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The expectation value of the complex phase factor of the fermion determinant is computed in the
microscopic domain of QCD at nonzero chemical potential. We find that the average phase factor is
nonvanishing below a critical value of the chemical potential equal to half the pion mass and vanishes
exponentially in the volume for larger values of the chemical potential. This holds for QCD with
dynamical quarks as well as for quenched and phase quenched QCD. The average phase factor has an
essential singularity for zero chemical potential and cannot be obtained by analytic continuation from
imaginary chemical potential or by means of a Taylor expansion. The leading order correction in the
p-expansion of the chiral Lagrangian is calculated as well.
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I. INTRODUCTION

A nonzero baryon density in QCD is achieved by in-
troducing a chemical potential which enhances the propa-
gation of quarks in the forward time direction and inhibits
their propagation in the backward time direction. This
imbalance makes the fermion determinant in the
Euclidean formulation of QCD complex. The integration
measure in the QCD partition function therefore cannot be
used directly to define a probabilistic measure to generate
gauge field configurations. Because of this sign problem,
standard lattice QCD does not apply at nonzero baryon
chemical potential. This does not mean that lattice QCD
simulations at nonzero chemical potential are all altogether
impossible. If the complex phase factor of the fermion
determinant does not fluctuate strongly the sign problem
may become manageable. The reweighting method [1]
deals with the sign problem by including the phase factor
in the observable rather than in the measure. While this
method works in principle, its limitations are set by the
strength of the fluctuations of the phase of the fermion
determinant. It is therefore of considerable interest to
understand how the fluctuations of the phase factor depend
on the temperature, volume, chemical potential, quark
mass, as well as the lattice cutoff.

In this paper we study the severity of the sign problem in
QCD as expressed through the vacuum expectation value
of the phase factor

 e2i� �
det�D���0 �m�

det�Dy ���0 �m�
: (1)

Since the average phase factor is the ratio of two partition
functions, it is typically exponentially small in the volume
requiring that the number of configurations needed in a
reweighting approach is exponentially large with the
volume.

We will consider low temperatures where the chiral
condensate � is nonzero and pions dominate the excita-
tions of the QCD vacuum. We will take the square of the
chemical potential inversely proportional to the volume

 �2F2
�V � 1; (2)

where F� is the pion decay constant. If furthermore

 m�V � 1 and V�4
QCD � 1; (3)

the QCD partition function reduces to the zero momentum
limit of the corresponding chiral Lagrangian. The scaling
of � and m in (2) and (3) defines the microscopic limit of
QCD and is also referred to as the �-regime [2,3]. In this
limit, the zero momentum modes of the pions factorize
from the QCD(-like) partition function and exact analytical
expressions can be obtained. We will derive exact expres-
sions for the average phase factor in both quenched QCD
and QCD with dynamical quarks as well as in its phase
quenched version. The result in all cases is that the expec-
tation value of the phase factor is exponentially small in the
volume when �>m�=2. For chemical potentials smaller
than half the pion mass the average phase factor is nonzero.
This suggests that the exact analytical predictions for �<
m�=2 can be tested by means of lattice QCD even in the
presence of dynamical quarks.

In the past few years several lattice QCD methods have
been developed to study the properties of QCD at nonzero
chemical potential. In particular, progress has been made
with reweighting [4,5], imaginary chemical potential [6–
8], the Taylor expansion method [9–12], and the density of
states method [13] (for a recent review see [14]). Generally,
one expects these methods to work if the average phase of
the quark determinant fluctuates only mildly. For this
reason several lattice measurements of the phase have
appeared [13,15–20]. In this paper we will find that the
quenched as well as the unquenched average of the phase
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factor has an essential singularity at zero chemical poten-
tial and cannot be obtained by analytic continuation from
imaginary chemical potential or by means of a Taylor
expansion. We give the explicit form of the nonanalytic
part and show that it is responsible for the abrupt change of
the average phase factor at � � m�=2. We also give the
exact predictions for purely imaginary �. Since these are
analytic in� they can be tested directly with simulations at
imaginary � or by means of Taylor expansion. We hope
that the predictions for the average phase both for �2 > 0
and for �2 < 0 will motivate lattice studies of the phase
fluctuations in the microscopic domain and thereby deepen
our understanding of QCD at nonzero chemical potential.

