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On a compact space with nontrivial cycles, for sufficiently small values of the radii of the compact
dimensions, SU�N� gauge theories coupled with fermions in the fundamental representation spontane-
ously break charge conjugation, time reversal, and parity. We show at one loop in perturbation theory that
a physical signature for this phenomenon is a nonzero baryonic current wrapping around the compact
directions. The persistence of this current beyond the perturbative regime is checked by lattice
simulations.
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Quantum Chromodynamics (QCD) is the theory of
strong interactions. Experimental evidence suggests that
the theory is invariant under charge conjugation (C), parity
(P), and time reversal (T) (see [1] for a recent account of
experimental data). The invariance of QCD under P has
been rigorously proved in [2]. One of the assumptions of
the proof is Lorentz invariance, which holds in an infinite
volume, but it is manifestly broken at finite temperature or
in compact space, where parity can be spontaneously
broken [3]. Although convincing arguments exist [4], a
proof of the invariance of QCD under T and C is still
lacking.

Recently, it has been pointed out by the authors of [5]
that C, P, and T are spontaneously broken in a geometry
with one compact dimension with toroidal topology for
sufficiently small values of the radius of the torus when
periodic boundary conditions are imposed on fermion
fields. This provides a controllable mechanism for testing
the consequences of the breaking of those symmetries in
QCD. The order parameter is the vacuum expectation value
(VEV) of the Wilson loop winding in the compact direc-
tion

 W � TrPei
R
L

0
A�dx� ; (1)

with � the compact direction of size L, g the coupling, and
A� the vector potential. In pure gauge SU�N� hWi /
ei�2�=N�n with 0 � n < N for L< Lc and hWi � 0 for L>
Lc, where Lc is the critical value of the length of the
compact direction [6]. Modulo relabeling of the axes, the
Euclidean rotated system corresponds to the theory at finite
temperature, and the transition that takes place at Lc is the
well-known confinement-deconfinement phase transition
[7,8].

When fermions in the fundamental representation are
considered, the structure of the ground state changes radi-
cally. At small radius, if the fermions have antiperiodic
boundary conditions in the compact direction, hWi / 1

(again this is the case for a system at finite temperature
in the deconfined phase), while for periodic boundary
conditions the Wilson loop can take two values with a
nonzero imaginary part. These VEVare related by complex
conjugation. Each one of the two values identifies a pos-
sible vacuum of the theory. The effect of C, P, and T is to
interchange the vacua. Hence, in this system those symme-
tries are broken. For orientifold gauge theories in the large
N limit, which are related to QCD [9], on a S3 � S space as
the radius of the S is increased above a critical value
keeping the radius of the S3 small, the system regains
invariance under C, P, and T [10].

The arguments from which the phase structure of QCD
on a finite volume is determined are based on perturbative
calculations. Their validity beyond the perturbative regime
has been proved by lattice simulations [11].

While the Wilson loop wrapping around the compact
direction proves to be useful to characterize the phases, it is
not a quantity that can be accessed directly in experiments.
Physically, we expect a symmetry breaking to determine a
detectable change in the properties of the system. Hence, at
least one measurable quantity that is not invariant under the
broken symmetries should acquire a VEV. The spatial
components in the compact directions of the baryonic
current ji �

PNf
n�1

� nI � �i n, where  n is the fermion
field for flavor n, the sum runs over the flavor index, and
I is the identity in color space, satisfy this requirement [12].
Moreover, like the system, they are invariant under CP,
CT, and PT. This makes the ji suitable candidates as
detectors of the symmetry breaking. If hj�i � 0 for the
compact direction �, an observer will see a nonzero flux of
baryons in that direction.

Using a similar ansatz to the one of [5], we shall now
show at one loop in perturbation theory that indeed the
VEV of the spatial current in a compact direction is differ-
ent from zero. The Lagrangian for a SU�N� gauge theory
coupled with Nf degenerate flavors of fermions of mass m
in the fundamental representation is
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L � �
1

2g2 Tr�G���x�G���x��

�
XNf
n�1

� n�x��i6@� A6 �m� n�x�; (2)

where G�� � @�A� � @�A� � 	A�; A�
. The correspond-
ing partition function is

 Z �
Z
�DA�� det�i6@� A6 �m�Nfe��i=2g2�

R
d4x Tr�G��G���:

(3)

We consider the system on a T � L3 manifold, in which the
T direction corresponds to time and the three spatial com-
pact directions L are equal. We impose periodic boundary
conditions in space, while T is assumed to be large enough
for the choice of boundary conditions in that direction to be
irrelevant. The path integral (3) can be evaluated at one
loop, by fixing a diagonal background gauge. This gives an
effective one loop potential for the diagonal components of
the gauge field

 

~A �

~v1

L

. .
.

