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In recent literature on eternal inflation, a number of measures have been introduced which attempt to
assign probabilities to different pocket universes by counting the number of each type of pocket according
to a specific procedure. We give an overview of the existing measures, pointing out some interesting
connections and generic predictions. For example, pairs of vacua that undergo fast transitions between
themselves will be strongly favored. The resultant implications for making predictions in a generic
potential landscape are discussed. We also raise a number of issues concerning the types of transitions that
observers in eternal inflation are able to experience.
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I. INTRODUCTION

In eternal inflation, different post-inflationary regions
may have different properties. How—even in princi-
ple—to statistically describe these properties so as to
make probabilistic cosmological predictions is a major
outstanding problem in current cosmology. Recently, a
number of proposals have been advanced for ‘‘gauge-
independent’’ measures that do not depend on the choice
of a time coordinate [1–4]. In this paper we compare,
contrast, and assess the existing proposals, and point out
some predictions that they seem to share. We focus here on
eternal inflation as driven by a potential with multiple
minima; transitions between these correspond to the nu-
cleation of bubbles or ‘‘pocket universes’’ containing a
new phase of different vacuum energy [5,6]. If transitions
are sufficiently slow, the growing bubbles never percolate,
and inflation is eternal.

A form of predictions in a multiverse is a set of state-
ments such as ‘‘the probability that a randomly chosen X is
in a region with properties � is P X���,’’ where X is some
‘‘conditionalization object’’ such as a point in space, a
baryon, a galaxy, or an ‘‘observer’’ that arguably makes
P X relevant to what we will actually observe in some
future experiment (see, e.g., [7,8]). This probability is
generally split into two components:

 P X��� / Pp���nX;p���: (1)

Here, Pp is a ‘‘prior’’ probability distribution defined in
terms of some type of object p regardless of the condition-
alization object X, and � is a vector of properties we might
hope to compare to locally observed properties of our
universe. For example, if p � “pocket universe” then
Pp��� describes the probability that a randomly chosen
bubble has low-energy observable properties �. The factor
nX;p conditions these probabilities by the requirement that

some X object exists; for example, with X � “galaxy; ”
nX;p���might count the (�-dependent) number of galaxies
in a pocket with properties �.

The measures discussed here are proposals for calculat-
ing Pp (though we will also discuss some relevant issues
concerning nX;p). We shall see that many of the measures
share some properties—for example, they all accord very
high probability to regions in a potential landscape which
allow for very rapid transitions between nearby minima.
Unfortunately, these regions of the landscape look nothing
like our universe: the resulting spacetimes would almost
certainly be dominated by a very high vacuum energy and
be devoid of structure. This, of course, is nothing new—
the whole idea of the ‘‘anthropic’’ approach to explaining
our observed universe is that nX;p, where X � “observer; ”
will ‘‘unweight’’ such states. But we shall see that employ-
ing the measures under consideration makes the problem
very acute.

More generally, while the measures we discuss are all
stated and formulated in rather different ways, many of
them are, in fact, either fully or partially equivalent (as
acknowledged by the authors in some cases); we will
attempt to sort out these relations comprehensively.
Differences do exist, however, and we will also see that
certain ‘‘desirable’’ properties hold in some measures and
not others.

In Sec. II, we present a ‘‘scorecard’’ of features that
might be desirable in a measure, and we summarize a
number of recent measures and the connections between
them. We then compute the prior distribution for a number
of sample landscapes in Sec. III and use the results to
highlight important predictions and connections. The im-
plications of these predictions are discussed in Sec. IV.
Section V describes some problems associated with the
assumptions usually made about the global picture of an
eternally inflating spacetime, and we conclude in Sec. VI.
In the Appendix, a quick matrix method for calculating
bubble abundances is introduced and a number of the more
technical results of the paper are derived.
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II. MEASURE DESIDERATA AND PROPOSALS

A. Desirable measure properties: A scorecard

To test a theory of eternal inflation yielding diverse post-
inflationary predictions, we would like to know ‘‘what
physical properties are most likely,’’ and compare them
to our local observations. This question, however, is simply
ambiguous—any answerable version of this question will
entail a tacit choice of a conditionalization X and calcu-
lation of P X as described above. The measures we will
discuss correspond to different attempts to (at least implic-
itly) propose a plausible candidate for X, and to calculate
the prior distribution Pp that might be used in calculating
P X for that X.

A fundamental property that a well-defined measure
should have is that its answer should be gauge-invariant,
by which we simply mean that its answer can be calculated
in any coordinate system we choose. This is distinct from
‘‘gauge independence’’ as we shall discuss shortly.

Beyond this, it is important to consider what properties
we might want a sensible measure to have. Some such
desiderata, either stressed previously in the literature or
first mentioned here, are given below. We note, however,
that it is quite possible that the ‘‘correct’’ measure (if it
exists) does not satisfy every item.

(1) Physicality—The p to which the measure applies,
and the choice of Pp, should be such that (a) the
probabilities do not appear to have been ‘‘picked out
of a hat,’’ and (b) nX;p is plausibly calculable. For
example, we might choose p � “vacuum” and set
Pp proportional to the tenth power of the hyperbolic
tangent of the energy of the vacuum in Planck units.
However, (a) this measure is obviously rather arbi-
trary, and (b) since there is no physical process
behind the creation of regions described by the
different vacua, the measure seems useless in cal-
culating nX;p for, say, X � “baryon:” Note, how-
ever, that different physically reasonable
conditionalization objects may require different
Pp—for example, were X � “vacuum; ” then the
measure would still violate condition (a), but would
satisfy condition (b) by definition.

(2) Gauge independence—The relative probabilities
should not depend on an arbitrary decomposition
of spacetime into space and time. For instance, it has
been shown [9–12] that measures that weight based
on the physical volume in a given state at late times
give a result that depends sensitively on the assumed
foliation of spacetime into equal-time hypersurfa-
ces. In the absence of a strong physical reason for
choosing a particular decomposition, such measures
thus seem ambiguous.

(3) Ability to cope with varieties of transitions and
vacua—The measure should be general enough to
treat all of the types of vacua (e.g. positive, negative,

or zero energy) and the various types of transitions
between them.

(4) Independence of initial conditions—It is often ar-
gued that eternal inflation approaches a steady state,
and that essentially all observers exist ‘‘at late
times,’’ so a physically reasonable measure should
become independent of initial conditions. This cri-
terion is not obviously necessary; although it may be
appropriate for a particular conditionalization object
(e.g. X � “a randomly chosen observer”), it may
not be appropriate for others. For example, if one
were interested in knowing what a given observer
(or worldline) will experience in the future, then a
dependence on initial conditions seems quite
reasonable.

(5) Ability to cope with various and/or varying topo-
logical structures—The measure should potentially
be applicable to spacetimes with nontrivial topo-
logical structures as may arise in eternal inflation
(as discussed at length in Sec. V).

(6) Accurate and robust treatment of ‘‘states’’ and
‘‘transitions’’—This entails several subcriteria:

(a) General principles—The basic ideas behind
the measure should allow it to be used (in
theory) for the complicated ‘‘spacetimes’’ of
landscapes that cannot simply be encapsu-
lated by transition rates between vacua.

(b) Physical description of transitions—
Transition rates must be clearly linked to
the physical process that describes the tran-
sition (e.g. Coleman-De Luccia bubble
nucleation).

