
 3H2; Ci ! 0; (26)

implying that the solution to Eq. (24) asymptotically ap-
proaches �! constant. Also, note that any nontrivial
scale dependence introduced by Cuscuton is characterized
by the scale _H, and not H.

Consider the long wavelength limit �k=a�2 
 _H. First,
let us ask whether a constant � is a solution to linearized
Einstein equations with just pressureless dust field degrees
of freedom. The Cuscuton modification that could prevent
� from being a constant is the coefficient of � in Eq. (24):

 3H2 
 _H �
3

2
�mH2 
 C1H
 C2

_H 
 C3H

� 3�m

�
H �H

2 _H2
� 1

�
H2; (27)

which generically does not vanish unless the scale factor is
of the form

 a � ai

�
1

j _Hij

Hi
�t� ti�

�
H2
i =j _Hij

; (28)

corresponding to power-law expansion, or a constant ef-
fective equation of state. Therefore, having a constant
effective equation of state will allow a constant � solution
on long wavelengths.

Next, whether or not � is damped [due to the friction
term in Eq. (24)] depends on the sign of

 

4H 
 C1 
 C2H 
 C3

1
 C2
� H 


d
dt

ln _H�1: (29)

Hence, we see that whether the potential decays or not
depends on how fast _H horizon grows/decays with time. In
the case of a constant effective equation of state [or
Eq. (28)], the potential will always decay until it asymp-
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totically reaches a constant. As we will argue in Sec. V, the
general behavior of � on superhorizon scales can be easily
understood from the conservation of the Bardeen
parameter.

In the opposite limit of �k=a�2 � _H, the coefficient in
Eq. (24) that prevents � from being constant becomes

 3H2

�
1�

�m

2

�

 _H; (30)

which again does not necessarily vanish with the gravity
modified by a nontrivial V�’�, even though the form of the
terms looks identical to that of Einstein gravity sourced by
pressureless dust. That is because the background Einstein
equations are modified by the presence of Cuscuton. Note
that, as far as the damping coefficient is concerned, since
Ci ! 0 in the short wavelength limit, the _� term always
acts as a damping term.

IV. OBSERVATIONAL SIGNATURES OF
CUSCUTON COSMOLOGIES

In this section, we study the observational signatures of
Cuscuton cosmology. First we consider the observables
analytically, in a perturbative setting. Afterwards, we focus
on different observational signatures and constraints for
quadratic and exponential Cuscuton potentials.

A. Analytic treatment of general Cuscuton potentials

In addition to the matter power spectrum, the decaying
gravitational potential caused by the Cuscuton modifica-
tion will manifest itself in the anisotropy of the Cosmic
Microwave Background. The induced CMB anisotropy
due to the Fourier mode �k is [13]:
 

�l;k �
Z �0

0
d�g�����0 
�k�jl�k��0 � ���



1

ik

Z �0

0
d�vb�k�g���

@
@�

jl�k��0 � ���


 2
Z �0

0
d�

@�k

@�
e�	���jl�k��0 � ���; (31)

where � is the conformal time, �0 is the monopole tem-
perature fluctuation, g��� is the visibility function, vb is
the baryon velocity field, 	 is the optical depth, and �0 is
the present day conformal time. The first term is known as
the Sachs-Wolfe effect, while the second term is the dipole
contribution, and the last term is the Integrated Sachs-
Wolfe contribution, which depends on the time variation
of the gravitational potential. All the integrals are taken
over the light cone.

We can compute the ISW contribution to CMB anisot-
ropies perturbatively. To first order in the Cuscuton poten-
tial, V, one can write @�=@�, which appears in the ISW
term of Eq. (31), as

 

@��1�;k
@�

� ai

�
t���
ti

�
�2 Z t���

ti
dt0
�
t0

ti

�
8=3
Sk�t

0�; (32)

where t��� � a3
i �

3=27t2i , S�t� is given by
 

Sk�t� � �
�
3V 


3t _V
4



3
k2

a2 

2
t2

� _V
t



�V
2



� _V
2t

� 4k2

3a2 

4
t2

k2

a2 

2
t2

��

	
��0�;k
3M2

p
; (33)

where ��0�;k is the zeroth order solution in V, to Eq. (24),
which is a constant in a flat matter dominated universe. The
key feature manifested in Eq. (33) is the mildness of the
scale dependence. This is simply a result of the fact that
Ci ! 0 in the limit of k! 1, while Ci does not vanish in
the limit of k! 0. Although more explicit expressions for
�l and Cl may be derived, general results deviating
strongly away from cosmological-constant-induced ISW
effect are complicated and unilluminating. Hence, in the
subsequent subsections, we will numerically examine two
interesting explicit potentials, and compare them against
current cosmological observations.

