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The ghost and gluon propagator and the ghost-gluon and three-gluon vertex of two-dimensional SU(2)
Yang-Mills theory in (minimal) Landau gauge are studied using lattice gauge theory. It is found that the
results are qualitatively similar to the ones in three and four dimensions. The propagators and the Faddeev-
Popov operator behave as expected from the Gribov-Zwanziger scenario. In addition, finite-volume effects
affecting these Green’s functions are investigated systematically. The critical infrared exponents of the
propagators, as proposed in calculations using stochastic quantization and Dyson-Schwinger equations,
are confirmed quantitatively. For this purpose lattices of volume up to �42:7 fm�2 have been used.
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I. INTRODUCTION

Two-dimensional Yang-Mills theory turns out to be a
very fascinating topic. Quite a number of quantities, e.g.,
the string tension [1], can be calculated exactly, although
not all quantities are (yet) known analytically. In particular,
up to now it was not possible to calculate the Green’s
functions in Landau-gauge. However, exactly these
Green’s functions may contain interesting information.

The reason for this is confinement. In two-dimensional
Yang-Mills theory, confinement in Landau-gauge is al-
ready manifest in perturbation theory: All elementary
fields, the gluons and ghosts, form a BRST (Becchi-
Rouet-Stora-Tyutin)-quartet, and thus are confined accord-
ing to the Kugo-Ojima mechanism [2]. This can be ex-
tended nonperturbatively, provided that BRST symmetry is
unbroken beyond perturbation theory. This makes explicit
the absence of propagating degrees of freedom in two-
dimensional Yang-Mills theory. But even without propa-
gating degrees of freedom, this permits to investigate the
manifestation of the quartet mechanism on the level of the
Green’s functions.

In addition, the reasoning for the confinement scenario
of Gribov and Zwanziger [3–6] is applicable to two di-
mensions as well [6]. However, this scenario has no direct
manifestation on the perturbative level, as in the case of the
quartet mechanism. It is only manifest in the infrared
properties of correlation functions. In particular, the
Gribov-Zwanziger scenario predicts that the Faddeev-
Popov operator Mab accumulates near-zero or zero eigen-
values. As a consequence, the ghost propagator DG, being
the expectation value of the inverse Faddeev-Popov opera-
tor, should be infrared diverging. Detailed calculations
using stochastic quantization [6] or Dyson-Schwinger
equations (DSEs) [7,8] lead to a power-law behavior in
the far infrared in any dimension from two to four,

 DG�p� �p!0 p
�2�2�: (1)

Furthermore, the gluon propagator is infrared vanishing,
and thereby explicitly positivity violating. Its scalar part
also behaves like a power-law in the far infrared,

 D�p� �
1

�d� 1�

�
��� �

p�p�
p2

�
D���p� �p!0 p

�2�2t;

(2)

where d is the space-time dimension. The two exponents
are related by the sum rule

 t� 2��
4� d

2
� 0: (3)

Under the assumption of an infrared bare ghost-gluon
vertex, two possible values for � are found, 0 and 1=5
[6,8]. If physics is smooth as a function of dimensionality,
the nonzero exponent would be expected due to the results
obtained in three and in four dimensions [6–9]. Note that
in calculations using the renormalization group in the case
of a bare ghost-gluon vertex the same equations as in DSE
calculations are obtained, thus leading to the same results
for the infrared exponents in any dimension [10].

These two scenarios are two of the most discussed for
the confinement mechanism of gluons also in higher di-
mensions, see, e.g., for four dimensions the reviews [11]
and in three dimensions [6,8,12]. A verification of their
predictions using lattice gauge theory in higher dimensions
has, however, turned out to be very complicated, mainly
due to finite-volume effects. In three dimensions only a
qualitative agreement between the predictions of the
Gribov-Zwanziger scenario and functional calculations
has been obtained [12,13]. In four dimensions, the lattice
results are inconclusive (see, e.g., [14–17]). Studies using
Dyson-Schwinger equations in a finite volume support that
these problems are, in fact, finite-volume effects, and
provide even a quantitative prediction of these in four
dimensions [18]. The latter are in acceptable agreement
with the results obtained in lattice calculations [18].

Here, for two dimensions, the accessible lattices permit
a quantitative test of the predictions. It will be shown that*Electronic address: axel.maas@savba.sk
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the predictions, assumptions, and actually the value of � �
1=5, of the Gribov-Zwanziger scenario are found in lattice
calculations, and hence there is very strong evidence for
the Gribov-Zwanziger scenario to be at work. In fact, it is
possible to quantify the finite-volume effects.

Hence, in the following a quantitative confirmation of
the predictions of the Gribov-Zwanziger scenario using
lattice gauge theory for two-dimensional SU(2) Yang-
Mills theory in (minimal) Landau gauge will be given.

Of course, with such results, one question immediately
arises when comparing the two-dimensional results to
those in higher dimensions: Why do they agree qualita-
tively on the level of two- and three-point Green’s func-
tions in the infrared? This points to a structural origin of
both, the Gribov-Zwanziger and the Kugo-Ojima scenario,
provided both are, in fact, correct. It is particularly tempt-
ing to then investigate the relation of both scenarios in two
dimensions. Also how the relation of two-dimensional
Yang-Mills theory to topological field theory [19] comes
then into play is immediately on one’s mind. These, and
similar questions arise when contemplating the results, and
indicate that there are many interesting opportunities still
present in the study of two-dimensional Yang-Mills theory.
These are highly interesting questions, and must be inves-
tigated in the future.