(c) Reasonable treatment of ‘‘split’’ states—The
measure should properly deal with very simi-
lar states and/or very large transition rates.
(For example, a vacuum split by the insertion
of a small potential barrier should, in the limit
of an infinitesimal barrier, act just as a single
vacuum.)

(d) Continuity in transition rates—When transi-
tion rates are used, the measure should be
continuous in these rates. For example, there
should be no discontinuity in the probabilities
between a stable vacuum and a metastable
vacuum with a lifetime �, in the limit �! 1.

We would argue that all of these potentially pleasing
features are absent in at least one measure proposal in the
literature, and that no extant proposal clearly fulfills them
all. But the good news is that the bubble-counting proce-
dures discussed here satisfy many of them, so let us sum-
marize these measures and provide a listing of connections
between them.

B. The measures and their properties

We now examine the various measures under considera-
tion. All of these have subtleties, so we refer the reader to

AGUIRRE, GRATTON, AND JOHNSON PHYSICAL REVIEW D 75, 123501 (2007)

123501-2



the original papers, and also to the review by Vilenkin [13]
and to the lectures of Shenker [14]. Here, we will mainly
provide brief summaries, but will also add extended com-
ments on some measures.

Restricting the discussion to eternal inflation as driven
by a potential with multiple minima, it is useful to classify
vacua as ‘‘terminal’’ or ‘‘recycling’’: terminal vacua can be
reached, but never exited; recycling vacua can exit to the
state from which they originated, and may also transition to
other states. Following [1], we can also label entire land-
scapes as terminal or recycling; the former contain at least
one terminal vacuum whereas the latter do not.

As a first step in this analysis, we can divide the mea-
sures into three categories: first, those that calculate vol-
umes in different vacua on some equal-time surface;
second, those that count individual bubbles; third, those
that focus on the vacua experienced by an observer follow-
ing a single worldline.

There are two basic volume-counting methods, counting
either physical volume (i.e. p� “unit of physical volume”)
or comoving volume (p � “unit of comoving volume”).
See, e.g., [9–12,15] for the former; here we focus on the
following:

(i) The comoving volume (CV) method: Put forward by
Garriga and Vilenkin [16], this method might be
considered the counterpart for bubble nucleations
(in comoving volume) to the work of Linde, Linde,
and Mezhlumian [9] in stochastic inflation. One
starts with some region on an initial spacelike sur-
face and considers a congruence of hypersurface-
orthogonal geodesics (the ‘‘comoving observers’’)
emanating from that region. As a function of some
global time coordinate t, the number of worldlines
(to which the comoving volume fraction is defined to
be proportional) in different vacua is calculated. The
probability, Pcv, to be in a given vacuum is then
defined to be proportional to the fraction of comov-
ing volume (or number of worldlines), fi�t�, in that
pocket, in the t! 1 limit. Note that if there are
terminal vacua, then as t! 1 all of the comoving
volume will be distributed among the terminal va-
cua, except for a set of measure zero (albeit one that
corresponds to infinite physical volume). Metastable
vacua are thus accorded zero weight. This measure
depends heavily on initial conditions, because the
fraction of comoving volume in a given terminal
vacuum can only increase with time [17].

The next two methods, rather than counting total relative
volume in different bubble types, count relative total num-
bers of bubbles, i.e. p � “bubble:”

(ii) The comoving horizon cutoff (CHC) method: In the
proposal of Garriga et al. [3], the measure is defined
by directly counting bubbles of a given phase. One
has in mind performing the count at late times, or
‘‘future infinity.’’ We follow the most recent descrip-

tion of this procedure as given by Vilenkin [13].
First, just as in the CV method, a spacelike hyper-
surface in the spacetime is chosen, and a congruence
of geodesics is extended from this hypersurface. The
geodesics are followed arbitrarily far into the future,
passing into any bubbles they may encounter. These
lines are used to project bubbles in the spacetime
back onto the initial hypersurface as ‘‘colored shad-
ows.’’ The relative frequency of bubbles of different
colors is defined to be the ratios of the numbers of
their shadows on the initial hypersurface. The shad-
ows are very clumped, gathering around the rare
regions where inflation continues longest, with an
arbitrarily large number of arbitrarily small overlaid
shadows surrounding the set (of measure zero) of
points on the surface where inflation continues for-
ever. Thus, all counts are infinite numbers and re-
quire regularization to be well defined. The authors
propose only counting shadows larger than a size �
and then taking the limit �! 0. This measure is
argued to be independent of initial conditions on
the surface and applies to terminal and recycling
vacua. It also has the important feature of giving
metastable states nonzero weight. While the idea of
‘‘counting bubbles at future infinity’’ is intuitively
clear, it is somewhat unclear that the ‘‘shadow count-
ing’’ used to actually implement the cutoff is par-
ticularly physical.
Moreover, converting this idea into an actual calcu-
lation is a subtle matter. To date, such calculations
have been performed in a rate-equation framework
in which one follows the fractions of comoving
volume in the various vacua and then effectively
‘‘divides through’’ by the bubble volume in order
to obtain the bubble count. The shadow-size cutoff is
then implemented by imposing a set of late-time
cutoffs, one for each bubble type out of which the
counted bubbles are nucleated (on the assumption
that this determines the ‘‘comoving size’’ of the
nucleated bubbles, and thus the size of the shadow,
to which the cutoff applies). This cutoff, t���ij , for
transitions out of vacuum j into vacuum i, is given
by [3]

 t���ij � � ln��Hj�; (2)

and is designed so that, when bubbles intersecting
the cutoff surface are projected back onto the initial
surface, only bubbles of size exceeding � will be
obtained.
There are, however, some features of this calculation
that warrant a closer look. For example, the formal-
ism allows situations in which a bubble formed soon
after its parent can be assigned a larger asymptotic
comoving size than the parent (we thank Alex
Vilenkin for discussions of this point) and may there-
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fore be included in the counting while its parent is
not. It is, however, unclear if or how the nucleation
of bubbles larger than their parent actually occurs, or
what asymptotic size should really be assigned to
them. One might hope that such events lead to a
small error, but this is not clear because the ratio of
four-volume between the cutoff surfaces to the full
four-volume before the cutoffs may be large. Thus,
rather than the time period between the cutoffs being
unimportant, nucleations during this period may
actually dominate the bubble statistics. Details of
this sort should serve to encourage the development
of calculational techniques in which spacetime de-
pendence is more explicitly taken into account.

(iii) The worldline (W) method: Easther et al. [2], whose
measure we denote the W method, assume that, at
some initial time (defined by a spacelike hypersur-
face), the universe is in some places in a nonterminal
vacuum. They then suggest considering a finite num-
ber of randomly chosen points on this initial data
surface and following forward worldlines with ran-
domly chosen velocities [18] from these initial data
points. Only bubbles that are encountered by at least
one of these worldlines are counted in determining
the relative bubble abundance (no bubble is counted
more than once, even if multiple worldlines enter it).
One then takes the total number of worldlines to
infinity. Like CHC, this measure is claimed to be
essentially independent of initial conditions as long
as inflation is eternal. It was argued in [3] that the
CHC and W methods of bubble counting yield iden-
tical answers for terminal landscapes (the W method
is ill defined for fully recycling landscapes as dis-
cussed in [4]).

The remaining two measures focus on the transitions
between vacua experienced by a single eternal worldline,
and accord a probability to a vacuum that is proportional to
the relative frequency with which it is entered (p �
“segment of a worldline between vacuum transitions”).