B. Quadratic (tracking) potential

Using potentials of the form V�’� � V0 

1
2m

2’2, one
finds solutions similar to that of a tracking dark energy
[14–16] component plus a cosmological constant. While
V0 simply contributes towards the cosmological constant,
the quadratic term 1

2m
2’2 maintains a constant fraction of

the total energy density of the Universe, much like models
of early dark energy [17–19]. To see this, take the square of
Eq. (4) together with the Friedmann Eq. (5) to get

 �Q � �
�M2

p

M2
p
�

1
2m

2’2

�tot
�

3�4

2M2
pm

2 � const; (34)

where �M2
p denotes the equivalent change in the large

scale Planck mass [Eq. (14)]. Therefore, assuming V0 �

0, the expansion history H�z� is exactly equivalent to that
of a �CDM cosmology, as the extra quadratic component
simply follows the rest of the energy content of the
Universe. In fact, the expansion history H�z� becomes
independent of �Q, provided one scales the other compo-
nents of the Universe appropriately, i.e. simultaneously
transforming �i ! �1��Q��i, where i labels �, pho-
tons, baryons and dark matter while changing the number
of relativistic neutrino species N� � 3:04�1� 2:47�Q�

leaves H�z� invariant. This leads to two corollaries: First,
there will be a degeneracy between N� and �Q (at least, as
long as we only consider the expansion history). Second,
quadratic Cuscuton can only be constrained by studying
subhorizon perturbations, provided one does not a priori
know the number of neutrino species.

Current constraints on light element abundances, which
are predicted from Big Bang Nucleosynthesis, already put
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significant constraints on the number of relativistic neutri-
nos during the radiation era, N� � 3:1� 0:7 [20], which
yields �Q & 10%. However, as we see below, observatio-
nal constraints on cosmological inhomogeneities can put
much tighter constraints on �Q.

Since Cuscuton perturbations have an infinite speed of
sound, they do not cluster on subhorizon scales, and thus
perturbations start to decay as they enter the horizon. This
behavior is reminiscent of scalar field dark energy (or
quintessence) for which, once inside horizon, the perturba-
tions also free-stream with the speed of light.

One can work out this subhorizon decay analytically
during matter domination where a / t2=3. Then, ignoring
�’ in Eq. (22) (or using Eq. (24) with Ci ! 0), in the k�
aH regime, we end up with:

 

��
 4H _�
 3
2H

2�Q� � 0; (35)

which can be easily solved if H � 2
3t :

 � / a�; � �
5

4

�
�1�

�����������������������
1�

24

25
�Q

s �
: (36)

This result is identical to the growth suppression for a
quintessence field with an exponential potential, which
has a similar tracking behavior [21] (e.g. see Eq. 12 in
[22]). For example, for �Q 
 1, the dominant metric
mode decays as a�3�Q=5 during matter domination, which
can also be obtained from Eqs. (32) and (33). This intro-
duces a significant suppression of large scale structure
power during the matter era:

 

���Q; z � 0�

��0; z � 0�
’ z

�3�Q=5
eq ’ 0:61�Q=0:1; (37)

if we fix the amplitude at matter-radiation equality, assum-
ing that it happened at zeq ’ 3500. Of course, only modes
inside the horizon at matter-radiation equality will feel this
amount of suppression. Modes entering after equality will
suffer less suppression the later they enter. This leads to a
red tilt in the cold dark matter spectrum up to the scale of
matter-radiation equality keq mimicking a running spectral
index [23]. However, all scales k > keq are suppressed by
the same factor (37) which distinguishes quadratic
Cuscuton from a simple running spectral index �CDM
model. As the metric potential decays inside the horizon
through the matter era, the CMB anisotropies receive an
extra contribution from the Integrated Sachs-Wolfe. This
leads to additional power, typically shifting the first
Doppler peak of the CMB power spectrum towards slightly
lower multipoles.