Within this work, however, as a first step just the results
from the lattice calculations will be collected. The two-
point functions, and as associated quantities the Faddeev-
Popov operator and the running coupling, will be inves-
tigated in Sec. II. The three-point functions will afterwards
be discussed in Sec. III. A short summary of the results will
be given in Sec. IV. The technicalities of the lattice simu-
lations can be found in Appendix A. Lattice artifacts other
than finite-volume effects will be discussed in Appendix B.
That the suppression of color indices in Eqs. (1) and (2) is
justified will be shown in Appendix C.

II. TWO-POINT FUNCTIONS

The definition and determination of the two-point func-
tions on the lattice, and the associated quantities, have been
repeatedly discussed in the literature (see, e.g., [5,12,14–
17]). Here, the methods described in [12] are employed,
therefore using a standard Wilson action. Furthermore, the
appearance of �-factors to obtain the correct scaling has
been discussed there, also in case of the three-point func-
tions. Hence, this will not be repeated here. To assign units
to the quantities, the exactly calculable string tension [1]
has been assigned the conventional value �440 MeV�2, as
in higher dimensions. A detailed listing of the simulation
parameters, including lattice sizes and bare couplings/lat-
tice spacings, can be found in Appendix A, in Table IV.

A. Gluon propagator

The gluon propagator is the most readily accessible two-
point correlation function. The results for the propagator

D�p�, (2), and its associated dressing function p2D�p� are
shown in Fig. 1. A strongly infrared suppressed gluon
propagator is clearly visible. At the same time, the infrared
suppression increases with increasing physical volume. In
particular, while on a volume of �2:02 fm�2 the propagator
appears to be infrared diverging, a clear maximum appears
already at a volume only a factor �2–3�2 larger. Only the
point at the lowest nonvanishing momentum and the point
at zero are not consistent with an infrared vanishing gluon
propagator. This is, however, expected [18]. The scaling of
D�0� with volume, shown in Fig. 2, makes it very likely
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FIG. 1. The top panel shows the gluon propagator at small
momenta for various volumes. The lower panel shows the gluon
dressing function over the whole accessible momentum range.
Open circles correspond to a volume of �42:7 fm�2, full squares
to �14:2 fm�2, full triangles to �7:11 fm�2, and upside-down full
triangles to �2:02 fm�2. The solid line in the top panel is the
function 4:5p4=5.
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that in the infinite-volume limit the gluon propagator van-
ishes at zero momentum, as it vanishes like a power-law
with inverse volume. In fact, the exponent 0.79 of the
determined power-law is in very good agreement with
the expectation [18] that it should coincide with the ex-
ponent of the gluon propagator t � 4=5 of Eq. (2).

Furthermore, even the gluon dressing function does not
exhibit any qualitative difference to three dimensions. In
particular it also exhibits a (shallow) maximum. As the
propagator becomes ultraviolet constant, as a consequence
of asymptotic freedom, there is no intrinsic necessity for
such a maximum, as in four dimensions. Its presence in this
theory without propagating degrees of freedom is hence
slightly surprising. However, in the context of a DSE treat-
ment, it is natural to expect such a maximum due to the
different signs of ghost and gluon self-energy contributions
[8].

The most interesting quantity is the far infrared behav-
ior. It is clearly visible that the gluon propagator is strongly
infrared suppressed. The deviation at the very lowest mo-
menta points, however, shows a more massive behavior, as
expected from DSE studies in finite volumes [18].
However, the propagator at zero momentum decreases
rapidly with volume, as discussed above, and a massive
behavior is seen only in a momentum window which
rapidly decreases with increasing volume. More interest-
ingly, it is expected that in the regime1

 

2�
aN
� p� �QCD (4)

the infinite-volume behavior should prevail. In particular,
the gluon propagator should decrease even in a finite
volume in this domain like the power-law (2) [18]. Using
the sum rule (3), the exponent of the propagator itself
should be 4�. Such a power-law is shown in the top panel
in Fig. 1, and agrees well with the data inside the domain
(4).

To investigate this quantitatively, the effective exponent
�Z was determined. This was done by discarding the two
lowest nonvanishing momentum points. Then the next five
highest points in momentum were used to fit a power-law.
To obtain errors, the steepest and shallowest curve consis-
tent with a 1�-confidence interval was determined as well.
That this is likely too optimistic is shown by the scattering
of the results below. If more than one momentum repre-
sentation for a given momentum existed, the results were
averaged over the various representations, as the violation
of rotational symmetry is a minor effect that far in the
infrared, see Appendix B. The results are shown in Fig. 3.
While there are still significant fluctuations at large volu-
mina, the measured exponents tend towards the infinite-
volume value.

The volume-dependence of the measured exponents can
be fitted by the formula2

 �fZ � a�
b
L
�

c

L2 �
d

L3 : (5)

Two fits have been done. In one case, a was fitted as well,
while in the second case a was set to the predicted infinite-
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FIG. 2. The zero-momentum value D�0� of the gluon propa-
gator as a function of inverse edge length. The straight line is the
power-law fit 5:67L�0:79 to the 20 points at the smallest volumes.

