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Expression for second post-Newtonian level gravitational deflection angle of massive particles is
obtained in a model independent framework. Comparison of theoretical values with the observationally
constructed values of post-Newtonian parameters for massive particles offers the future possibility of
testing at that level competing gravitational theories as well as the equivalence principle. Advantage of
studying gravitational deflection of massive particles over that of massless particles in testing gravity is
discussed.
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I. INTRODUCTION

A consequence of general relativity (GR) is that light
rays are deflected by gravity. Historically, observations of
this aspect of gravity provided one of the early proofs in
favor of GR (the explanation of perihelion advance was the
earliest.) The effect is nowadays routinely used as a tool to
study various features of the Universe, such as viewing
fainter or distant sources, estimating the masses of galaxies
etc. [1].

Like photons, particles having masses are also deflected
by gravity. The general relativistic corrections in the equa-
tion of motion of a massive test particle moving in bound
orbits have been studied with great accuracy in the litera-
ture [2]. These studies have great relevance in comparing
theory with observations of gravitational waves from com-
pact binary systems. However, study of orbits of unbound
massive particles in gravitational field has not received
sufficient attention as of now. The main reason could be
that the observational aspect of unbounded massive parti-
cles was not very practical: there was no known astrophys-
ical source of free point particles that can be detected easily
with good angular precision. The situation seems to have
improved somewhat. Recent theoretical studies [3] favor
the existence of local astrophysical sources of relativistic
neutral particles like neutrons and neutrinos with observ-
able fluxes. Besides, high energy neutrons are produced
during solar flares [4]. Moreover, with the advent of new
technology new experiments have been proposed [5], pri-
marily to study gravitational deflection of light with high
precision, in which laser interferometry will be employed
between two spacecrafts/space stations whose line of sight
pass close to the sun. Hence there might be a possibility
that, in the future, neutron or some other neutral particle

may be used in a similar experiment instead of photon, thus
providing an opportunity for studying gravitational deflec-
tion of massive particles. Henceforth, we use the abbrevia-
tion for post-Newtonian as PN such that first-PN effect is of
the order of �1=��, second-PN effect is of the order of
�1=�2� and so on.

The expected angular precision of the planned astromet-
ric missions using optical interferometry is at the level of
microarcseconds (� arcsec) and hence these experiments
would measure the effects of gravity on light at the second-
PN order (c�4). Though measurements with massive par-
ticles at the level of microarcsecond accuracy is way
beyond the present technical capability, it can still be
cautiously hoped that astrometric missions in the distant
future using massive particle interferometry would have
angular precisions close to that to be obtained using laser
(optical) interferometry. Whatever be the technical sce-
nario, a study of theoretical aspects of gravitational
deflection of massive particles at the second-PN approxi-
mation is useful in its own right. (To our knowledge, the
deflection angle for massive particles has been theoreti-
cally estimated in the literature with an accuracy of only
first-PN order [6] so far.)

In the present article, we shall formulate the second-PN
contribution to the gravitational deflection of massive par-
ticles in a model independent way but with a special em-
phasis on the sun as gravitating object. The corresponding
PN parameters for light deflection then follow as a corol-
lary. The key idea here is to exploit an advantage offered by
the kinematics of massive particles over that of massless
ones: The velocity of the probing massive particle can be
altered. The investigation (i) helps us circumvent some
difficulties related with photon deflection in the second-
PN order, (ii) allows us to ‘‘construct’’ the coordinate solar
radius from the particle deflection data itself and moreover,
(iii) offers a possible further test of the equivalence prin-
ciple. These issues are discussed at the end.
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II. GRAVITATIONAL DEFLECTION OF MASSIVE
PARTICLES AT SECOND POST-NEWTONIAN

ORDER

We consider the general static and spherically symmet-
ric spacetime in isotropic coordinate which is given by (we
use geometrized units i.e. G � 1, c � 1)

 ds2 � �B���dt2 � A����d�2 � �2d�2 � �2sin2�d�2�:

(1)

Restricting to orbits in the equatorial plane (� � �=2), the
expression for the deflection angle for particles moving
with a velocity V as measured by an asymptotic rest
observer can be written as [7]