Fig. 2 shows the resulting matter and CMB power
spectra for �Q � 0, 0.05, and 0.1, where we have fixed
the initial amplitude of scale-invariant adiabatic perturba-
tions, as well as the background expansion history, to that
of WMAP3 concordance model [3]. As expected, the

changes in the amplitude of the matter power spectrum
(left panel in Fig. 2) is most significant. However, direct
measurement of the amplitude of the power spectrum (e.g.
from galaxy surveys) may be problematic due to the am-
biguity in the value of linear bias. Methods to measure the
linear bias, while present, are not as reliable as the shape of
the power spectrum, as they involve nonlinear physics, and
thus are not widely used to obtain cosmological con-
straints. In addition, analytic calculations of nonlinear
structure formation in a similar model of early dark energy
yield considerable and quite unexpected deviations from
the �CDM scenario precluding the use of standard ap-
proximations to infer the nonlinear spectrum given the
linear evolution [24].

Thus, instead of galaxy catalogs, we use Lyman-� forest
observations of quasar spectra from the Sloan Digital Sky
Survey (SDSS) [4], which mainly constrains the linear
overdensity �2

L and spectral index neff at a pivot scale of
k ’ 0:009 s=km ( ’ 1 Mpc�1), and a pivot redshift of z ’
3 [4]. In this mildly nonlinear regime, we anticipate non-
linear effects of �Q to play little role. This point is further
strengthened from the low values of �Q allowed by all
other data without using Lyman-� (see below). At such
low values of �Q, the remaining nonlinear effects of �Q

will be negligible. Hence, Lyman-� forest observations
seem well suited to constrain the effects of �Q on growth
of linear perturbations.

The changes in the CMB power spectrum are more
subtle. As mentioned above, the main impacts of the
Cuscuton quadratic potential can be seen in an additional
ISW contribution and a slight suppression of small scale
power in the CMB spectrum. We ran a Monte Carlo
Markov Chain (MCMC) simulation to constrain this model
using a modified version of cmbeasy [25]. For this, we used
the three-year CMB data of WMAP [3], supernovae Ia
measurements [26,27], constraints from baryonic acoustic
oscillations [28], as well as the latest release of the
SDSS galaxy survey [29] and SDSS Lyman-� forest ob-
servations [4].

FIG. 2. Left panel: Dark matter power spectra for quadratic
Cuscuton densities �Q � 0, 0.05, 0.1, shown as solid, dotted,
and dashed lines, respectively. The initial amplitude of the scale-
invariant adiabatic perturbations is kept constant. Right panel:
The CMB anisotropy power spectrum for the same cosmologies.
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The WMAP three-year data alone constrains �Q <
3:6% at 95% confidence level. Adding SNe Ia and large
scale structure data improves this—already substantial—
bound further to �Q < 2:7%. Finally, adding Lyman-�
forest data yields a tight limit of �Q < 1:6%.

Hence, the background degeneracy of N� and �Q while
present has little effect on the contours in Fig. 3. The
allowed abundance �Q is very small such that the effect
on N� is at most �N� � �3:04	 2:47	�Q � �0:2.
This change in N� is rather small compared to the 68%
confidence interval for N�, which is N� � 5:5
0:9

�1:2.

C. Exponential (DGP-like) potential

The DGP model of modified gravity [8], similar to other
brane-world models, is inspired by nonperturbative objects
in string theory. It posits that the observable universe lives
on a 3
 1D brane in 4
 1D space-time. While matter
fields are constrained to the brane, gravity can propagate
into the bulk and thus can be sensitive to the full geometry
of the Universe. The characteristic of the DGP model is
that the brane action includes a term proportional to the
volume integral of the induced Ricci scalar on our 3-brane.
This is added to the ordinary Einstein-Hilbert action in the
bulk, which integrates the full Ricci scalar. It turns out that
at high energies, the induced action dominates the dynam-
ics of the induced metric, leading to ordinary four dimen-
sional gravity, while at low energies, the bulk action takes
over and gravity becomes five dimensional. This may lead

to a self-accelerating phase of cosmic evolution, even in
the absence of a cosmological constant.

Although it is argued that the self-accelerating phase of
the DGP model contains ghosts [30–32], and thus may not
be realized in a physically stable way (but see [33]), it still
remains the most widely studied concrete example of a
modified gravity model which competes with dark energy
models as an explanation for the observed acceleration of
the Universe.