1/L [GeV]
0 0.1 0.2 0.3 0.4 0.5

Zκ

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

Gluon infrared exponent

FIG. 3. The measured infrared exponent �Z obtained from the
gluon propagator. Two fits are given. The dashed line corre-
sponds to a fit of type (5) which is forced to go to the predicted
value � � 1=5 at 1=L � 0, while the one given by the solid line
is not forced to do so. The fit parameters can be found in Table I.

1The characteristic scale �QCD is in two dimensions of course
proportional to the coupling constant g. 2The cubic term is necessary to include all volumes.
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volume value � � 1=5. However, even with a free, the
result is in reasonable agreement with 1=5. In particular,
the results are not consistent with an infrared finite gluon
propagator, which would be expected if � � 0, the second
solution found in [6,8]. The individual fit parameters are
given in Table I.

Hence, the gluon propagator behaves quantitatively ex-
actly as predicted in the Gribov-Zwanziger scenario, when
finite-volume effects are taken properly into account.

B. Ghost propagator

The ghost propagator has been determined along the
same line as in higher dimensions [5,12]. However, more
interesting than the propagator itself is the dressing func-
tion p2DG�p�. The propagator and the dressing function
are shown for different volumes in Fig. 4. It is clearly
visible that the dressing function is infrared diverging.
This already indicates that of the two possible exponents
� � 0 and � � 1=5 found [6,8] only the latter one, if one at
all, is realized.

Compared to the case of the gluon propagator, finite-
volume effects are hardly visible to the eye. It seems that
the propagator actually becomes less infrared diverging
with volume. From the quantitative evaluation below, this
is found to be not the case. What seems to be the case is that
the domain of closest approach to the origin is affected by
finite-volume effects. Its modification leads to the various
changes in the infrared in a nontrivial manner. If this is the
case, the finite-volume effects would be very hard to
compare between lattice calculations and functional cal-
culations, as they would be dominated by midmomentum
effects, which in functional methods are usually most
strongly affected by truncations [8,11]. This would, on
the other hand, explain why in four dimensions the finite-
volume effects in the ghost propagator have indeed been
found to be at least to some extent different in lattice and in
Dyson-Schwinger calculations [18]. In addition, Gribov-
Singer effects [3,21], which according to the Gribov-
Zwanziger scenario are possibly irrelevant in the infinite-
volume limit [22], could still at least be relevant at volumes
as large as those used here. This has not yet been inves-
tigated in two dimensions in Landau gauge.

Even with the available volumes the effect is small. A
power-law with exponent � � 1=5 already describes the
data quite well in the infrared, as shown in the top panel of
Fig. 4. Therefore, a more quantitative investigation of the
infrared behavior is required.

This is done by extracting the effective infrared ghost
exponent �G in the same way as in the case of the gluon
propagator. The results for �G are shown in Fig. 5. While
statistical errors are larger than in the case of the gluon
propagator, it is visible that all results cluster around the
predicted infinite-volume value of � � 1=5 at large vol-
umes. This is also seen from a fit of the type (5). The
corresponding fit parameters can be found in Table II.
Because of statistical uncertainties it is not as clean as
for the gluon. However, it is visible that the exponent
does not vary strongly with volume. In fact, the effective
ghost exponent seems only to change by about a third when

TABLE I. Fit parameters of formula (5). Fit 1 corresponds to
one with fixed a � � � 1=5, fit 2 to one where a was fitted as
well.

Fit a b [fm] c [fm2] d [fm3]

1 1=5 0.130 �12:9 19.5
2 0.190 0.358 �14:0 20.9
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FIG. 4. The top panel shows the ghost dressing function at
small momenta for various volumes. The lower panel shows the
ghost propagator over the whole accessible momentum range.
Open circles correspond to a volume of �42:7 fm�2, full squares
to �14:2 fm�2, full triangles to �7:11 fm�2, and upside-down full
triangles to �2:02 fm�2. The solid line is the function 1:1p�2=5.
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changing the volume by almost 2 orders of magnitude.
Finally, even with the limited fit accuracy it is not unrea-
sonable that the results are, in fact, consistent with the
prediction of � � 1=5.

Another possibility to check the infinite-volume results
is to test the predicted sum rule (3). This is done by using
the effective measured exponents �Z and �G in Fig. 6.
Again, a fit of type (5) has been performed. The corre-
sponding fit parameters are given in Table III. As already
anticipated from the individual results, the sum rule be-
comes better and better satisfied when approaching the
infinite-volume limit. Hence, it seems very likely that the
shiny relation (3) is, in fact, recovered in the infinite-
volume limit.

One of the particularly interesting results so far is that
the ghost exponent is only very weakly dependent on the
volume, compared to the one of the gluon. This is in
marked contrast to the case in four-dimensional DSEs in
a finite volume [18]. Furthermore, all attempts to extract a
ghost exponent in lattice calculations in higher dimensions
also yield a rather small, more or less volume-independent,
exponent [17]. It is thus interesting to compare the ghost
propagator in various dimensions at roughly the same

volume. This is done in Fig. 7. Only the momentum regime
is shown which is accessible by all of the lattices used.
Furthermore, the propagators have been normalized so that
they coincide at a momentum of 2 GeV. For the momenta
itself, the string tension was set to the same value for all
three different dimensionalities.

Aside from the question to which extent such a com-
parison is justified, the results behave as predicted: The
ghost propagator becomes more divergent with increasing
dimension. Also, it is in agreement with the predictions [6–
8,11] that the difference is more pronounced from two to
three dimensions than from three to four dimensions: �
changes from 1=5 to � 0:39 or 1=2 from two to three
dimensions. The four-dimensional exponent of � � 0:59
is, on the other hand, rather close to the one in three
dimensions. This qualitative behavior, with all its caveats,
is another indication for the correctness of the Gribov-
Zwanziger scenario and the quantitative predictions.