 ���o� � I��o� � � (2)

with (see Appendix)

 I��o��2
Z 1
�o

d�

�2 A
��1=2����

�
1
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�1����Eg�
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�2A

�
��1=2�

;

(3)

where �o being the distance of the closest approach,

 J � �o�A��o�fB�1��o� � Eg�1=2 (4)

and

 E � 1� V2: (5)

The PN formalism in some orders [7,8] is usually em-
ployed to describe the gravitational theories in the solar
system and also to compare predictions of GR with the
results predicted by an alternative metric theory of gravity.
This method actually is an approximation for obtaining the
dynamics of a particle (in a weak gravitational field under
the influence of a slowly moving gravitational source) to
one higher order in M

� (M is the mass of the static gravitat-
ing object) than given by the Newtonian mechanics.
Following the PN expansion method, we assume the metric
tensor is equal to the Minkowski tensor ��� plus correc-
tions in the form of expansions in powers of M

� and con-
sidering up to the second-PN correction terms, we have

 B��� � 1� 2
M
�
� 2	i

M2

�2 �
3

2

i
M3

�3 ; (6)

 A��� � 1� 2�i
M
�
�

3

2
�i
M2

�2 : (7)

	i, �i are the PN parameters (also known as the Eddington
parameters), �i and 
i can be considered as the second-PN
parameters, i stands for either � or m denoting photons or
massive particles, respectively. Several of these parameters
are different for different theories. In GR, all of them are
equal to 1 as can be readily checked by expanding the
Schwarzschild metric.

We should note that the metric coefficients above are
independent of any specific model; they result solely from
the assumption of central symmetry. Starting with the
expansion (6) and (7) per se, the expression for the angle
of deflection for unbound particles up to the second-PN
order follows from Eq. (3) and when 2M

� <<V2, and it
works out to

 �m � am
M
�o
� bm

�
M
�o

�
2
; (8)

where

 am � 2
�
�m �

1

V2

�
; (9)

 bm �
3�m�

4
� �2� 2�m � 	m�

�

V2 � 2
�
�m �

1

V2

�
2
:

(10)

The above expressions are also valid for massless particles
(��, a�, b�) as may be seen under the substitution V � 1.
Clearly the deflection angle would be larger for particles in
comparison to that of photons. Our calculation shows that
the term representing the second order effect (bm) contains
only the three parameters 	m, �m, �m and does not contain

m, a cubic order contribution. This implies that calcula-
tion of the deflection of unbound particle orbits (including
photons) by gravity to any given order needs only the
knowledge of every term to that order in the expansions.
In other words, to second-PN order, one needs to consider
both in goo and gij terms only up to M2

�2 . Similarly, to third-

PN order, which is not our interest here, we would need
expansions of both the metric components up to order M3

�3

and so on. This is in contrast to the case of planetary
dynamics (bound orbits) where the calculation typically
requires knowledge of goo more accurately than gij (For
instance, to calculate the planetary precession to the order
ofM, one expands goo up to 2	mM2

�2 while gij is expanded up

to only 2�mM
� ; for next order accuracy, one would need to

consider the complete expansion as given in Eqs. (6) and
(7) above so that the parameters �m, 
m become important
in this case.) The deflection angle �m for the
Schwarzschild spacetime can be obtained by taking 	m �
�m � �m � 1.

The deflection angle also can be expressed in terms of
coordinate independent variables, such as the impact pa-
rameter b which is the perpendicular distance from the
center of the gravitating object to the tangent to the geo-
desic at the closest approach. In that case, � has to be
replaced by b in Eq. (8), Eq. (9) would remain unaltered
but Eq. (10) would change to

 bm�
3�m�

4
��2�2�m�	m�

�

V2�2
�
�m�

1

V2

��
1�

1

V2

�
:

(11)
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Since impact parameter is the ratio of the angular momen-
tum and energy of the particle as measured by an observer
at rest far from the gravitating object, it is a formally
measurable quantity but is not very suitable for practical
measurements [9].