~vN
L

0
BB@

1
CCA; X

i

~vi � 0 mod�2��; (4)

which reads [13]

 V� ~v1; . . . ; ~vN� �
�XN
i;j�1

f�0; ~vi � ~vj� � 2Nf
XN
i�1

f�m; ~vi�
�
:

(5)

The first sum comes from the integration of the fluctuations
of the gauge and ghost fields, while the second sum comes
from the fermion determinant. The function f is defined as

 f�m; ~v� �
1

L

�
mL
�

�
2X
~k�0

K2�mLk�

k2 sin2

�
1

2
~k � ~v

�
; (6)

with the sum running over vectors in Z3 � ~0 and K2 the
order two modified Bessel function of the second kind.
From the asymptotic behavior of K2�x� at small x, K2�x� �
2=x2, we get

 f�0; ~v� �
2

�2L

X
~k�0

sin2�12
~k � ~v�

k4 : (7)

Form� L�1,K2�mLk�  e�mLk
����������������������
�=�2mLk�

p
and the sum

in f is dominated by terms with k � 1. This is true also in
general, the higher frequencies in the sum being quickly
oscillating with amplitude suppressed at least as 1=k4.
With the constraints in Eq. (4), the minima of the effective
potential are located at

 vj1 � vj2 � . . . � vjN �
�
� N�1

N � forN odd
� forN even:

(8)

There are eight degenerate minima for odd N and one
minimum for even N. In the former case, hWi develops a

VEV with an imaginary part, and the spontaneous symme-
try breaking occurs. The baryonic current can be computed
adding a source to the Lagrangian (2). Defining

 L � ~�� � L� ~� � ~j; (9)

we obtain

 hjii � �i
1

L3T

�
@
@�i

logZ	 ~�

�
~��0

; (10)

with Z	 ~�
 the partition function in the presence of a source
~�. The source has the effect of shifting ~vi ! ~vi � L ~� in

the expression for the effective potential (5). This does not
change the gauge contribution. Since

 Z	 ~�
 � eiTV� ~v1�L ~�;...; ~vN�L ~��; (11)
at the minima (8) we get

 h~|i � �
NfN

L3

�
mL
�

�
2X
~k�0

K2�mLk�

k2 sin� ~k � ~v� ~k: (12)

hjii is zero when vi � 0 or vi � � (i.e. when the symmetry
breaking does not occur in direction i), is odd under vi !
�vi, and goes to zero whenm!1. Hence it fulfills all the
natural requirements in the current scenario. In particular,
we expect a nonzero current for an odd number of colors.
In order to get a better handle on the properties of the
baryonic current in the broken phase beyond perturbation
theory, we have performed a lattice simulation using four
flavors of staggered quarks coupled to an SU(3) gauge
field. The number of flavors has been fixed as the minimal
one for which the staggered action has an undoubtedly
well-defined continuum limit. For the pure gauge action
we have used the standard Wilson form SG � �

P
P�1�

1
3 TrUP�, where � � 2N=g2

0 is the coupling of the theory,
UP is the path-ordered product of link variables around the
elementary plaquette P, and the sum runs over all pla-
quettes P. For the fermionic part we have used the simple
staggered action

 SF �
X
x;�

���x�
1

2
� ���x�U��x���x� �̂� � c:c:�

� am
X
x

���x���x�; (13)

with ���x� � ��1�
P

��1
��0

x� (�0�x� � 1), � a complex
three-vector, am the mass in lattice units (a is the lattice
spacing), and c.c. stands for the complex conjugate term to
the first one in parentheses. More complicated formula-
tions of the action or choice of another discretized form for
the fermionic fields would have added extra complication
with very little payback for the problem at hand.

Using as a base the publicly available MILC code [14],
we have performed a simulation for � � 5:5 and am �
0:1. The physical scale has been determined by measuring
the Sommer parameter r0 [15] on a 24� 163 lattice, where
the three equal spatial directions Ns have been closed with
periodic boundary conditions and the temporal directionNt
with antiperiodic boundary conditions for the fermions,
while the gauge fields are periodic in all directions. We

B. LUCINI, A. PATELLA, AND C. PICA PHYSICAL REVIEW D 75, 121701(R) (2007)

RAPID COMMUNICATIONS

121701-2



find ar0 � 4:0�1�; since the Sommer scale is ’ 0:5 fm, the
lattice spacing is a ’ 0:125 fm, which means that Ls �
aNs ’ 2 fm and Lt � aNt ’ 3 fm. Hence, in physical
units the lattice is large enough for the calculation to be
reliable and the spatial volume is such that C, P, and T are
not broken. We then studied the system with the same �
and m on a 24� 43 lattice, with the same boundary con-
ditions as above. The spatial geometry is a three-torus,
while the size of the temporal direction is large enough
for the system to be confined. In this setup, Ls ’ 0:5 fm. A
quick check of the VEV of the spatial Wilson loops shows
that the system is in the broken symmetry phase. An
example of the obtained distribution for hWi is displayed
in Fig. 1, which shows hWi clustering around ei�2=3��.