The scale � � m�=2 has been part of lattice QCD at
nonzero chemical potential starting from the very first
calculations [20,21]. Although it manifests itself in differ-
ent ways in quenched and unquenched QCD, it has the
same physical origin, namely, condensation of charged
pions.

The most direct effect of pion condensation occurs in
QCD with an equal number of quarks and conjugate quarks
(referred to as phase quenched QCD). For a conjugate
quark, the fermion determinant is replaced by its complex
conjugate, and therefore this theory corresponds to ignor-
ing the phase factor of the fermion determinant. Since
complex conjugation of a fermion determinant corre-
sponds to changing the sign of the chemical potential
[22], two-flavor phase quenched QCD is identical to
QCD with a nonzero isospin chemical potential. Because
the pions have a nonzero isospin charge and are weakly
interacting they will Bose condense for �>m�=2 at zero
temperature [23–26].

The quenched approximation at nonzero chemical po-
tential is the zero flavor limit of QCD with an equal number
of quarks and conjugate quarks [27,28]. It therefore inher-
its the scale � � m�=2. For example, one finds that the
quark number density is nonzero for �>m�=2 [21,29].

In QCD with dynamical quarks the Dirac spectrum for
typical gauge field configurations has the same support as
in the quenched case. Therefore, for quark masses such that
m�=2<�, one or more of the quark masses are inside the
domain of the Dirac eigenvalues, and the sign problem is
severe. It has to be like that because the phase factor has to
wipe out the Bose condensate of the phase quenched theory
(see also the review [30]). In QCD with dynamical quarks,
the scale � � m�=2 is thus the scale where phase fluctua-
tions become strong. This is also illustrated by the spectral
density of full QCD: When the quark mass is inside the
support of the eigenvalues the unquenched spectral density
becomes a complex function with strong oscillations in a
finite domain of its support [31,32]. Physically these oscil-
lations, with an amplitude that diverges exponentially with
the volume and a period inversely proportional to the
volume, are important because they are responsible for
the discontinuity in the chiral condensate [33].

The difference between the phase quenched theory
(where the phase of the fermion determinant is ignored)
and unquenched QCD gives an indication of the impor-
tance of the phase factor. In fact the ratio of the un-
quenched partition function and the phase quenched
partition function for two flavors is exactly the expectation
value of the phase factor in the phase quenched theory (1).
For �<m�=2 and zero temperature the free energy of the
two partition functions is the same in the thermodynamic
limit, but for �>m�=2, because of the formation of a
Bose condensate in the phase quenched theory, the two free
energies become different. This results in an exponential
suppression of the average phase factor. In this paper we
will show that the same behavior is found for the expecta-
tion value of the phase factor with respect to the full QCD
partition function and the quenched QCD partition func-
tion. We will do this by an explicit calculation of the
average phase factor in the microscopic domain of QCD.

In the microscopic limit QCD is equivalent to a chiral
random matrix model with the same global symmetries
[32,34–36]. The reason is that the static part of the chiral
Lagrangian is uniquely determined by global symmetries.
We exploit this equivalence to calculate the average phase
factor in this domain. Alternatively, we could have started
from the static part of a chiral Lagrangian and performed
the integral over the zero momentum modes of the
Goldstone fields. Since the phase factor includes a bosonic
determinant at nonzero chemical potential this method is,
however, technically demanding and has not been worked
out up to now.

In the microscopic limit it is useful to consider a fixed
topological charge sector rather than a fixed vacuum angle
[3]. For simplicity, in this paper we will only consider the
sector of zero topological charge. The results for arbitrary
topological charge follow by an immediate generalization.

Part of the results derived in this paper were announced
in the paper [37]. In addition to providing details of the
derivations, we obtain below explicit expressions for the
average phase factor and show that it is a nonanalytic
function of the chemical potential. We also compute the
corrections to the microscopic results to leading order in
the p-expansion of the chiral Lagrangian.