Furthermore, the result in two dimensions is in fact
confirming quantitatively the Gribov-Zwanziger scenario
in two dimensions. However, the very slow change in the
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FIG. 5. The measured infrared exponent � obtained from the
ghost propagator. Two fits of type (5) are given. The dashed line
corresponds to a fit which is forced to go to the predicted value at
1=L � 0, while the one given by the solid line is not forced to do
so. The fit parameters can be found in Table II.

TABLE II. Fit parameters for the ghost effective exponent �G
using formula (5). Fit 1 corresponds to one with fixed a � � �
1=5, fit 2 to one where a was fitted as well.

Fit a b [fm] c [fm2] d [fm3]

1 1=5 0.139 �0:711 0.173
2 0.150 1.28 �6:41 7.47
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FIG. 6. Test of the sum rule t� 2�� 1 � 0, using the effec-
tive ghost exponent �G, shown in Fig. 5, and the effective gluon
exponent tZ � ��1� 2�Z�, shown in Fig. 3. Two fits of type (5)
are given. The dashed line corresponds to a fit which is forced to
go to the predicted value at 1=L � 0, while the one given by the
solid line is not forced to do so. The fit parameters are given in
Table III.

TABLE III. Fit parameters for a formula of type (5) for the
sum rule. Fit 1 corresponds to one with fixed a � 0, fit 2 to one
where a was fitted as well.

Fit a b [fm] c [fm2] d [fm3]

1 0 0.0192 24.4 �38:6
2 �0:0806 1.85 15.2 �26:9
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effective exponent over orders of magnitude in volume is
indicative of what challenges have to be met in higher
dimensions to see the asymptotic ghost exponent.

Finally, the exact value of the exponent obtained in DSE
calculations depends on the projection of the tensor equa-
tion for the gluon [8,11]. The value of 1=5 is obtained only
in the case of a transverse projection [8]. This in turn
implies automatically a certain structure of the longitudinal
(w.r.t. to the gluon momentum) tensor structure of the
ghost-gluon vertex, such that it leads for arbitrary projec-
tions to the infrared exponent 1=5. This then makes the
determination of this tensor structure an almost trivial
exercise in the infrared limit. Furthermore, this precisely

prescribes how the Slavnov-Taylor identity for the gluon
propagator, and hence its transversality, is recovered in the
far infrared.

C. Running coupling

Although it is possibly a questionable concept in two-
dimensional Yang-Mills theory, it is possible to formally
define a running coupling. Analogous to higher dimensions
[11,23], the quantity3 ��p� � p6D�p�DG�p�

2 is then pro-
portional to the coupling constant. In particular, as a con-
sequence of the sum rule, the quantity ��p� should behave
in the infrared as p2. Hence �=p2 should be constant.

From the results on the sum rule, given in Fig. 6, it is
already clear that an infrared fixed point will hardly be
seen. However, the results, shown in Fig. 8, exhibit such a
fixed point at the largest volumes, provided the lowest
point at nonvanishing momentum is discarded.4 Note that
the finite-volume effects seem to make the running cou-
pling diverging instead of vanishing, as in higher dimen-
sions [17,18].
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FIG. 7. Comparison of the ghost propagator in different di-
mensions. Circles are two dimensions, triangles are three dimen-
sions, and upside-down triangles are four dimensions. The lattice
volumes are �6:06 fm�2, �5:20 fm�3 [12], and �5:28 fm�4 [25], at
� � 30, � � 4:2, and � � 2:3, respectively.
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FIG. 8. The effective running coupling divided by p2 for
various volumes. Open circles correspond to a volume of
�21:3 fm�2, full squares to �14:2 fm�2, full triangles to
�8:08 fm�2, and upside-down full triangles to �2:02 fm�2.

3To improve the statistical behavior, the ghost dressing func-
tion has been evaluated on a plane-wave source instead of a point
source, as in case of the propagator alone [12]. Hence only the
same volumes are accessible for the coupling constant as for the
ghost-gluon vertex below, where this is also necessary.

4For the coupling constant only edge momenta have been
used, in contrast to the propagators where also other momenta
have been included. Dismissing here only the lowest nonvanish-
ing momenta is thus equivalent to dismissing the two lowest
nonvanishing momenta in case of the propagators.
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Thus at sufficiently large volumes, and taking finite-
volume effects into account, it is in fact possible to observe
a fixed point in the coupling in lattice gauge theory.

Note that there is a small, systematic overall factor
between the coupling obtained in the different volumes
shown in Fig. 8. This effect is not visible in the propagators
themselves, but is increased here by taking effectively the
third power of the propagators. As this effect occurs at all
momenta, it is likely not simply a finite-volume effect.
However, this can still be an O�a�-effect which is caused,
e.g., among other effects, by the fact that tadpole correc-
tions, which give overall-factors to the propagators, have
been neglected here [16,24].