(iv) The recycling transition (RT) method: The proposal
of Vanchurin and Vilenkin [4], which we will refer to
as the RT method, is to follow the evolution of a
given geodesic observer and set the probability to be
in a given vacuum proportional to the frequency with
which this vacuum is entered, in the limit where the
proper time elapsed goes to infinity. As presented,
the method only applies to landscapes with no ter-
minal vacua, and was argued to be equivalent to the
CHC method in that case [4].

(v) The recycling and terminal transition (RTT) method:
The Bousso proposal [1], which we denote the RTT
method, covers the cases of terminal and recycling
vacua. Here, one chooses an initial condition for the
worldline (the predictions of this measure are depen-
dent on initial conditions), and considers the relative

probabilities of the worldline entering various other
vacua, averaging over possible realizations. This is
equivalent to the RT measure in the case where there
are no terminal vacua.
The focus in RTT on the worldline of an observer is
presented as being motivated by holography and the
desire to only consider regions of spacetime that an
observer can signal to and receive signals from (the
‘‘causal diamond’’). However, this viewpoint makes
essentially no difference to the mathematics and—
as mentioned below—the time average over histor-
ies for Bousso’s observer could equally well be
thought of as spatial averages over widely separated
worldlines in any of the above approaches. A similar
observation is made in [15]. Of course, a holographic
point of view might lead one to strongly disfavor
further possible weighting factors to apply such as
volume weighting.

Although we will not treat them further, let us also
mention some other approaches to asking about predictions
in eternal inflation. In [12], Tegmark advances a simple and
direct possible answer to the question of the relative num-
bers of different vacuum regions: because eternal inflation
should produce a countably infinite number of each type of
vacuum region, and because all countable infinities are
equal in the sense of being relatable by a one-to-one
mapping, each vacuum should be assigned equal weight.
In [19], the authors put a measure on the space of classical
Friedmann Robertson Walker (FRW) solutions to the
Einstein plus scalar field equations. If this could be ex-
tended to allow for quantum jumps analogous to bubble
nucleations, it might help address the distribution of vacua
within and amongst solutions. In [20], the authors focus on
histories that might be/might have been observed, in the
context of single-field inflation with a monotonic potential.

C. Relations between the measures

Although the methods, both in their motivation and in
their presentation here, have been categorized into ‘‘vol-
ume counting,’’ ‘‘bubble counting,’’ and ‘‘worldline fol-
lowing,’’ there are relations between them that cross these
divisions, so that in fact there are actually very few essen-
tially different measures under consideration.

Some of the relations between measures (as presented by
their authors) have been mentioned above (e.g. the equality
of CHC and W for terminal landscapes, and the equality of
CHC and RT for ‘‘fully recycling’’ landscapes with no
terminal vacua). More, however, exist.

In particular, the RTT method accords the same relative
probabilities to terminal vacua as does the CV method
(though the methods differ for nonterminal vacua, which
have zero probability in CV and nonzero probability in
RTT). To see this, consider a congruence of comoving
worldlines starting in some vacuum. Now, as t! 1, every
worldline that will eventually end up in a terminal vacuum
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will do so (by definition); moreover, each terminal vacuum
will only be entered once (also by definition). Since RTT
accords relative probability to two terminal vacua, A and
B, equal to the relative probability of a worldline entering
them, this will be equal to the relative numbers of world-
lines terminating in A versus B, which is in turn equal to
the relative t! 1 comoving volume fractions as defined
in the CV method. In the Appendix, we show this corre-
spondence by directly comparing the results of the RTT
and CV methods in the context of a specific model. More
generally, the results of the RTT method, for terminal as
well as recycling landscapes, can be obtained by integrat-
ing the incoming probability current into the various vacua
[15,21].

These relations between the measures (as formulated in
the original papers) are summarized in Fig. 1. It also
appears possible to use what is understood about these
connections to devise some hybrid or generalized versions
of the methods.

For example, take the CV procedure, where only a single
late-time hypersurface is considered, and attempt to count
the number of bubbles intersecting this surface from the
volume distribution and some appropriately defined cutoff.
This is not quite the CHC method since, as described
above, the CHC calculation requires a different time cutoff
for bubbles formed in different parent vacua. But this CV-
CHC ‘‘hybrid’’ prescription does not seem any less rea-
sonable to us. One could also generalize the CHC prescrip-
tion to obtain an infinite number of related measures by
altering the limiting procedure: rather than only counting
shadows larger than a size independent of the bubble type,
one could instead only count shadows larger than a given
size relative to, say, some function of their Hubble radius.
That is, for bubbles of type P, rather than only counting
those that have shadows larger than � on the initial surface,
count those that have shadows larger than, say, �0HP or
�00=HP. This would correspond to replacing the time cutoff
of� ln��HM� for bubbles of type P forming out of bubbles
of type M with � ln��0HMHP� or � ln��00HM=HP�. It
would be interesting to investigate how (in)sensitive the

probabilities are to the choice of a particular cutoff
procedure.

Having described the various bubble-counting measures
and their connections, we now use a set of sample land-
scapes to illustrate some of their predictions.

III. SOME SAMPLE LANDSCAPES

Consider the related one-dimensional landscapes pic-
tured in Fig. 2. They all contain both terminal and recycling
vacua (where we assume here that a vacuum is terminal if
and only if its energy is zero or negative), and we now
discuss the predictions made by the RTT method for each.
In light of the close connections between the measures,
many of the conclusions drawn from these calculations will
hold more generally.

Following Bousso, we define the relative probability
�NM to transition from vacuum M to vacuum N as

 �NM �
�NMP
P
�PM

(3)

where P is summed over all decay channels out of M, and
�NM is the probability per unit time of tunneling from
vacuum M to vacuum N. Note that all summations in this
paper are expressly indicated. �NM typically takes the form
of a three-volume times a nucleation rate per unit four-
volume, the latter being calculated using semiclassical
instanton techniques. Note that

P
P�PM � 1 if M is meta-

stable and �PM � 0 if M is terminal, and also that �MN �

�NM, in general. Bousso introduces the concepts of trees
and pruned trees in order to calculate the prior distribution
in the RTT method. He also presents a matrix formulation,
which we develop further in the Appendix.

It will be important for what follows to obtain an in-
dication of the magnitudes of tunneling rates in a typical
landscape. We model this landscape by a single scalar field

W

RTT

RT

CHC

CV

FIG. 1 (color online). A summary of the connections between
the various measures. Solid green lines indicate equivalence
between the measures for a terminal landscape. Dashed blue
lines indicate equivalence in the case of a fully recycling land-
scape. Dashed-dotted red lines indicate that the measures assign
the same relative weights to terminal vacua.

B’

V1

V

V

V

2

3 4

φ

φ

A
B

A
B B’

B’A
B Z

ZZ

ZA B

FIG. 2 (color online). Some sample landscapes. Potential V1

depicts the ABZ example discussed by Bousso [1]. V2 splits the
B vacuum by introducing a small barrier. The potential V3 lowers
the A vacuum to zero or negative energy, so that it becomes
terminal. The potential V4 has a low-energy minimum with high-
energy neighbors that have short lifetimes (relative to other
vacua in the landscape).
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� with a potential V��� expressed as V��� � �4v��=m�.
We further assume that v is a smooth function that varies
over a range of order unity as its argument changes by
order unity, and � sets the energy scale. For the semiclas-
sical approximation that we are working in to make sense,
we must have �4 � M4

Pl, where MPl is the Planck mass.
For Coleman-De Luccia instantons to exist,mmust be less
than some O�1� multiple of MPl. See [22] for more on the
motivation for this form of the potential.