The behavior of the average phase factor can be under-
stood from general arguments presented in the next sec-
tion. The connection between these general arguments and
the exact expressions in the microscopic limit are ex-
plained in Sec. III where we analyze the average phase
factor in the phase quenched theory. In Secs. IV and V we
derive exact expressions for the average phase factor in the
microscopic limit. The thermodynamic limit of these re-
sults is evaluated in Sec. VI, and the results obtained from
general arguments will be confirmed. Section VII contains
a discussion of the analytic properties of the average phase
factor, and we finish with concluding remarks. Technical
details are worked out in two appendices.
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II. THE AVERAGE PHASE FACTOR FROM A
GENERAL ARGUMENT

In this section we will consider the phase fluctuations of
the fermion determinant in the QCD partition function

 ZNf � hdetNf �D���0 �m�i; (4)

using mean field arguments at low energy. (Throughout
this manuscript h. . .i denotes the quenched average.
Dynamical averages are labeled by a subscript referring
to the number of flavors Nf.) In order to quantify the phase
fluctuations of the fermion determinant we compute the
average phase factor [38]
 

he2i�iNf �
1

ZNf

�
det�D���0 �m�

det�Dy ���0 �m�

� detNf �D���0 �m�
�
: (5)

Notice that the average phase factor is the ratio of two
partition functions: the partition function with an addi-
tional fermionic quark and an additional conjugate bosonic
quark and the ordinary QCD partition function

 he2i�iNf �
ZNf�1j1�

ZNf
: (6)

This implies that the average phase factor is necessarily
real. We will consider the low temperature limit with quark
masses and chemical potentials well below �QCD. Then the
partition function can be described in terms of a chiral
Lagrangian. In this section we will focus on the mean field
limit where the fields are replaced by their saddle point
values. In this limit the partition functions assume the
general form

 Z� J
�Y

k

1

m����

�
e	VF; (7)

where the Jacobian J is from the measure of the Goldstone
manifold at the saddle point, and m���� are the � depen-
dent masses of the Goldstone modes. (For a discussion of
the parametrization dependence of the masses of the
Goldstone modes, see Appendix A.) The free energy den-
sity at the saddle point, F, is intensive, and the prefactor
can be written as a 1=V correction to the free energy.

The QCD partition function ZNf in this approximation is
completely independent of the chemical potential; since
the pions have zero baryon charge neither the free energy
density nor the exponential prefactor depend on �.

At zero chemical potential the fermion determinant is
real so in this case the two additional determinants in
ZNf�1j1� cancel and the average phase factor is 1. When
the chemical potential is nonzero, the two additional fla-
vors become important. The combinations of the conjugate
bosonic quark with any of the fermionic quarks forms a
charged Goldstino. Because of the condensation of charged

Goldstinos for �>m�=2 we need to consider separately
the cases �<m�=2 and �>m�=2.

For �<m�=2 the free energy F is independent of the
chemical potential. In the expectation value of the phase
factor the contributions of the free energy to the average
phase cancel. The prefactor in (7) however depends on �
because the �-dependence of the masses of the charged
Goldstone modes. Half of the 2�Nf � 1� charged modes
have masses m���� � m� � 2� while the other half have
masses m���� � m� 	 2�. The mean field result for the
ratio of ZNf�1j1� and ZNf is thus given by

 he2i�iNf �
�m� 	 2��Nf�1�m� � 2��Nf�1

m
2Nf�2
�

�

�
1	

4�2

m2
�

�
Nf�1

for �<
1

2
m�:

(8)

For 2�>m� the free energy of ZNf�1j1� depends on �.
The free energy has the usual � dependence for the static
part of a chiral Lagrangian in the condensed phase (see for
example [23,24,26]). Subtracting the free energy at � � 0
we find

 he2i�iNf � e
	2VF2

��2�1	m2
�=4�2�2 for �> 1

2m�: (9)

The average phase factor is thus suppressed exponentially
with the volume for �>m�=2. Care has to be taken to
compute the exponential prefactor. For �>m�=2 there
are massless modes associated with the condensation of
pions. Consequently the leading contribution to the pre-
factor given in (7) vanishes. One way to compute the
subleading contributions to the prefactor is from the ther-
modynamic limit of the exact microscopic result. In the
next section we perform this calculation in the phase
quenched theory.

In Sec. VI we will confirm the results obtained here from
the thermodynamic limit of the exact microscopic
expressions.

III. THE AVERAGE PHASE FACTOR IN THE
PHASE QUENCHED THEORY

In this section we will discuss the chemical potential
dependence of the average phase factor in the phase
quenched theory, which can be easily obtained from known
results. First we will discuss the exact microscopic result
and then relate it to the mean field results of Sec. II.