D. Faddeev-Popov operator

A last element in the analysis of the two-point correla-
tion functions are the properties of the Faddeev-Popov
operator, central to the Gribov-Zwanziger scenario [3–5].
The results on the ghost propagator, which is the expecta-
tion value of the inverse Faddeev-Popov operator, already
indicate the existence of an enhancement of its eigenspec-
trum near-zero eigenvalue. This enhancement is the hall-
mark of the Gribov-Zwanziger scenario. However, it is
interesting to see the quantitative behavior of the eigens-
pectrum. Hence the spectral properties of the Faddeev-
Popov operator have been determined as well, using the
technique described in [12].

The near-zero part of the eigenspectrum is shown for
various volumes in Fig. 9. The volume scaling of the lowest
eigenvalue is shown in Fig. 10. It is clearly visible that with

increasing volume more and more eigenvalues are found
near zero. This is the near-zero eigenvalue enhancement, as
predicted in the Gribov-Zwanziger scenario.5 In addition,
the lowest eigenvalue vanishes in the infinite-volume limit,
and in fact vanishes faster than the lowest eigenvalue of the
Laplacian. This is a property which has also been observed
in higher dimensions [12,25]. It has been argued that such a
larger rate may be necessary for the ghost propagator to
develop an infrared divergence [26]. It is therefore another
direct evidence for the validity of the Gribov-Zwanziger
scenario. This vanishing of the lowest eigenvalue is in fact
necessary for the Gribov-Zwanziger mechanism to work:
For infinite volume, an average configuration should be
arbitrarily close or on the common boundary of the funda-
mental modular region and the Gribov horizon, where by
definition the determinant of the Faddeev-Popov operator
vanishes, and thus must have at least one vanishing eigen-
value [5].

III. THREE-POINT FUNCTIONS

Investigating the vertices in two dimensions is a very
interesting task. On the one hand, the vertices do not lend
themselves easily to evaluation, since as three-point func-
tions they are much more strongly affected by statistical
fluctuations than two-point functions. Hence their inves-
tigation has so far been limited to rather small volumes in
four [27,28] and even in three dimensions [12,27]. On the
other hand, the vertices describe interaction effects, and it
is not a priori clear how they should behave in a theory
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FIG. 9. The near-zero part of the eigenvalue spectrum of the
Faddeev-Popov operator for volumes �2:02 fm�2 (dashed-dotted
line), �7:11 fm�2 (dotted line), �14:2 fm�2 (dashed line), and
�24:9 fm�2 (solid line). 1164228, 2261493, 3517400, and
2614098 eigenvalues have been enclosed in the full spectrum,
respectively.

5Note that the decrease towards larger eigenvalues seen in
Fig. 9 is likely an artifact of the method to determine the
eigenvalues [12]. Furthermore, all eigenvalues are only found
with multiplicity 1.
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without propagating degrees of freedom. In particular, the
possibility that the three-gluon vertex, or at least some of
its tensor structures, could change sign is a very interesting
observation in higher dimensions [12,27]. Whether this is
also the case in two dimensions, especially in large vol-
umes, is thus also a question of interest.

One drawback of investigating vertices in two dimen-
sions on a square lattice is the impossibility to construct a
momentum configuration such that all three momenta are
equal. This equal momentum configuration is the one
usually preferred in functional studies of the vertices
[29], as it permits to have only one external scale.
However, in higher dimensions it was found that the results
do not change qualitatively when instead two of the mo-
menta are taken to be orthogonal [12,27]. This configura-
tion can be realized in two dimensions, and will thus be
employed here.

In general, vertices have a significant amount of tensor
structures. To obtain a more simple function to measure the
interaction represented by a vertex, the quantity

 G �
�tl;abcGabc

�tl;abcDadDbeDcf�tl;def
: (6)

will be evaluated instead. Here the indices a; . . . ; f are
generic multi-indices, encompassing field-type, Lorentz
and color indices. Also, Dab are the propagators of the
fields, Gabc represent the full Green’s functions and �tl;abc

are the corresponding tree-level vertices. This quantity is
defined such that it becomes equal to one if the full and the
tree-level vertex coincide. For a more detailed discussion
of this quantity and its properties, see [12].

There are two vertices in Landau-gauge Yang-Mills
theory. The first is the ghost-gluon vertex, which is shown
for four different volumes in Fig. 11. In this case in fact the
vertex is shown, as only one tensor structure, the tree-level
one, survives nonamputation [12].

As in the higher-dimensional cases [12,27,28], it exhib-
its an essentially constant behavior, except for a possible
small structure below roughly 1 GeV in ghost momentum.
This structure is a maximum, with a drop towards smaller
momenta below the tree-level value. Furthermore, the
value at small ghost momenta and finite gluon momenta
is below 1, but finite. If a modification away from a
constant infrared behavior of this vertex should exist, it
must set in with an extremely small effective exponent to
not be visible on these volumes.

These results are all in qualitative agreement with the
ghost-gluon vertex in higher dimensions [12,27,28]. In
particular, the results confirm the truncation scheme in
the far infrared used in two dimensions in stochastic quan-
tization and DSE calculations [6–8]. In that case an infra-
red finite ghost-gluon vertex was assumed, delivering the
critical infrared exponent � � 1=5, which in fact was
observed in the previous section. This once more nicely
confirms the Gribov-Zwanziger scenario, which leads di-
rectly to this type of approximation. Furthermore, in four

dimensions the infrared critical exponent of the ghost-
gluon vertex is fixed, once the exponents of the propagators
are known [29]. This can be extended to two dimensions
and yields in fact an infrared constant ghost-gluon vertex
[30]. This is a very stringent test of the scenario. The
results found here in lattice calculations once more pass
this test. Or, more aptly put, the test passes the results.