As mentioned above, we will estimate tunneling rates
between the potential minima using semiclassical instan-
ton techniques, notwithstanding thorny issues of interpre-
tation, particularly for upward transitions. Then
�NM / e

��S�NM��SM�, the bracketed exponential factor being
the difference between the action S�NM� of the Coleman-De
Luccia or Hawking-Moss instanton linking the two vacua
and the action SM of the Euclidean four-sphere correspond-
ing to the tunneled-from spacetime. Note that the same
instanton applies to uphill and downhill transitions (hence
the use of symmetrizing brackets in its label). Using the
Euclidean equations of motion, S�NM� can be written as

 S�NM� � �
Z ���

g
p
V���d4x (4)

where the integral is performed over the Euclidean mani-
fold of the instanton. The background subtraction term
(which is negative and larger in magnitude than the in-
stanton action) is given by the same expression and eval-
uates to

 SM � �
3M4

Pl

8V��M�
; (5)

where V��M� is the value of the potential of the pretunnel-
ing vacuum M at � � �M.

From these formulas we can immediately deduce two
important facts. First, we can compare uphill and downhill
rates between two vacua. In the ratio of the rates the
instanton part cancels out, and only the background parts
are left. If V��M� � V��N� � �V, then

 

�MN
�NM

� exp
�3M4

Pl

8

�V

V2��M�
� exp

�3

8

�v

v2
M

�
MPl

�

�
4
: (6)

So, unless �v is tuned to be much smaller than v, the uphill
rate is exponentially smaller than the downhill rate.

Second, we can compare the rates to two vacua N and P
from the same parent vacuumM. This time the background
parts cancel and we are left with the exponential of the
difference of the instanton actions:

 

�PM
�NM

� exp��S�PM� � S�NM��: (7)

Both instanton actions will be of order �MPl=��
4, so we

typically expect the tunneling rates to differ exponentially.
In particular, if VN and VM are somewhat atypically similar
and there is only a small barrier between the two, then, as

long as VP is not atypically close to VM also, tunneling
from M to P will be exponentially disfavored relative to
tunneling to N. This holds even if the tunneling from M to
N is uphill and that from M to P is downhill. This differ-
ence in tunneling rates can be extreme: for a typical infla-
tionary energy scale of �� 1016 GeV,
�PM=�NM � e

�1012
.

A. Coupled pairs dominate in terminal landscapes

We begin by considering the potential V2 depicted in
Fig. 2. We assume that the barrier separating B and B0 is
very small, so that rapid transitions occur between the two
wells. Thus we take �B0B 	 �AB and �BB0 	 �ZB0 . Using
the results of the Appendix, in the limit we obtain

 

PA;B;B
0

A

PA;B;B
0

B

PA;B;B
0

B0

PA;B;B
0

Z

0
BBBB@

1
CCCCA /

�BB0�AB
�BB0�B0B
�BB0�B0B
�B0B�ZB0

0
BBB@

1
CCCA (8)

where PMN is the prior probability of Eq. (1) (with subscript
p dropped) to be in the vacuum N, given an initial state in
vacuum M. A multiple superscript indicates that the same
distribution applies to the listed initial states for the tran-
sition rates under consideration.

There are a number of interesting points to note here.
First

 

PA;B;B
0

B

PA;B;B
0

A

�
�B0B
�AB

	 1; (9)

 

PA;B;B
0

B

PA;B;B
0

Z

�
�BB0

�ZB0
	 1: (10)

These ratios hold independent of initial conditions.
Vacuum B0 is similarly weighted relative to A and Z. We
therefore see that (as might be expected in a measure that
counts transitions) metastable vacua participating in fast
transitions with their neighbors are weighted very heavily.
Such regions certainly exist in a landscape with sufficient
complexity, and it is these regions that the prior distribution
in the RTT method will favor. From our above estimates of
typical transition rates in regimes with energies somewhat
below the Planck scale, factors of order e1012

should be
commonplace.

Of course, arbitrarily fast transitions between B and B0

(which give arbitrarily high weighting to both vacua) are
unrealistic. In reality, bubble collisions will become im-
portant, and at high enough nucleation rates there will be
percolation. In this limit, there should then be a transition
to a treatment in terms of field-rolling and diffusion. In this
regard, it would be desirable to treat field diffusion as
described by the stochastic formalism and bubble nuclea-
tion (with collisions taken into account) in a unified way
(see [21] for work in this direction).
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Although the CHC measure is inequivalent to the RTT
measure in landscapes with terminal vacua, it (and hence
the W method) nevertheless gives similar qualitative pre-
dictions. We can see this by analyzing the ‘‘FABI’’ model
of [3], which, in the limit where �B0B 	 �AB and �BB0 	
�ZB0 , gives the same ratios as Eqs. (9) and (10). Thus the
CHC and W proposals weight fast-transitioning states ex-
ponentially more than others in exactly the same way the
RTT method does. The weighting can easily be large
enough to dominate any volume factors, which appear in
the full probability defined using the CHC method [3],
unless the number of e-folds during the slow-roll period
after a transition is extreme.

We have seen that pairs of vacua undergoing fast tran-
sitions in both directions are weighted very heavily, but
what about transitions that are fast in one direction only?
For example, consider V4 in Fig. 2, where there are quick
transitions into B, but transitions out of B are strongly
suppressed. Requiring only �BB0 	 �ZB0 in the probability
tables from the Appendix yields

 

PA;B;B
0

A

PA;B;B
0

B

PA;B;B
0

B0

PA;B;B
0

Z

0
BBBB@

1
CCCCA /

�BB0�AB
�BB0 ��AB � �B0B�

�BB0�B0B
�B0B�ZB0

0
BBB@

1
CCCA: (11)

It is apparent that vacuum B will be the most probable
vacuum in this sample landscape. The relative weight of A
to B0 is very sensitive to the details of the potential since, as
shown above, there is an exponential dependence on the
difference in instanton actions (which itself tends to be
quite large). In the absence of extremely fine-tuned can-
cellation in this difference (which would be required to
make �AB � �B0B), one of the two will be vastly more
probable than the other. We have already considered the
case where vacuum B0 is much more likely than vacuum A
with landscape V2 above. So the other generic alternative is
for vacua A and B to have probabilities very close to one-
half, vacuum B0 to be exponentially suppressed, and vac-
uum Z to be even more suppressed.

These two examples together make it clear that, in order
to obtain the large weighting observed for potentials V2 and
V3, there must be pairs of vacua which undergo fast tran-
sitions in both directions. This allows for closed loops that
produce large numbers of bubbles of each of the vacua in
the pair; in such cases the probabilities of both vacua scale
with the product of the transition rates between them.

B. Coupled pairs dominate in cyclic landscapes

As one might expect, the extreme weighting of coupled
pairs persists if we raise the height of the Z well of V2 in
Fig. 2 so that it is no longer terminal. From the calculations
in the Appendix, we find

 

PA;B;B
0;Z

B

PA;B;B
0;Z

A

’
�B0B
�AB

; (12)

 

PA;B;B
0;Z

B

PA;B;B
0;Z

Z

’
�BB0

�ZB0
(13)

with the same results for the ratios of PB0 in place of PB to
PA and PZ. This is of special interest because for cyclic
landscapes the predictions of the RTT method agree with
those of the CHC and RT methods (see Fig. 1). Thus all of
these measures will weight rapidly transitioning vacua
heavily.