The phase quenched partition function with two dynami-
cal flavors is just the two-flavor QCD partition function
without the phase of the fermion determinant,

 Z1�1� �m;�� � hj det�D���0 �m�j2i: (10)

This partition function is equivalent to QCD at nonzero
isospin chemical [22]. The expectation value of the phase
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factor of the fermion determinant for the phase quenched
theory is thus given by

 he2i�i1�1� �
hdet2�D���0 �m�i

hj det�D���0 �m�j
2i
�
ZNf�2

Z1�1�
: (11)

Its microscopic limit therefore follows immediately from
the microscopic limit of the two partition functions.

The microscopic limit of the phase quenched partition
function is given by [39]

 Z1�1� �m̂; �̂� � 2e2�̂2
Z 1

0
dtte	2�̂2t2I2

0�m̂t�; (12)

where

 m̂ � mV� and �̂ � �F�
����
V
p

: (13)

The two-flavor partition function is �-independent at
scales well below the nucleon mass. Its microscopic limit
is given by [3]

 ZNf�2�m̂� � I2
0�m̂� 	 I

2
1�m̂�: (14)

The �-dependence of the phase factor thus follows from
the�-dependence of the phase quenched partition function
(12)

 he2i�i1�1� �
ZNf�2�m̂�

Z1�1� �m̂; �̂�
�

I2
0�m̂� 	 I

2
1�m̂�

2e2�̂2 R1
0 dtte

	2�̂2t2I2
0�m̂t�

:

(15)

We now take the thermodynamic limit, m̂! 1 and
�̂2 ! 1, of the microscopic result for the phase factor in
the phase quenched theory. In this limit the phase quenched
theory has a second order phase transition at m̂=�2�̂2� � 1.
To show this we calculate the integral in (12) by a saddle
point approximation. The transition between the two
phases takes place when the saddle point hits the boundary
of the integration region, i.e. when

 

�t �
m̂

2�̂2 � 1: (16)

If we use the Gell-Mann-Oakes-Renner relation we find
that this corresponds to the expected critical value of the
chemical potential of � � m�=2.

For �<m�=2, the saddle point is outside the integra-
tion region and the leading contribution to the integral
comes from the edge of the integral at t � 1. In the
thermodynamic limit we obtain (this is derived under the
assumption that the integral is cut off by the exponential
factor rather than the Gaussian factor, which in the ther-
modynamic limit is violated only very close to the critical

point)

 Z1�1� �m̂; �̂� �
1

2�m̂�m̂	 2�̂2�
e2m̂ for m̂ > 2�̂2: (17)

We find that for m̂ > 2�̂2 the free energy of the phase
quenched theory is � independent in the thermodynamic
limit. The thermodynamic limit of the microscopic two-
flavor partition function is

 ZNf�2�m̂; �̂� �
1

2�m̂2 e
2m̂: (18)

In the average phase factor (15) the free energies cancel.
The �-dependence only enters through 1=V corrections,
i.e. through the preexponential factors

 he2i�i1�1� �

�
1	

2�̂2

m̂

�
e0 �

�
1	

4�2

m2
�

�
e0; (19)

where we made use of the Gell-Mann-Oakes-Renner rela-
tion. This is precisely what we find from the general argu-
ment given in the previous section. To see this we evaluate
the two partition functions using (7). First, note that the
particle content of the phase quenched partition function is
a charged Goldstone boson and its antiparticle and two
neutral Goldstone bosons. For �<m�=2, their masses are
given by m� 	 2�, m� � 2�, m�, m�, respectively, and
the free energy is equal to 2m�. The Jacobian in the
integration measure is a constant. The ordinary two-flavor
partition function is of course obtained by setting � � 0 in
the expression obtained for the phase quenched partition
function.

For �>m�=2 the thermodynamic limit of (12) allows
us to determine both the free energy and the exponential
prefactor. In this case the saddle point is inside the inte-
gration region and the saddle point approximation to the
partition function (12) is given by

 Z1�1� �m̂; �̂� �

�������
1

2�

s
1

�̂ m̂
em̂

2=2�̂2�2�̂2
for m̂ < 2�̂2:

(20)

Notice that the prefactor of the exponential is larger by a
factor of

����
V
p

than for �<m�=2. The reason is that the
Goldstone mode with mass m� 	 2� becomes exactly
massless for 2�>m�. To use the saddle point approxi-
mation one must introduce a pion condensate source term
which lifts this mass away from zero (see Appendix A).