III. OTHER SIGNIFICANT EFFECTS

In the present work, the mass distribution of the grav-
itating object is assumed to be mainly spherically symmet-
ric; any deviation from such symmetry would produce their
effects. The effect of quadrupole moment of the mass
distribution on the deflection angle is proportional to
JQMR2

�3
o

, where R is the average radius of sun. Thus, even a

small quadrupole moment parameter JQ could produce
significant contribution to deflection. However, the effect
is limited largely to the first-PN order (� 0:1 � arcsec)
while in the second-PN order the effect is too small
(� 10�7–10�8 � arcsec). If the gravitating object also
has angular momentum, its effect on the deflection angle
contributes to the second-PN order but it can be separated
out. All these are discussed below.

A. Effect of quadrupole moment of the mass
distribution

Theoretical value of solar quadrupole moment JQ,
though it depends strongly on solar model used, is very
small, of the order of 10�7 [5,8]. Since our study is aimed
at sun as the gravitating object we have ignored higher
order terms involving JQ. Thus due to the quadrupole
moment of the mass distribution the effective mass

parameter becomes Meff � M
�

1�
JQR2

2�2 �3cos2�� 1�
�

which leads to the following corrections in the components
of the metric tensors [5,8,10]:

 �goo��� � JQ
MR2

�3 �3cos
2�� 1� (12)

and

 �gjk��� � ��jk�iJQ
MR2

�3 �3cos
2�� 1�; (13)

where R is the average radius of the mass distribution and �
is the angle between radius vector and the z-axis and hence
in the equatorial plane � � �=2. In the equatorial plane,
the deflection caused by the quadrupole moment calculates
to

 �QM �
2JQMR

2

�3
o

�
�m
3
�

1

V2

�
: (14)

Assuming R� �o at the closest approach to the sun and
taking V � 0:75, 	m � �m � �m � 1, for sun M	

R	
�

2:12
 10�6, this first-PN quadrupole term �QM �

0:1 �arcsec. It is roughly 7 orders of magnitude less than

the first-PN deflection am
M
�o
� 0:8 sec and is more than 1

order of magnitude less than the second-PN contribution
bm�

M
�o
�2 � 3:4 �arcsec. We have not displayed the next

higher order quadrupole terms involving J2
Q and second

order terms in 1=�2 containing JQ here because they have
magnitude in the range 10�7 to 10�8 �arcsec, too small to
be of any practical significance. We can justifiably ignore
these second-PN quadrupole contributions. The quadru-
pole contribution to the deflection of light is given in
Ref. [11].

B. Effect of rotation

The angular momentum of the gravitating object is
assumed small as in the case of sun. The resulting leading
term of the relevant metric tensor is

 goi �
4Ma
�

; (15)

where a is the angular momentum per unit mass of the
object. The contribution of the rotation to the deflection
angle is then given by [6]

 �rot �
4MaV

�2
o

: (16)

The value of a can be positive or negative depending on the
direction of rotation. When the angular momentum of the
gravitating object is antiparallel with the direction of the
incoming particle, a is positive and hence rotation causes
larger deflection whereas for parallel angular momentum,
a is negative and the deflection angle will be less. Thus the
rotational effect can be easily separated out from other
contributions by studying the deflection of particles at
two opposite sides of the gravitating object.

The gravitational deflection angle of light with an accu-
racy up to second-PN order readily follows from Eqs. (8)–
(10), (14), and (16) using V � 1.

IV. EXTRACTING POST-PN PARAMETERS FROM
MEASUREMENTS

To extract post-PN parameters from gravitational de-
flection of massive particles, one first has to measure
deflection angles �m for different values of V of the prob-
ing massive particle grazing the sun. Then, a least square
fitting of the recorded deflection angle data with Eq. (8)
through Eqs. (9) and (10) will result in the PN values 	m,
�m, �m together with the solar radius �o in isotropic
coordinate. If GR is a correct theory to second-PN order,
then the best fit will give 	m � �m � �m � 1, and if the
weak equivalence principle holds then 	m � �m � �m �
	� � �� � �� � 1. In the case of light, there is only one
probe velocity available, namely, V � c � 1, and there is
no option to fit 	�, ��, �� separately. One just proceeds to
check whether the measurement is consistent with GR
prediction obtained by simply assumimg all the PN pa-
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rameters as unity. But the difficulty with this procedure is
that, for light grazing the sun, one needs the other parame-
ter, the solar radius, whose value to the required level of
accuracy is not available, nor can it be consistently ob-
tained, together with other PN parameters, from the ob-
served data itself. These points are illustrated later, in
Sec. V.