C. Splitting vacua

A closely related ‘‘test’’ to which we can put the RTT
method to is to consider the situation where potential V2 is
obtained from potential V1 (the ‘‘ABZ’’ example of [1]) by
inserting a small potential barrier in the middle (B) well.
The ratio of weights in the A and Z wells in potential V1 is
given by

 

PA;BA
PA;BZ

�
�AB
�ZB

; (14)

which can be found from the result of [1] by substituting
� � �AB=��AB � �ZB� and 1� � � �ZB=��AB � �ZB�.
Now let us insert the barrier in such a way that the tran-
sition rates into and out of the A and Z wells remain
unaffected. After the insertion, the relative weights of
vacuum A and Z (in potential V2) are then found from
Eq. (8) to be

 

PA;B;B
0

A

PA;B;B
0

Z

�
�BB0

�B0B

�AB
�ZB0

: (15)

Now we can consider two cases. First, if there is no
symmetry as B is interchanged with B0, then we see that
inserting the barrier has changed both the absolute proba-
bilities (which are now strongly weighted toward B and B0)
and also the relative weights of the other vacua. Second, if
the problem is symmetric under interchange of B and B0

(so that �BB0 � �B0B and �ZB0 � �AB), then the relative
weights of A and Z are unaffected; however, the absolute
weights of both are still altered drastically by this decom-
position of B into two identical vacua with fast transitions
between them. This is somewhat disturbing, and again
points to the need for a smooth connection between ‘‘vac-
uum transitions’’ and ‘‘field evolution.’’

D. Continuity of predictions

The next landscape we wish to consider is one of the
simplest imaginable—just a double well potential. In this
example, the predicted ratio of weights in vacuum A to that
in Z (in the case of full recycling) is identical for the CHC,
RT, and RTT methods, with PA=PZ � 1, independent of
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the relative lifetimes of the states. The ratio of weights
predicted by the CV method is PA=PZ � �HA=HZ�

4eSA�SZ
[4], whereHA;Z is the Hubble constant and SA;Z the entropy
of vacuum A and Z, respectively. The difference is due to
the fact that the CHC, RT, and RTT methods count the
frequency of transitions while the CV method weights
according to the time spent in a given vacuum [4].

Now consider shifting the entire potential down, such
that the lower well becomes a terminal vacuum. The
predictions of the CHC, RT, and RTT methods will remain
identical until the lower well is exactly terminal, at which
point the CHC and RTT methods (the RT method breaks
down when the lower well becomes terminal) predict PA �
0, PZ � 1 [23]. Were this a correct description of relevant
probabilities, it would be very important in making pre-
dictions to know if the energy of a minimum were zero or
different from zero by one part in 1010100

. The CV method
will predict this distribution as well, but will approach it in
a continuous manner (SZ ! 1, sending the ratio PA=PZ to
zero). The predictions of the CV method are for this reason
much more robust under small changes of the potential.

One possible way to avoid this discontinuity might be to
reverse the order of limits t! 1 and ��1

AZ ! 1. All of the
measures discussed in this paper take the t! 1 limit first,
but one could perhaps define a measure where the duration
in time is held finite while ��1

AZ ! 1. Applying this to the
two-well example, as the lifetime of the lower well goes to
infinity, the expectation value of the number of transitions
observed would smoothly go to zero. Alternatively, it may
be the case that there are no truly terminal vacua (with
strictly zero probability of being tunneled from) [24].
Finally, it may be that there is simply something concep-
tually flawed in the way bubble-counting measures treat
the borderline between a vacuum being terminal and
nonterminal.

IV. CONSEQUENCES FOR PREDICTIONS IN A
LANDSCAPE

The previous section pointed out some interesting fea-
tures of bubble-counting measures (all the measures here
save CV) as somewhat abstract procedures applied to small
‘‘toy’’ landscapes. What might these features imply for
predictions (in the form of Pp or P X) in a more realistic
landscape with many, many vacua and transitions connect-
ing them?

Without a well-specified model of such a landscape this
is a difficult question to answer; however, the strong pref-
erence for pairs of fast-transitioning vacua does suggest
some general—and possibly troubling—predictions.
Within a landscape, imagine the set of all pairs of neigh-
boring vacua �M;N� with similar pairs of energies
�VM; VN�, and suppose that for each pair, the barrier be-
tween M and N is independent of the barriers separating M
and N from other nearby vacua. Then we might expect that
members of different pairs will be accorded exponentially

differing probabilities depending on the details of the
barrier. In Sec. III we found in our sample landscapes
that the probabilities for the vacua in a fast-transitioning
pair �N;M� are approximately proportional to the product
�NM�MN of the transition rates between them. What de-
termines this product? We fix VM and VN , and imagine the
possible potentials v in between (i.e. we consider many
pairs in the landscape). We have

 �MN�NM � e
�2S�MN��v�eSM�SN ; (16)

where S�MN��v� is the instanton action of Eq. (4) and SM;N
are the background subtractions for vacua M and N, given
by Eq. (5). With SM and SN fixed, the product then depends
just on S�MN�. As argued above, this action will be of order
�MPl=��4, and vary by order unity as the parameters gov-
erning the potential v are varied. Thus the weightings of
the members of each pair do appear to be exponentially
sensitive to the shape of the potential in between.

Now imagine that our vacuum is one tunnel away from
one of the vacua with energy VN . All other things being
equal, we should be likely to come from any given one
according to its weight. The evolution towards our vacuum
depends on the shape of the potential, and because v is
smooth this will not be independent of the shape of the
potential between the endpoints of the instanton. If an
observable � depends on the shape of the potential as
our vacuum is approached, then this raises the possibility
of it having an exponentially varying prior over an obser-
vationally relevant range. A good example might be the
number of post-tunneling e-folds, which might possess a
prior exponentially favoring a particular number.

One might hope to compensate the prior probabilities Pp
favoring cosmologies unlike ours using a conditionaliza-
tion factor nX;p that disfavors them (e.g. conditionalizing
on the existence of a galaxy). In some cases, this seems
plausible. For example, if we consider the cosmological
constant � and (unrealistically) assume that all other cos-
mological parameters stay fixed to our observed values,
then nX;p��� decreases as an exponential in �=�4Q3,
where Q� 10�5 is the fluctuation amplitude and ��
10�28 is the matter mass per photon in Planck masses
(e.g., [25]). Because this scale is so much smaller than
the scale over which the parameters of the potential vary
(i.e. �4Q3 � M), the exponential variations of Pp��� are
likely to be nearly constant over a range of order �4Q3, so
nX;p��� would be effective in forcing P X to give most
weight to a region of parameter space near to what we
observe [26,27]. But in other cases this is far from clear; for
example, the number of inflationary e-folds is determined
by the high-energy structure of the potential at and near
tunneling, and the number of e-folds is linked to the field
value to which tunneling occurs, which is in turn linked to
the instanton solution and hence the tunneling rate. Thus
nX;p and Pp might easily vary over the same scale in the
parameters governing the landscape potential, and the
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conditionalization may be ineffective at forcing P X to peak
in the observed range.

V. OBSERVERS IN ETERNAL INFLATION

Measures relying on properties experienced by a local
observer (generally equated with a causal worldline) re-
quire that observers can actually transition between the
different vacua. It is not, however, clear that this is always
the case. In [28], two of the authors found that in semi-
classical Hamiltonian descriptions of thin-wall tunneling,
there are always two qualitatively different types of tran-
sitions described by the same formalism.