As we mentioned in Sec. II, for a spatially flat 3-brane,
the background evolution within a self-accelerating DGP
model coincides with that of a Cuscuton model with an
exponential potential [Eq. (12)]. Therefore, it is not pos-
sible to distinguish the two models based on the traditional
geometrical tests of background cosmology, such as
supernovae Ia [1,2], distance to the last scattering surface,
or the scale of baryonic acoustic oscillations [28].

For subhorizon perturbations, References [34,35] com-
pare the linear growth of structure in DGP model with a
quintessence model with an identical expansion history.
Since dark energy does not cluster on subhorizon scales for
cs � 1, such a quintessence model should have a very
similar behavior to the exponential Cuscuton model.
Reference [34] finds that the DGP model shows an extra
5–10% decay compared to the quintessence model (see
their Fig. 2). Therefore, it is not easy to distinguish DGP
and a DGP-like Cuscuton (or quintessence) model based
on the growth of the large scale structure. Reference [36]
estimates that this distinction can only be done at less 3

level, with the next generation of supernovae, weak lens-
ing, and (small angle) CMB observations.

More significant is the ISW effect induced by the aniso-
tropic stress in the DGP model, which is a characteristic
feature of modified gravity models. Reference_[34] finds
that, as a result of the ISW effect, the CMB anisotropy
power spectrum is a factor of �4 larger than �CDM
cosmology on small ‘’s [37]. Therefore, they advocate
use of correlations between CMB and high redshift large
scale structure surveys (see e.g. [38]) in order to detect
signatures of the DGP model. As we show in Fig. 4, the
CMB power spectrum for the exponential Cuscuton model
is nearly identical to that of the DGP-like quintessence
model, and is still much smaller than the prediction for the
actual DGP model at low ‘’s [39].

We thus conclude this section by pointing out that ob-
servational distinction between dark energy and modified
gravity models may be significantly more difficult than
advocated in the literature (e.g. [40] where the authors
also point to a number of issues that need to be explored
in such endeavor). A relatively simple and well-behaved
dark energy model such as exponential Cuscuton can ex-
actly replicate the expansion history of the DGP self-
accelerating cosmology, while predicting similar small
angle CMB and matter power spectra, at a few percent
level. The smoking gun for the modified gravity models,

FIG. 3 (color online). Confidence contours for the abundance
of the quadratic Cuscuton, �Q and the number of relativistic
neutrino species N� derived from using supernovae Ia, CMB,
large scale structure and Lyman-� forest observations. The white
and black boundaries indicate 68% and 95% likelihood regions.
While in principle a degeneracy of the background evolution
between �Q and N� exists, it is too weak to be seen here,
because the allowed abundance of �Q is too small to have any
significant effect on N� constraints (see the text).
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thus, is their anisotropic stress, that can be potentially
probed by the ISW effect in the low ‘ regime of the
CMB power spectrum.

V. ON THE CAUSALITY OF CUSCUTON LINEAR
PERTURBATIONS

In this section, we briefly comment on causal properties
of the Cuscuton field theory with a minimal gravitational
coupling.

Equation (19), which simply has a Yukawa screening
form, can be written in the real space as:
 

�’�x; t� � 3 _’a2
Z
d3x0

e�aj3 _Hj1=2jx�x0j

4�jx� x0j

	 � _��x0; t� 
H��x0; t��: (38)

Therefore, we see that the nonlocal dependence of
Cuscuton on the metric perturbations is exponentially sup-
pressed beyond a horizon that is defined by j _Hj. It is
interesting to notice that an _H horizon also naturally occurs
in cosmological gravitomagnetism, beyond which, the
coupling of a gyroscope precession to the rotation of its
surrounding environment saturates [41].

Since metric scalar perturbations do not propagate, and
tensor perturbations that do propagate do not couple to
Cuscuton perturbations at the linear order, it is not possible
to rigorously address the question of causality of Cuscuton
coupled to gravity, in the context of what we have done
thus far. However, it is clear that the naive picture of
instantaneous interaction, due to the infinite sound speed
of Cuscuton, does not hold in a general relativistic context,
as Cuscuton is exponentially insensitive to metric fluctua-
tions at separations larger than an _H horizon. By the same
token, and direct substitution into Eq. (24), one can see that
superhorizon perturbations in the Bardeen parameter [42],

 � � ��
H
_H
� _�
H�� � �


2�H�1 _�
��

3�1
 w�
; (39)

remain constant until the modes enter the _H horizon, where
w is the effective equation of state. Therefore, there is no
gross violation of causality in Cuscuton cosmology.