The three-gluon vertex is much more troublesome to
calculate due to strong statistical fluctuations, in particular,
at large lattice (not physical) momenta. These are, in fact,
even more pronounced than in higher dimensions, as was
already observed when going from three to four dimen-
sions [27]. Thus the uncertainty connected with this vertex
is quite large. Nonetheless, the results shown in Fig. 12 are
quite spectacular. At a point of about 300–400 MeV, cor-
responding roughly to the position where the plateau in the
coupling constant develops or where the gluon propagator
starts to bend over, the quantity GA3

changes sign.
Thereafter, it diverges, likely like a power-law, as can be
seen from the bottom-left panel in Fig. 12. Precisely such a
divergence is expected in higher dimensions [29]. This also
compares very well to lattice results in higher dimensions,
which found the onset of such a negative divergence in
three dimensions [12], and at least an infrared suppression
in four dimensions [27]. Note, however that due to the
contraction (6) not necessarily one particular tensor struc-
ture of the vertex changes sign. It is as well possible that
two tensor structures have opposite sign throughout, but
differ in magnitude, and one is dominant in the infrared,
while the other dominates in the ultraviolet.

The infrared divergence of the three-gluon vertex when
one momentum vanishes is roughly in agreement with a
power-law with exponent �2:2 for the single external
scale, as can be seen in the bottom-left panel of Fig. 12.
Although this is not the momentum configuration used in
DSE calculations [29], there is again just one external
scale. It could be expected that the infrared behavior is
the same, if there is just one scale left. In that case, this
exponent of �2:2 is actually the one expected in DSE
calculations [30]. This statement applies as well to the
infrared constancy of the ghost-gluon vertex.

Taking this reasoning seriously would imply that all
two- and three-point functions exhibit exactly and quanti-
tatively the infrared exponents predicted in DSE calcula-
tions, and are in agreement with the Gribov-Zwanziger
scenario. Therefore, this work here would represent the
first quantitative confirmation of these two frameworks
using lattice gauge theory.

It is of course tempting to also investigate higher n-point
functions. Unfortunately, this is currently out of reach in
the present approach. The reason is that only nonampu-
tated, full Green’s functions can be directly obtained with
the methods used here. Therefore, it would be necessary to
first subtract the not-connected part of the amplitude, and
then amputate the Green’s functions. In general, the not-
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connected and the connected amplitude have the same
infrared behavior, at least in four dimensions, if the pre-
dictions [29] are correct. Therefore, it would be necessary
to disentangle the sum of two functions, which both have
the same leading infrared behavior. As the statistical fluc-
tuations become larger when increasing the number of
external legs, the required statistics become impractical
at the current time. Hence it would be necessary to reduce
these fluctuations. It is possible that, e.g., including only
results for the same sign of the Polyakov loop6 would be

helpful, as by this the statistical fluctuations, at least in case
of the gluon propagator, are reduced [31]. This has to be
investigated further.

IV. SUMMARY

The volumes accessible in two-dimensional Yang-Mills
theory permitted here to obtain the two-point and three-
point functions on very large lattices, up to �42:7 fm�2 and
�21:3 fm�2, respectively. In particular, it was possible to
obtain quantitative results on the infrared behavior with a
precision which is unprecedented in the lattice investiga-
tions of these quantities.
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FIG. 11. The ghost-gluon vertex for orthogonal momenta. The top panel shows the vertex for all possible orthogonal momentum
configurations for a volume of �21:3 fm�2, with errors suppressed. The ripple structure is an artifact of the method [12], and vanishes
with increasing statistics. The bottom panel shows the vertex in two specific momentum configurations. In one case the gluon
momentum vanishes (left panel), and in the other the gluon and ghost momenta are of equal magnitude (right panel). In this case,
various physical volumes are compared. Open circles correspond to a volume of �21:3 fm�2, full squares to �14:2 fm�2, full triangles to
�8:08 fm�2, and upside-down full triangles to �2:02 fm�2.

6At finite volume, the value of the Polyakov loop is nonzero
for each individual configuration.
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These results demonstrated that the gluon propagator is
infrared vanishing, the ghost propagator is infrared diverg-
ing, and the ‘‘effective coupling constant’’ also has the
expected qualitative infrared behavior. Moreover, it was
possible to make these statements quantitative. Including
the effects of finite volume, it was possible to determine the
infinite-volume limit of the characteristic infrared expo-
nents for the two-point functions, and demonstrate the

validity of the sum rule (3). In fact, the value � � 1=5
found coincides with one of the two possible values ex-
pected from stochastic quantization and Dyson-Schwinger
equations for an ‘‘on-shell,’’ i.e. transverse, gluon.
Furthermore, the infrared behavior of the vertices permit
to close the system self-consistently in the context of such
equations. In particular, the ghost-gluon vertex is infrared
constant.
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FIG. 12. The three-gluon vertex for orthogonal momenta. The top panel shows the vertex in two specific momentum configurations.
In one case one of the gluon momenta vanishes (left panel), and in the other two of the gluon momenta are of equal magnitude (right
panel). The bottom-left panel shows a magnification of the low-momentum regime for one momentum vanishing. In this case the
absolute value of GA3

is displayed. Various physical volumes are compared. Open circles correspond to a volume of �21:3 fm�2, full
squares to �14:2 fm�2, full triangles to �8:08 fm�2, and upside-down full triangles to �2:02 fm�2. Finally, in the bottom-right panel GA3