It should be mentioned that the entire calculation of
deflection angle could be performed in any other coordi-
nates, standard or harmonic and so on. Expression for
deflection angle in any other coordinates also can be ob-
tained directly from Eqs. (8) to (10) just by applying
appropriate transformations. The observable deflection
angle �m is of course coordinate choice independent.
Thus change to another coordinate system will result
merely in the corresponding functional changes in the
expressions for the coefficients am, bm, respectively, and
in the value of the coordinate radius of the sun (say, to ro if
we change to standard system) [12]. Note that once used in
a certain coordinate system, the PN values 	m, �m, �m are
to remain fixed for a given theory of gravitation (GR or
Brans-Dicke theory, etc.) in any other coordinate system.

V. DISCUSSION

The study of gravitational deflection of massive particles
is important for several reasons which are discussed below.

First of all, observations of gravitational deflection of
massive particles with � arcsec precision could probe the
gravitational theories at the second-PN level without any
difficulty as explained at the end of Sec. II. The second
order prediction for gravitational deflection of light as
evolved from different studies is plagued by the following
factors: When the light ray just grazes the limb of the sun,
one needs a consistent value of coordinate solar radius to
be put into the expression for deflection �� calculated in
different coordinate systems (with fixed GR values of unity
for PN parameters). Now there is a long known value for
the solar radius R	, (R	 � 6:961
 108 km [13]) mea-
sured under Euclidean approximation! But, even in the
expression for �� in the Schwarzschild isotropic system,
the radial coordinate �o is erroneously identified with the
same R	. Then it gives a second-PN contribution of
�3:5 � arcsec to deflection angle in GR [14]. If one uses
the standard Schwarzschild system instead, the second-PN
contribution to the deflection angle of light in GR follow-
ing from Eqs. (8)–(10) would be �15�

16 � 1� 4M2

r2
o

which is

numerically about 7 �arcsec, provided the standard coor-
dinate distance ro of closest approach is identified again
with the same R	. The deflection angle can also be ex-
pressed in terms of coordinate independent variables, such
as the impact parameter b. In that case, the second-PN
contribution to deflection angle in GR becomes 15�

16
4M2

b2 ,
and when at closest approach b is identified with R	, the
magnitude of second-PN deflection angle is �11 �arcsec

[15]. Thus there exists difficulties about the interpretation
of the prediction of GR (or in fact of any viable gravita-
tional theory) at the second-PN order. The single fixed
value forR	 is used in all calculations because there cannot
be any way to get consistent values for the solar radius
from the higher order light deflection data due to its unique
trajectory grazing the sun.

There is a more fundamental reason for these anomalies.
It is that the measurements of solar radius usually employ
Euclidean geometry as an approximation [6] whereas the
angle of gravitational deflection or other GR effects are
principally based on the consideration of curved space-
time. But, comparing points in two different geometries,
i.e., in curved spacetime and flat spacetime, is totally
meaningless [16]. The Euclidean approximation works
tolerably well only up to the first order, that is, in weak
field gravity caused by a source like the sun. The magni-
tude of the second order contribution is, however, of the
same order as the error that arises due to such an approxi-
mation. Hence the numerical value of gravitational deflec-
tion angle of light cannot be unambiguously predicted at
the level of second-PN order within the theoretical scheme
currently in practice. Since the deflection angle for massive
particles depends also on the velocity of the particle which
gives us an extra freedom, the stated ambiguity can be
easily avoided by measuring deflection angles for two or
more velocities of the probing massive particle.