VI. CONCLUSIONS

In this paper, we have studied the physical features, as
well as possible observational signatures of a cosmology
with Cuscuton dark energy, which was first introduced in a
companion paper [5], and could be realized as an incom-
pressible k-essence fluid. We showed that Cuscuton per-
turbations have no independent dynamical degree of
freedom and, in lieu of other couplings, simply follow
the space-time metric. Therefore, Cuscuton can be consid-
ered to be a minimal theory of evolving dark energy, or a
minimal modification of a cosmological constant. Because
of lack of internal dynamics, Cuscuton only modifies (or
dresses) the gravity of massive objects, and thus resembles
a modified gravity theory. Indeed, to the best of our knowl-
edge, this is the only modification of Einstein gravity that
does not introduce any additional degree of freedom (and is
not conformally equivalent to Einstein gravity). We then
studied two specific Cuscuton cosmologies, with quadratic
and exponential potentials.

We saw that the expansion history of Cuscuton
cosmology with a quadratic potential is identical to that
of �CDM, and thus geometrical tests such as
supernovae Ia, or the angular scale of barynoic acoustic
oscillations, are blind to a quadratic term in the Cuscuton
potential. Nevertheless, the quadratic term acts as an early
dark energy component with a constant energy fraction,
and thus can be detected via its influence on the matter
power spectrum, or through the ISW effect in the CMB. We
find that joint constraints from supernovae Ia, CMB an-
isotropies, power spectra of galaxy surveys, and Lyman-�
forest fluctuations limit this component to �Q < 1:6%,
which is the most stringent upper limit that has ever been
put on an early dark energy component.

For the exponential Cuscuton model, we found that,
surprisingly, the expansion history is identical to that of a
flat DGP self-accelerating modified gravity model. The

FIG. 4. CMB anisotropy power spectrum at low l’s: The solid
curves show the CMB power spectrum for the DGP-like dark
energy models with c2

s � 1, 10, 100, where larger sound speeds
have slightly larger power. Exponential Cuscuton is realized in
the c2

s ! 1 limit, although the power spectra for c2
s > 10 are

virtually indistinguishable. The dotted curve is the power spec-
trum for the �CDM cosmology, while the dashed region shows
the prediction for the DGP self-accelerating model [34]. All the
power spectra assume �m � 0:26 and h � 0:66. The points
show the WMAP three yr observations, while the error bars
indicate an estimate of the cosmic variance error based on the
data [47].
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only observational distinction between the two cosmolo-
gies is in the ISW effect at ‘ & 20 in the CMB power
spectrum, and is due to the anisotropic stress, present in the
DGP modified gravity model.

Indeed, cosmologists have yet to develop efficient tech-
niques to detect a smoking gun for modified gravity.
Exponential Cuscuton cosmology is a clear example of
where such a smoking gun may become necessary, and
detection of a nonvanishing anisotropic stress (see e.g.
[43]), through ISW effect, appears to be the only way to
rule out any such (scalar) dark energy model. An indepen-
dent motivation for why new physics might be at work in
the generation of large angle ISW effect may also come
from observations of large angle anomalies in the CMB sky
(e.g. [44], and references therein).

Finally, we showed that, despite its infinite speed of
sound, Cuscuton perturbations are exponentially insensi-
tive to the metric perturbations beyond the Hubble radius,
justifying why there is no gross violation of causality for
superhorizon perturbations.

It is now becoming clear that the phenomenology of
dark energy will be the central theme in theoretical and
observational cosmology, over the next ten years [45].
Nevertheless, all the current theoretical models for any

observable deviation from a cosmological constant are at
best ill-motivated, or at worst, already ruled out. Although
falling short of solving the celebrated ‘‘cosmological con-
stant problem’’ [46], Cuscuton dark energy provides an
alternative which could be considered more natural, as it is
protected against quantum corrections [5] (even in the
presence of other couplings), and yet allows for a poten-
tially observable evolving dark energy. The enthusiastic
cosmologist may thus find some use for Cuscuton in trying
to convince the skeptical theorist about the benefits of
cosmological dark energy probes!
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