is shown for the complete orthogonal momentum configuration plane in case of the largest volume �21:3 fm�2. In case of the bottom-
left panel, results from all available volumes up to lattices of size 1202 are shown, see Appendix A. In addition to the previously used
symbols, the remaining symbols correspond to �3:56 fm�2 (pluses), �4:04 fm�2 (open stars), �6:06 fm�2 (open crosses), �7:11 fm�2 (full
stars), �10:1 fm�2 (open triangles), �10:7 fm�2 (diamonds), �12:1 fm�2 (full circles), and �17:8 fm�2 (open squares). The line is the
function �0:17p�2:2.
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These results confirm the Gribov-Zwanziger scenario in
two dimensions. Without any dynamic, i.e. propagating,
degrees of freedom, all the infrared behavior is still quali-
tative the same as in higher dimensions. This implies that
these effects in fact stem from the gauge-fixing procedure,
in essentially the way predicted by the Gribov-Zwanziger
scenario.

It will, of course, take some time before it is possible to
repeat the same in higher dimensions. One of the quanti-
tative reasons is that the critical exponent in the gluon
observables decreases with increasing dimension [6,8].
Hence the effects observed here will only be observable
for larger volumes in higher dimensions. Nonetheless, the
results are also in excellent qualitative agreement with the
predictions of DSE calculations for the finite-volume be-
havior of the propagators in four dimensions [18]. Finally,

the comparison of the ghost propagator for different di-
mensions yields the pattern expected from the Gribov-
Zwanziger scenario.

However, these results should also be taken with care, as
two-dimensional Yang-Mills theory is different from its
higher-dimensional versions. And although there is little
evidence to the contrary, no rigorous implication exists that
the effects seen here translate themselves into higher di-
mensions without changes. Hence a satisfactory state of
affairs in higher dimensions has to await equivalent inves-
tigations in higher dimensions. Until then, these results
here are another piece of the puzzle, which seem to in-
dicate that the Gribov-Zwanziger scenario in Landau
gauge is valid also in higher dimensions.

These results are, beyond these questions, also interest-
ing on their own. It is very tempting to investigate how

TABLE IV. Data of the configurations considered in the numerical simulations. The values for a are 1:108 GeV�1 for � � 10 and
1:951 GeV�1 for � � 30 [1]. The momenta p0, pi, and pf denote the lowest nonvanishing momentum and the beginning and the end
of the fit interval used in the determination of the effective exponents in Sec. II, respectively. Note that for N 	 140 not as many
momentum configurations for the gluon propagator were available as for N 
 120. Ghost configurations are the ones used to determine
the ghost propagator, the properties of the Faddeev-Popov operator, the ghost-gluon vertex, and the running coupling. Gluon
configurations are the ones used to determine the gluon propagator and the three-gluon vertex. As the autocorrelation time for the
plaquette is less than one hybrid overrelaxation (HOR) sweep, all sweeps (after thermalization) have been used for the plaquette
measurement, given the number of plaquette configurations in the table. Note that all ghost configurations are also included in the
gluon configurations, the sets are not independent. In case of N 	 140, only the propagators have been determined. Hence the number
of both configurations coincide. The quantity hPi=hP1i gives the ratio of the expectation value of the plaquette over the analytical
infinite-volume limit. The error is determined according to [12]. Finally, p is the tuning parameter for the stochastic overrelaxation
algorithm used for gauge-fixing [20], and which has been obtained by linear self-adjustment [12]. Note that this quantity is not very
precisely determined, and should be used rather as an indication of the correct order. Sweeps is the number of HOR sweeps between
two consecutive measurements [12].

V [fm2] N �
�����������
V=a2

p
� p0 [MeV]pi [MeV]pf [MeV] Ghost config. Gluon config. Plaq. config. 1� hPi=P1 p Sweeps

2.02 20 30 610 1206 1874 2430 11525 369211 �5�4�10�6 0.83 30
3.56 20 10 347 685 1064 2102 12319 355257 1�1�10�5 0.84 30
4.04 40 30 306 610 961 1964 10579 527689 1�2�10�6 0.88 50
6.06 60 30 204 408 644 1723 7311 510688 0�1�10�6 0.93 70
7.11 40 10 174 347 546 2161 10758 536786 �2�6�10�6 0.87 50
8.08 80 30 153 306 484 1429 4898 438579 0�1�10�6 0.90 90
10.1 100 30 123 245 387 747 1988 216391 �3�1�10�6 0.96 110
10.7 60 10 116 232 366 1825 7108 496291 �2�4�10�6 0.92 70
12.1 120 30 102 204 323 552 1754 225036 1�1�10�6 0.95 130
14.1 140 30 87.6 175 371 368 368 53971 �2�2�10�6 0.97 150
14.2 80 10 87.0 174 275 1582 6465 579900 �1�3�10�6 0.92 90
16.2 160 30 76.6 153 325 291 291 48199 0�2�10�6 0.98 170
17.8 100 10 69.6 139 220 1339 4337 478853 �2�3�10�6 0.96 110
18.2 180 30 68.1 136 289 308 308 56724 �2�1�10�6 0.96 190
20.2 200 30 61.3 123 260 199 199 40584 �2�1�10�6 0.96 210
21.3 120 10 58.0 116 183 762 5236 678065 1�2�10�6 0.93 130
22.2 220 30 55.7 111 236 232 232 51577 1�1�10�6 0.99 230
24.2 240 30 51.1 102 217 232 232 55691 0�1�10�6 0.98 250
24.9 140 10 49.7 99.4 211 517 517 76053 1�5�10�6 0.96 150
28.4 160 10 43.5 87.0 184 455 455 75500 �8�4�10�6 0.97 170
32.0 180 10 38.7 77.3 164 390 390 72034 �4�4�10�6 0.97 190
35.6 200 10 34.8 69.6 148 328 328 66976 �4�4�10�6 0.97 210
39.1 220 10 31.6 63.3 134 287 287 63703 3�3�10�3 0.98 230
42.7 240 10 29.0 58.0 123 394 394 96075 0�2�10�6 0.98 250
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these results relate to the host of exact results available in
two-dimensional Yang-Mills theory, what is the connection
to the topological aspects of the theory, and, last but not
least, how and if an equivalence between the Gribov-
Zwanziger and the Kugo-Ojima confinement scenario ex-
ists, at least in two dimensions.
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APPENDIX A: GENERATION OF
CONFIGURATIONS