One, called the ‘‘R’’ tunneling geometry, is a general-
ization of Coleman-De Luccia [5]/Lee-Weinberg [6]
(CDL/LW) true and false vacuum bubbles. It corresponds
to the fluctuation of a bubble of the new phase which is
always in causal contact with the background region, in the
sense that worldlines in the old phase can both ‘‘tunnel
with’’ the bubble and also enter the bubble of the new
phase soon after it forms.

In the other, which was called the ‘‘L’’ tunneling ge-
ometry (a generalization of the Farhi-Guth-Guven mecha-
nism [29]), the bubble of the new phase lies behind a
wormhole separating it from the original background
spacetime. In this case, no causal curve from the original
phase can enter the new phase after the tunneling event (in
marked contrast to the usual picture of an expanding
bubble of new phase, or to the R mechanism). Some rare
worldlines might tunnel with the bubble, but the physical
connection between pre- and post-tunneling phases repre-
sented by such worldlines is obscure at best; moreover,
such worldlines do not exist in the (highest probability)
limit in which the bubble has zero mass.

If both L and R processes occur, then the L mechanism is
the most probable path by which regions of higher vacuum
energy emerge, while the R geometry dominates decay to a
lower vacuum [28]; both processes are dominated by the
lowest-mass bubbles.

At the semiclassical level of these calculations, the
authors of [28] found no convincing reason that one but
not the other of these two tunneling processes would occur.
Holographic considerations would seem to conflict with
the L geometries (at least for transitions to higher vacuum
energy), and [30] argued using AdS/CFT that such tunnel-
ing events from AdS to dS would correspond to nonunitary
processes; however, the question has not been settled with
any clarity. (See [31] for another treatment of L-tunneling
geometries using AdS/CFT.) In this section we will there-
fore consider how the L-tunneling process would impact
eternal inflation, and the measures as applied to it.

Let us consider an initial parcel of comoving volume in a
metastable state residing in an arbitrary potential land-
scape. This is shown at the bottom of Fig. 3. As time
goes on, bubbles of either higher or lower vacuum energy
will nucleate by either the L or R tunneling geometries.

Since low-mass bubbles are most probable, most down-
ward transitions will be CDL bubbles (the R geometry in
the zero-mass limit), and most upward transitions will be
L-geometry tunneling events corresponding to a very small
mass black hole forming in the background spacetime.
Such small black holes affect the background spacetime
in a completely negligible way as long as the nucleation
rate is rather small [32]. In particular, these upward nucle-
ations remove zero comoving volume from the old phase.

The pre- and post-tunneling spacetimes in an L-
tunneling event are described comprehensively in, e.g.,
[28]; the portion of the post-tunneling spacetime existing
behind the wormhole consists of regions with both new and
old vacuum energy separated by a thin wall, and in the
zero-mass limit is just the Lorentzian CDL bounce geome-
try. Both vacuum regions are larger than their correspond-
ing Hubble radii and so will unavoidably continue to

FIG. 3 (color online). A picture of an eternally inflating uni-
verse which takes into account both L and R tunneling geome-
tries. At the bottom, there is an ‘‘original’’ parcel of comoving
volume (defined by the horizontal spacelike slice at the bottom
of the figure), which evolves in time (vertically). True and false
vacuum bubble nucleation events occur via the R geometry in
this volume, denoted by the shaded regions which in the case of
true vacuum bubbles grow to a comoving Hubble volume and in
the case of false vacuum bubbles shrink to a comoving Hubble
volume. The vertical black lines denote the black holes formed
during L-geometry tunneling events. On the other side of a
wormhole (inside the captions), the initial distribution, which
is fixed by the tunneling geometry, undergoes L and R tunneling
events as well, spawning more disconnected parcels of volume in
which this process repeats. The original parcel of comoving
volume will spawn an infinite amount of new comoving volume
via L-geometry tunneling events. Shown on the bottom of each
parcel is the set of bubble shadows that might be used in the
CHC method to calculate probabilities PV i for each region V i.
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inflate, independent of the precise details of the initial
nucleated space (i.e. how the instanton is ‘‘sliced’’ to be
continued into Lorentzian space; see [21] for the corre-
sponding issue concerning the CDL instanton).

The result is that an entirely new ‘‘branch’’ of eternal
inflation is created, with some initial physical volume,
having essentially no effect on the original spacetime. If
a comoving volume is assigned to this physical volume
using the ‘‘scale factor time’’ of the background geometry
near the nucleation event, then the effect will be to create
new comoving volume [33]. The new branch will in turn
spawn more branches—and more comoving volume—via
L events, so that the comoving volume appears to actually
grow exponentially (though in what ‘‘time’’ this occurs is
unclear since there is no foliation of the entire spacetime).
This process is shown in Fig. 3.

How do the measures we have been discussing connect
with this new picture? Consider first the measures RTT, RT,
and W that explicitly follow causal worldlines. As formu-
lated, these measures would essentially ‘‘ignore’’ L tran-
sitions. This seems quite artificial, however, as regions with
high vacuum energy (reached by upward transitions)
would almost all arise from this process; put another
way, choosing a random point in the entire spacetime
(including the tree of new universes formed by the L-
tunneling geometry) and projecting any geodesic back, it
would almost certainly hit an L-geometry nucleation sur-
face in the past rather than the assumed initial slice.

Now consider the CV and CHC prescriptions. As stated,
the idea is to count the relative comoving volume or
number of bubbles of different types ‘‘on future null in-
finity.’’ But as described in Sec. II B and in [3,13,16], these
measures are actually calculated with very strong reliance
on a congruence of geodesics emanating from an initial
surface; thus as calculated in this formulation they would
be as unaffected by L-geometry events as RTT, RT, and W.
It is interesting, however, to speculate about taking these
prescriptions seriously as counting bubbles on future in-
finity, as this would actually include the bubbles in the
other branches created by L events.

Consider, then, a volume V i nucleated by an L event
(with the subscript i labeling the particular region under
consideration), and imagine a congruence of geodesics
emanating from it, denoting by J��V i� the part of the
spacetime’s future null infinity reachable by these geo-
desics. Then we might ‘‘count bubbles of comoving size
exceeding �’’ (for CHC) or ‘‘count comoving volume’’ (for
CV) on J��V i�, to define a set of relative probabilities
PV i .

Now, it is very unclear how precisely to combine the
PV i in all of the branches i formed from L-tunnelings out
of both the original spacetime and out of the future of V i,
and from the descendants of these branches, etc.
Nonetheless, some general statements might be made even
in the absence of such precision.

Consider first CHC. Since its probabilities are essen-
tially independent of V i, it seems that PV i will be the
same in all branches, so it is hard to see how anything else
could result from combining them.

Now consider CV, which is dependent on the initial
conditions for V i. Here, the ‘‘initial’’ conditions for a
branch are not provided by the original spacetime, but
rather by the dynamics of the L-tunneling process, with a
different set corresponding to each pair of vacua between
which the nucleations can occur. Whatever way we calcu-
late all of the PV i , it seems likely that the original space-
time’s initial conditions will be completely overwhelmed
by those of all of the branches in the infinite self-similar
tree depicted in Fig. 3. One might then imagine that the
total prior distribution P is given by a weighted sum of
these separate distributions and is independent of the initial
conditions of the original spacetime.