In GR, a coordinate length like �o is not directly mea-
surable, it can only can be indirectly constructed from the
values of actual measurements. The PN parameters and
also the otherwise unknown coordinate solar radius �o (or
equivalently, ro in standard Schwarzschild coordinates)
can be constructed through least square fitting with the
measured deflection angles �m and probing velocities V
using the Eqs. (8)–(10). The idea is that the values of
coordinates, �o and ro, which refer to the same radial
point, should be treated more like other PN parameters
(	m, �m, �m) due to the fact that the ‘‘flat geometry’’
spacetime points cannot be algebraically identified in a
curved spacetime [16]. Technically, however, the flat radial
distances can be constructed by using metric gravity itself
(Eddington expansion) in terms of a large set of unknown
PN parameters (	m, �m, �m) including �o by fitting them
with the observed data [7]. This method has been adopted,
for example, by Shapiro and his group in the radar echo
delay observations [7,17]. The resulting parameter values
can then be compared with the theoretical predictions of
deflection in GR as well as in other competing theories
(like Brans-Dicke theory) in the second-PN order involv-
ing both massive and massless particles.

The study of gravitational deflection of massive particles
is also important in the context of testing the weak equiva-
lence principle which is one of the fundamental postulates
of general relativity. The principle states that the trajectory
of a freely falling object is independent of its internal
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structure and composition. In other words all particles are
coupled with spacetime geometry universally. The princi-
ple has been tested with great accuracy through different
experiments, notable among them are the Eötvös type
experiments [10] where comparison of gravitational and
inertial masses of objects are made by measuring their
acceleration in a known gravitational field. For massless
particles like photons, however, such measurements obvi-
ously cannot be performed. Instead, in such situation the
principle is tested by examining whether the gravitational
(second-PN) coupling parameter � is universal for all
particles, massive or massless. On the basis of supernova
1987 neutrino and optical data [18], a limit of j �� � �m j
� 3:4
 10�3 has actually been found [19]. However, the
mass of a neutrino m�e is very small (if not zero), the
present upper limit being m�e � 3 eV. Hence, a more
conclusive experiment would be to examine whether the
gravitational couplings for photon and massive particles
(other than neutrinos) are the same or not. The observa-
tional value of j �� � �m j should provide a direct answer
as to the degree of validity of the principle in question.

VI. REMARKS ON PARTICLE DEFLECTION
EXPERIMENT

The main concern, which is still far from resolved, is
whether realistic experiments for observing gravitational
deflection of massive particles can be devised or not. Here,
we only speculate on some possibilities. The most impor-
tant requisite in this context is to generate a beam of
suitable test particles. Charged particles like protons or
electrons have to be excluded as test particles because
they suffer electromagnetic interactions by the interplane-
tary magnetic field. Among neutral particles, neutrinos are
unlikely to serve the purpose as their speeds are almost, if
not exactly, the same as the speed of light. Thus, neutrons
seem to be the only feasible candidate. They are known to
be produced during solar flares but they can at best be used
to study the gravitational deflection by an intermediate
planet. If astrophysical sources of neutrons other than the
sun are detected in future experiments, the problem of
searching the test particle beam would be resolved auto-
matically. Otherwise, one might hope to generate the beam
only artificially. However, since neutrons are unstable with
a mean lifetime of 886 sec , only neutrons with a minimum
speed of 0.75 c can be used as test particles so that they do
not decay during the travel from one micro-spacecraft to
another. Though in (man-made) accelerator experiments
(at earth) neutrons can be accelerated to such speeds, it
seems improbable at the present stage of technology that
neutrons can be accelerated to such high energies from a
micro-spacecraft. This is a challenge for the future.

Alternatively, stable massive objects, such as a bullet,
can also be used as test particles but they must have a
minimum speed of �6
 107 cm sec�1 so that its total
energy remains positive throughout the path (from one

micro-spacecraft/earth to another spacecraft) and would
not be captured by solar gravity. The fastest man-made
object (Helios 2 solar probe) has a speed of about 7

106 cm sec�1.

Any meaningful information on second order effects can
be extracted from measurements of gravitational deflection
of massive particles at the level of second order accuracy
only when the uncertainty of the first-PN contribution
[Eq. (9)] is smaller than the second-PN contributions.
Since radius is considered as free parameter in the pro-
posed scheme, the uncertainty in the first-PN contribution
of deflection angle is entirely due to uncertainty in the
knowledge of the speed of the massive test particles. For
solar gravity the ratio of second order to first order con-
tributions of deflection angle is around 10�6. Thus for a
meaningful second order measurement of particle deflec-
tion, the relative uncertainty of first order deflection angle
��1

�1
must be less than 10�6 which in turn requires �v

v <
10�6. This should not be a major problem as a comparable
level of accuracy in measurement of particle velocity has
already been achieved in different experiments [20].