The generation of configurations in two dimensions and
their gauge-fixing to Landau gauge can be and has been
done exactly as in higher dimensions [12]. In particular, the
confirmation of the Gribov-Zwanziger scenario in the
present work implies that the problem of Gribov-Singer
copies [3,21] should also in two dimensions become ir-
relevant for Green’s functions in the infinite-volume limit
[22]: Gribov-Singer effects should become smaller with
increasing volume. Hence they have been ignored here,
although, as discussed in Sec. II, effects at finite volume
cannot be excluded. Furthermore, it cannot be excluded
that Gribov-Singer effects are still able to have an effect
such that they still may alter the results, when they are

taken properly into account. Recent investigations indicate,
e.g., that here still may be additional effects, which have
not yet been taken sufficiently into account [32]. A more
in-depth investigation would be useful to give confidence
on this point. However, even in two dimensions, this is not
entirely trivial, and will, at the very least, require a sub-
stantial amount of computation time.

To give units to the momenta, the infinite-volume limit
of the string tension for a given �, which can be deter-
mined analytically [1], is set to �440 MeV�2. The configu-
rations used are shown in Table IV. The comparison with
the (also exactly known) infinite-volume value of the pla-
quette [1] shows that locally there are no finite-volume
effects. However, the discussion in Sec. II shows that this is
not correct globally.

APPENDIX B: LATTICE ARTIFACTS OTHER
THAN FINITE VOLUME

As one of the main claims here is that the deviation from
the asymptotic infinite-volume form in the infrared is a
pure finite-volume effect, it is necessary to check the
influence of other lattice artifacts. In particular, discretiza-
tion effects and violation of rotational symmetry may be
relevant. The latter is known to be a significant effect when
comparing correlation functions measured along different
directions of the hypercube (see, e.g., [14]), in the present
case along an edge or along a diagonal. In Fig. 13, these
effects are explicitly checked. The results are at roughly
the same volume of about �10:3 fm�2 at two different �’s,
10 and 30, and results with momenta along any possible
direction are directly compared.

It is clearly visible that, despite a factor of nearly 2 in a,
both results agree remarkably well over the whole range of
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FIG. 13. Consequences of different discretizations and violation of rotational invariance in case of the gluon (left panel) and ghost
(right panel) dressing functions. Open circles correspond to a system at � � 30 and a volume of �10:1 fm�2, open stars to a system at
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momenta. Thus discretization effects are nearly negligible,
at least for a volume of a few fm2 and momentum not too
close to the maximum one. Treating only the physical
volume as an independent parameter in the infrared
throughout the main text is hence justified. Also no signifi-
cant effect is seen of the violation of rotational invariance,
which is usually most pronounced at intermediate mo-
menta in the gluon dressing function. For the current
case a few tens of lattice sites along each edge seem to
be sufficient to have already a quite good approximation of
rotational invariance.

Furthermore, there is no distinct difference between the
gluon and the ghost dressing function in terms of these
artifacts. In case of the propagators these effects would be
even diminished, as the trivial factor p�2 helps in the
reduction of such artifacts. Hence the totally dominant
contribution for the artifacts in the correlation functions
in the infrared is clearly the finite physical volume.

Similar observations pertain to all quantities measured
here, and hence only the physical volumes are used as
explicit parameters in the main text, and no heed is paid
for the different �-values. The only exception observed

here is in the case of the running coupling in Sec. II C,
where an overall scaling factor has been seen. This issue
has been discussed in detail in Sec. II C.

APPENDIX C: CONTRIBUTIONS IN OTHER
COLOR TENSOR STRUCTURES

There is no a priori necessity for correlation functions to
carry only their tree-level color structure, although such a
color structure permits a consistent solution using func-
tional methods in the infrared, at least in four dimensions
[18]. Therefore, this property should be explicitly checked.
This is done for the ghost and the gluon propagator in
Fig. 14. All contributions are compatible with zero.
Furthermore, the average value decreases in all cases
with increasing statistics. So, within the statistics available,
there are no color-off-diagonal components in the propa-
gators. Because of the structure of the DSEs, it is then very
hard to imagine how the higher n-point Green’s functions
should have a color structure different from the tree-level
one. This can, of course, not be excluded by this result.
Nonetheless, it seems to be unlikely.
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