We also point out that these questions may apply to
‘‘stochastic’’ eternal inflation as well. It is generally im-
plicitly assumed in these models that the global spacetime
is causally connected, but this is far from proven. Indeed,
large fluctuations generically cause a large backreaction,
and it is not obvious that the large stochastic fluctuations
driving eternal inflation do not cause the production of
universes behind a wormhole (this is suggested by singu-
larity theorems [34–36]). This discussion is also relevant
for hypothetical transitions out of negative energy minima.
While no instanton has been constructed for such a tran-
sition (see [37] for a proposal concerning the probability of
such a process), if one exists then (considering thin-wall
constructions [30]) it would have to be an L-geometry.
Based on the considerations above, it is unclear how or if
including such transitions would change the predictions of
extant measures.

VI. DISCUSSION AND CONCLUSIONS

We have analyzed a number of existing measures for
eternal inflation, exploring connections that exist between
them, and highlighting some generic predictions that they
make. With this perspective, let us return to the list of
desiderata presented in Sec. II A. Shown in Table I is a
scorecard detailing which of the measures, in at least a
majority of the authors’ humble and irresolute opinions,
satisfy the properties listed in Sec. II A.

First, which measures are ‘‘physical,’’ in the sense of
providing a nonarbitrary prior probability Pp, for some
‘‘counting object’’ p, useful for calculating P X? Physical
volume weighting (discussed little here) would seem
quite physical but appears to lead to gauge depen-
dence [9,10], and incorrect predictions in at least some
gauges (see [11,12]). The related CV (p �
“unit of comoving volume”) method may avoid some of
this difficulty, but at some cost to physicality: comoving
volumes are generally meaningful only insofar as they are
reconverted to physical ones, or if there are conserved
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objects (baryons, galaxies, etc.) with fixed density per unit
comoving volume. The latter may be true after reheating,
but it is unclear to us that comoving volume is as mean-
ingful during a complex, inhomogeneous inflationary pe-
riod. Another option is to weight according to the
integrated incoming probability current [15,38] across re-
heating surfaces, which can be found directly from volume
distributions. This proposal, which is tied more closely to
the conditionalization, avoids the gauge dependence and
spurious predictions of standard volume weighting (as
discussed above, this prescription can reproduce the results
of the RTT method [15,21]).

The CHC and W methods have p � “bubbles; ” which
might be tied to conditionalization objects associated with
the various reheating surfaces (though this involves con-
siderable uncertainty since those reheating surfaces are
generically infinite). However, the objects (worldlines
and shadows) actually used to arrive at a bubble count
seem rather less physical, particularly as they demand a
cutoff prescription that—while natural—also seems as if
it could easily be different. The RT and RTT methods use
p� “segment of a worldline between vacuum transitions;”
and have been suggested as an appropriate measure if we
identify X � “unit of entropy production” [1,39]. This
connection is not entirely compelling, however, as the
results of these ‘‘holographic’’ measures can be found by
considering an ensemble of observers (as noted in Sec. II B
and by [15]). These connections suggest that CV, RT, and
RTT are very closely related, but with a consistent and
appropriate physical interpretation somewhat lacking.

Consider now gauge independence. Physical volume
weighting is gauge dependent, but the other measures
appear gauge independent, albeit with some caveats. For
RT, RTT, W, and CHC, gauge independence stems from
their counting of objects (bubbles) or events (transitions);
in CV it occurs via use of a congruence of geodesics, which
are also then ‘‘counted’’ to obtain comoving volume. The
caveats stem from subtleties—connected with a time vari-
able choice—in defining cutoffs, transitions rates, and
initial conditions, and we hope to elucidate some of these
further in future work. (We single out CVas partially gauge

dependent because the results will depend on the time
slicing used to characterize the initial value surface.)

Drawing on the description of the various measures
presented in Sec. II B, we can see that not all of the
measures under discussion have the ability to cope with
all types of transitions and vacua. For instance, the CV
method accords zero weight to metastable minima (par-
ticularly disturbing as we may live in one), and the RT
method in its current formulation is not able to describe a
landscape with terminal vacua. We also note that the CV
and RTT methods are dependent on initial conditions.

In Sec. V, we argued that it is possible—if certain types
of L bubble nucleation events occur—for different regions
of the eternally inflating multiverse to be separated by
wormholes, and therefore causally disconnected. None of
the evaluated measures are, as formulated, equipped to deal
with such spacetimes in a reasonable way. The ‘‘philoso-
phy’’ behind CV and CHC—of counting bubbles or vol-
ume on future infinity—might reasonably apply to such
spacetimes, and if this could be implemented technically
we argued that in this case CV would probably become
independent of initial conditions. The philosophy behind
RTT and RT would suggest simply ignoring these events
(as indeed those measures effectively do) but it is rather
unclear to us that this is appropriate. Accounting for such
tunneling events in measure prescriptions is very diffi-
cult—but this merely highlights the possible importance
of such transitions, and of determining whether or not they
occur.

Even thornier problems might arise from considering
transitions in greater generality. All of the measures con-
sidered rely on a congruence of worldlines and a fairly
straightforward spacetime structure. Were we to include
transitions between different string/M theory flux vacua,
including even different numbers of large spacetime di-
mensions, it is unclear whether the principles of extant
measures would apply. Without having a well-defined
description of such transitions this is difficult to assess;
hence we do not consider this in our table.

But even confining our attention to (relatively) well-
understood spacetime evolution in a general scalar poten-

TABLE I. Properties of bubble-counting measures—Y � yes, N � no, P � partial.

Property CV CHC W RT RTT

Physicality P P P P P
Gauge independence P Y Y Y Y
Independence of initial conditions N Y Y Y N
Copes with varieties of transitions and vacua P Y N N Y
Copes with nontrivial topologies P P N N N
Treatment of states and transitions:
General principles P P P P P
Physical description of transitions P P P N N
Reasonable treatment of split states Y N N N N
Continuity in transition rates Y N N N N
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tial landscape, the measures differ somewhat in how gen-
erally and robustly they treat ‘‘vacua’’ and transitions. All
of the measures under discussion have been applied to the
brand of eternal inflation driven by metastable minima.
However, it would be desirable to include the effects of all
the dynamics of an eternally inflating universe, and the
effective scalar fields that are imagined to drive it. This
includes a description of the diffusion and classical rolling
of the field that will occur. There has been work extending
CV and CHC methods to these cases, but little so far in
making such an extension to RT or RTT.

In terms of connecting transition rates to physical tran-
sitions, all of the measures ignore the small-scale details of
vacuum transitions (i.e. within a few Hubble volumes).
This may be relatively benign, but bears investigation.
For example, in RTT, transitions are thought of as some-
thing that occurs to a worldline within its causal dia-
mond—but these transitions could occur via the
encounter of a bubble formed in a nucleation process out-
side the causal diamond.

More trouble occurs when we consider nearby vacua
separated by a small barrier. The main observations of
this paper centered around a study of the sample land-
scapes shown in Fig. 2 using the RTT method. In
Sec. III A it was found that pairs of vacua that undergo
fast transitions will be very strongly weighted. Using
order of magnitude estimates of the transition rates, we
argued that the probability ratio of such pairs to other vacua
in the sample landscape can be exponentially large. This
effect occurs in both terminal and recycling landscapes.
Using the equivalences between the various measures
noted in Sec. II C (for a summary, see Fig. 1), and an
explicit example for the CHC method, we have shown
that the weighting of fast-transitioning pairs occurs in the
CHC, W, and RT methods as well. As discussed in
Sec. III C, because of this effect, by inserting a small
barrier in an intermediate state, the absolute weight as-
signed to each vacuum is affected drastically. Therefore,
the RTT, RT, W, and CHC methods are only partially
robust in their definition of transitions; the undivided-
well distribution is not recovered as the barrier disappears.
This situation might be remedied if, as bubble collisions
become more and more important, the diffusion analysis
replaces bubble nucleation (giving further impetus to gen-
eralizing the measures to treat this). In contrast, the CV
method does approach the undivided-well weight as the
small barrier disappears.