Particle detectors with directional resolution at the level
of � arcsec accuracy is certainly beyond the present tech-
nical capability. The maximum directional accuracy of
operating particle telescopes is limited to around
100 mili-arcsec [21]. Configuring neutron interferometer
instrument S18 as a Bonse-Hart small angle scattering
camera, an angular resolution of few��10�mili� arcsec
has been achieved [22]. Maximum directional accuracy
achieved so far using electromagnetic radiation based tele-
scopes is also of the same order. However, currently
planned astrometric missions employing optical interfer-
ometry have set their goal to achieve a directional accuracy
at the level of � arcsec. Thus, hopefully, achieving the
required level of � arcsec accuracy in particle detection
might not be too far away.

VII. CONCLUSION

The subtlety of the observational meaning of coordinate
distance is not unknown to the physics community [7]. One
could live with the ambiguous predictions in higher order
light deflection had the stakes been not high. It is impera-
tive to test at a higher order level which theory of gravita-
tion, GR or other theories, fits better. The far-reaching
implications of the answer do not require any elaboration.
What we analyzed above is a possible theoretical scheme
for testing gravity at the second order.

For the scheme to work in practice, the level of experi-
mental accuracy seems extremely demanding. But one
should recall that when the second order deflection of light
was first calculated theoretically in the early eighties [12],
experimental verification of the result was completely
beyond the then technical capability. Now, after 25 years,
technology has been developed to the stage that measuring
deflection angle due to solar gravity at the second-PN order
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appears feasible. However, as discussed in Sec. V, the
numerical value of gravitational deflection angle of light
cannot be uniquely predicted at the level of second-PN
order within the existing theoretical scheme. As a result the
proposed experiments with light are unlikely to provide
any fruitful test of GR at that order. This is due to a
question of principle related to the lack of a consistent
parameter fitting procedure with light and not a question of
attainable accuracy in experimental measurements. It has
been shown that such a situation can be circumvented by
using a kinematical freedom available with a massive test
particle, viz., its velocity that can be altered at will unlike
in the case with light. One can then measure the deflection
angles for two or more velocities of the probing massive
particle. However, it is understood that such measurements
are completely beyond the present technical feasibility.
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APPENDIX

The standard equations for a geodesic, namely,

 

d2x


ds2
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��

dx�

ds
dx�
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� 0 (A1)

for the general metric (1) become
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�
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� 0; (A3)
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�
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A0

A

�
d�
ds

d�
ds
� 2 cot�

d�
ds

d�
ds
� 0; (A4)

 

d2t

ds2
�
B0

B
d�
ds

dt
ds
� 0 (A5)

(primes denoting differentiation with respect to �). If we
choose � � �=2 and d�=ds � 0 initially, Eq. (A3) war-
rants that they would remain the same always. Thus nor-
malizing time coordinate suitably, one obtains for orbits in
the equatorial plane from Eq. (A5)

 

dt
ds
� B�1: (A6)

Integrating Eq. (A4)

 �2 d�
ds
� A�1J2; (A7)

where J is a constant of integration. From Eqs. (A2), (A6),
and (A7), one finally obtains

 

1

A�4

�
d�
d�

�
2
�

1

A�2 �
1

J2

�
1

B
� E

�
� 0; (A8)

which leads to Eq. (3). J can be conveniently expressed in
terms of distance at closest approach. At the point of
closest approach, d�=d� vanishes. Using this in
Eq. (A8), one recovers Eq. (4).

[1] P. Schneider, J. Ehlers, and E. E. Falco, Gravitational
Lenses (Springer-Verlag, Berlin, 1992).

[2] T. Ohta, H. Okamura, T. Kimura, and K. Hiida, Prog.
Theor. Phys. 50, 492 (1973); 51, 1220 (1974); 51, 1598
(1974); T. Damour, P. Jaranowski, and G. Schāfer, Phys.
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