The baryonic current can be obtained for staggered
fermions via the Noether theorem, like in the continuous
case. Defining the massless Dirac operator as

 Dx;y �
X
�

���x��U��x�	y;x��̂�U
y
��x� �̂�	y;x��̂� (14)

and the four matrices

 Kx;y
� � ���x��U��x�	y;x��̂ �U

y
��x� �̂�	y;x��̂� (15)

the current reads

 h~|i �
1

TL3 Tr��D�m��1 ~K�: (16)

In order to evaluate the current on a given configuration,
we have taken 100 stochastic estimates. Since the current is
an anti-Hermitian operator in the Euclidean space, we
expect its imaginary part to develop a VEV, while the
real part should average to zero. In Fig. 2 we show the
behavior of the imaginary part of the baryonic current in a
compact direction as a function of the Monte Carlo sweeps,
and we contrast such behavior with that of the imaginary
part of the Wilson line in the same direction. Not only does

the plot show that the baryonic current is different from
zero, but it also strongly suggests that there is a correlation
between the value of the current and the value of the
Wilson line. In particular, the modulus of the imaginary
part of the current grows when the modulus of the imagi-
nary part of the Wilson line grows, the sign being opposite
between the two. This is better shown by Fig. 3, which
displays the behavior of the current in another compact
direction. In this case, the system makes a transition be-
tween the vacuum identified by the phase of the Wilson
line being 2

3� to the other vacuum and then back.
Noticeably, the current changes sign exactly at the points
in which the imaginary part of the Wilson line changes
sign, with its magnitude always tracking closely the mag-
nitude of the phase of hWi. The sum of the terms with j ~kj �
1 in the current (12) is proportional to hWi. The strong
correlation between the two quantities suggests that the
nonleading terms in (12) do not affect significantly the
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FIG. 1 (color online). Scatter plot for 1000 measurements of
the Wilson line in one compact direction on a 24� 43 lattice at
� � 5:5 and am � 0:1. The directions corresponding to the
three cubic roots of the unity are indicated by the solid lines.
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FIG. 2 (color online). The imaginary part of the current and the
imaginary part of the Polyakov loop in one compact direction as
a function of the Monte Carlo sweeps.
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FIG. 3 (color online). As in Fig. 2, but in another compact
direction. The system shows a transition between two vacua. The
transition probability is finite, due to the finite lattice extension.
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behavior of j�. Transitions between the different vacua like
those shown in Fig. 3 are possible because of the finite
spatial size of the system. We have verified that increasing
� at fixed lattice extensions Ns and Nt, which corresponds
to decreasing the physical volume, the frequency of the
transitions increases. Likewise, decreasing � decreases the
likelihood of a transition taking place. Since the baryonic
current is zero for symmetry reasons in the symmetric
phase, its behavior in the broken symmetry phase makes
it legitimate to use that current as an order parameter for
the symmetry breaking. For consistency, we have also
checked that the real part of the current in the compact
directions and the zero component are zero also in the
broken symmetry phase. In order to evaluate the magnitude
of the current, we averaged over directions for which no
tunneling between the two vacua took place. We find

 jImhj�ij � 0:060� 0:002: (17)

It is instructive to compare this number with the one loop
expression, Eq. (12), which gives hj�i ’ 0:037473�4�,
where the error is a conservative estimate for the truncation
of the sum. Hence, quite remarkably the one loop calcu-
lation pins down the correct order of magnitude even for a
compact dimension with size of the order of 1=�QCD.
Nonperturbative effects could explain the discrepancy be-
tween the perturbative formula and the measured value.
Besides, our calculation being at one single lattice spacing,
we do not have any handle on the size of discretization
errors. For this reason, a careful comparison between the
perturbative expression and the lattice result should be the
subject of a more detailed study, which is beyond the scope
of this paper. Our preliminary Monte Carlo results for the
current closer to the continuum limit show substantial

agreement between the measured value and the perturba-
tive formula.

In conclusion, we have shown that QCD on small com-
pact dimensions with nontrivial cycles is characterized by a
flow of current whose sign depends on the vacuum selected
by the system. The persistent baryonic current reminds us
of the supercurrent observed in superconductors. However,
there is a fundamental difference: unlike the case of super-
conductors, in QCD in compact not simply connected
space the current is still conserved, since the U(1) baryon
symmetry (which in the case of QCD is a global symmetry)
remains unbroken. The persistent flow is induced by the
spontaneous breaking of a discrete symmetry, charge con-
jugation. The baryonic current can be used as an order
parameter for the spontaneous breaking of charge conju-
gation in SU�N� gauge theories. Over the Wilson line, it
has the advantage of being an observable quantity.
Moreover, unlike the Wilson line, which is ultraviolet
divergent on the lattice, the baryonic current is a well-
defined observable. This makes it better suited for numeri-
cal studies of the physics of C parity spontaneous breaking
close to the continuum limit. A similar investigation is
currently in progress.
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