Lastly, we considered continuity in transition rates,
which was studied using a two-well landscape in
Sec. III D. It was noted that the predictions of the CHC,
RT, and RTT methods change discontinuously as a recy-
cling vacuum is deformed into a terminal vacuum. This
discontinuity makes the exact properties of vacua in a
landscape important. Such a discontinuity could poten-
tially be avoided if the order of limits in the cutoff proce-
dure were modified.

Most of the discussion—and all of the scorecard—has
focused on issues of principle concerning the measures as
abstract procedures. Some of the features discussed have
implications for what such assumed measures would mean
observationally. In particular, we saw in Sec. IV that the
exponential dependence of the prior distribution Pp on the
details of the potential implies that making predictions
using bubble counting measures may be very hard. This
problem is particularly acute when, for some parameter �,
the factors Pp��� and nX;p��� [these are the prior and
conditionalization factors needed to produce a prediction
in the form of Eq. (1)] vary appreciably over the same
range in �. This may be the case, for example, when � is
related to the number of e-folds during inflation. If the
observation that fast-transitioning pairs are exponentially
weighted generalizes to more complicated landscapes,
then bubble-counting measures may in some cases lead
to strongly exponential prior probabilities that would over-
whelm any conditionalization factor nX;p���. This would
lead to very strong predictions, which might be successful,
or disastrous. More generally, this exponential dependence
suggests that current measures seem to potentially call for a
complete knowledge of the fine details of the entire land-
scape, a Herculean requirement.

Perhaps not surprisingly, we come to the conclusion that,
while progress has been made towards predicting our place
in the multiverse, we are far from finished. It would be
desirable to find and explore other measures and see if they
fall victim to any of the same problems that we have
outlined.
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APPENDIX: MATRIX CALCULATIONS AND
SNOWMAN DIAGRAMS

In this appendix we present a quick way of calculating
normalized probabilities for terminal and cyclic landscapes
in a unified manner, which also sheds light on the nature of
the regularizing limit taken in the cyclic case.

First, assemble the relative transition probabilities �NM
into a matrix � (equivalent to Bousso’s � matrix). Starting
in an initial state represented by a vector q with compo-
nents qN (�NqN � 1), after one transition the mean num-
ber of entries (or ‘‘raw probability’’) for each vacuum will
be given by�q. At the second transition an additional�2q
entry will occur and so on. After n transitions the raw
probability will be given by ����2 � . . .�n�q. If we
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set Sn � ���
2 � . . .�n, then �1���Sn � ��1�

�n�. In the terminal case we can invert �1��� and take
the n! 1 limit to obtain S1 directly (�n ! 0 since
asymptotically all the probability goes into the terminal
vacua and so fewer and fewer vacuum entries occur). In the
cyclic case det�1��� � 0 and �n does not tend to zero,
and things are not so simple. It is convenient to proceed by
replacing � by �1� "�� (where " is an auxiliary parame-
ter to be taken to zero after the calculation), which can be
inverted. Neglecting the troublesome determinant factor
(since we shall later be normalizing to obtain probabilities
from numbers of vacuum entries anyway), we take the
limits n! 1 and "! 0 in that order, and for both termi-
nal and recycling landscapes obtain the simple expression

 S1 / T � �adj�1����� (A1)

where adj denotes the adjoint matrix operation (i.e. the
transpose of the matrix of cofactors of the matrix in ques-
tion). Multiplying T into q and normalizing yields the
probabilities for the vacua given the initial state in
question.

This procedure yields exactly the same results as the
pruned tree method. We thus see that the latter procedure is
equivalent to considering sequences of transitions up to
some length n and then taking the limit n! 1.

The �NM’s in question can conveniently be depicted in
snowmanlike diagrams such as those shown in Fig. 4,
which apply to the calculations in Sec. III. These diagrams
emphasize that the path between any two vacua can involve
an arbitrary number of circulations in closed loops between
recycling vacua. In fact, we treat both cases at once by
leaving �ZB0 arbitrary and only set it to 1 or 0 as appro-

priate after having calculated T. We also allow for the
possibility of vacuum A being terminal in the same manner.

Suppressing the normalizing factor for clarity, we obtain

 

PA;B;B
0;Z

A

PA;B;B
0;Z

B

PA;B;B
0;Z

B0

PA;B;B
0;Z

Z

0
BBBB@

1
CCCCA /

�AB�1��B0Z�ZB0 �

1��B0Z�ZB0

�B0B

�B0B�ZB0

0
BBB@

1
CCCA (A2)

in the recycling case with the full set of superscripts
indicating that the results are independent of initial
conditions.

In the terminal case we can only start in states A, B, or
B0, and we obtain

 

PAA
PAB
PAB0
PAZ

0
BBB@

1
CCCA /

�AB

1
�B0B

�ZB0�B0B

0
BBB@

1
CCCA; (A3)

 

PBA
PBB
PBB0
PBZ

0
BBB@

1
CCCA /

�AB

�AB�BA ��BB0�B0B

�B0B

�B0B�ZB0

0
BBB@

1
CCCA; (A4)

and

 

PB
0

A
PB

0

B
PB

0

B0

PB
0

Z

0
BBB@

1
CCCA /

�AB�BB0

�BB0

�BB0�B0B

�ZB0 �1��AB�BA�

0
BBB@

1
CCCA: (A5)

The relative transition probabilities are related to the
transition rates by

 �BA � 0 or 1; (A6)

 �AB �
�AB

�AB � �B0B
; (A7)

 �B0B �
�B0B

�AB � �B0B
; (A8)

 �BB0 �
�BB0

�ZB0 � �BB0
; (A9)

 �ZB0 �
�ZB0

�ZB0 � �BB0
(A10)

where �BA � 0 if A is terminal and �BA � 1 if it is not.
Substituting these expressions into Eqs. (A3)–(A5), we can
then take the limits discussed in Sec. III to produce the
appropriate probability tables.

In the case where vacuum A is terminal (�AB � 0), there
are a number of ratios of interest. The probabilities as-
signed by the CV method to this sample landscape were

µ

A

B

B’

Z

µ

µ

µ

ABµ BA

µBB’ B’B

B’Zµ ZB’

A

B

µ

µ

ABµ BA

µBB’ B’B

B’
B’Z

Z

FIG. 4. Examples of ‘‘snowman diagrams’’ summarizing rela-
tive transition probabilities �NM. The one on the left is for a
recycling landscape and the one on the right is for a terminal
landscape.
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calculated in [3] (the FABI model), and using these results,
we can directly compare the results of the CV and RTT
methods. For initial conditions in B or B0, we find

 

PBA
PBZ
�
�AB��BB0 � �ZB0 �

�B0B�ZB0
; (A11)

 

PB
0

A

PB
0

Z

�
�AB�BB0

�ZB0 ��AB � �B0B�
: (A12)

As expected, given the argument of Sec. II C, these results
agree with the predictions of the CV method.
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