The two-flavor partition function remains � indepen-
dent so that in the thermodynamic limit the average phase
factor is given by

 he2i�i1�1� �

8><>:
�1	 4�2

m2
�
�e0 for m� > 2�;

1������������
2�VF4

�

p 2�F�
m2
�
e	2VF2

��2�1	m2
�=4�2�2 for m� < 2�:

(21)
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Below we will derive the exact microscopic expression
for the average phase factor in the quenched and un-
quenched theories. To perform the calculations we will
make use of recently developed random matrix techniques.

IV. THE RANDOM MATRIX MODEL

In order to compute the average phase factor in the
microscopic limit we use a random matrix approach. In
this limit the mass and chemical potential dependence of
the QCD partition function is given by a random matrix
partition function (see [40] for a review). The expectation
value of the phase factor is then given by the ratio of two
partition functions

 he2i�iNf �
ZNf�1j1� �m;��

ZNf �m;��
; (22)

where, in general, the random matrix partition function
with Nf quark flavors of mass mf and one pair of a regular
quark and a conjugate bosonic quark both with mass m is
defined by

 ZNf�1j1� �fmfg; m;�� 

Z
d�d�wG���wG���

�
YNf
f�1

det�D��� �mf�

�
det�D��� �m�

det�Dy��� �m�
: (23)

In the computation of the average phase factor we always
take the quark masses to be degenerate. The Dirac operator
is given by

 D ��� �
0 i����

i�y ���y 0

� �
: (24)

Here, � and � are complexN � N matrices with the same
Gaussian weight function

 wG�X� � exp�	N TrXyX�: (25)

The partition function ZNf �m;�� with Nf flavors of
mass m is given by (23) without the ratio of the two
determinants multiplying the Nf flavor quark determinant.
The microscopic limit of the random matrix model is
obtained by taking the size of the matrices infinitely large,
N ! 1, while keeping the products

 m̂ � 2mN and �̂2 � 2�2N (26)

fixed. Expressions involving the microscopic partition
function are denoted by explicitly writing the microscopic
variables �̂ and m̂.

The random matrix partition function (23) can be rewrit-
ten in terms of an integral over the eigenvalues of D and
the unitary matrices that diagonalize D. The integral over
the unitary matrices can be performed analytically [32]

resulting in the eigenvalue representation of the partition
function

 ZNf�1j1� �fmfg; m;�� �
Z
C

YN
k�1

d2zkPNf�1j1� �fzig; fz�i g;��;

(27)

where the integration extends over the full complex plane.
The joint probability distribution of the eigenvalues is
given by

 P Nf�1j1� �fzig; fz�i g;�� �
1

�2N j�N�fz2
l g�j

2
YN
k�1

w�zk; z�k;��

�
YNf
f�1

�m2
f 	 z

2
k�
�m2 	 z2

k�

�m2 	 z�2k �
:

(28)

The Vandermonde determinant is defined as

 �N�fz2
l g� 


YN
i>j�1

�z2
i 	 z

2
j �; (29)

and the weight function reads [32]

 w�zk; z�k;�� � jzkj
2K0

�
N�1��2�

2�2 jzkj2
�

� exp
�
	
N�1	�2�

4�2 �z2
k � z

�2
k �

�
: (30)

The eigenvalue representation makes it possible to de-
fine orthogonal polynomials in the complex plane [32,41–
46]. In order to evaluate the average phase factor we will
make use of such orthogonal polynomials and their Cauchy
transform. The complex Laguerre polynomials given by
[32]

 pk�z;�� �
�

1	�2

N

�
k
k!Lk

�
	

Nz2

1	�2

�
(31)

are the orthogonal polynomials corresponding to the
weight w�z; z�;�� given in (30). They satisfy the orthogo-
nality relation

 

Z
C
d2zw�z; z�;��pk�z;��pl�z;��� � rk�kl; (32)

with the norm

 rk �
��2�1��2�2kk!k!

N2k�2
: (33)

The Cauchy transform of the orthogonal polynomials is
defined as

 hk�m;�� �
Z
C
d2z

1

z2 	m2 w�z; z
�;��p�k�z;��; (34)

where C indicates that the integration extends over the
complex plane.
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V. THE AVERAGE PHASE FACTOR IN THE MICROSCOPIC LIMIT

Partition functions that are given by expectation values of ratios of determinants can be expressed simply in terms of
orthogonal polynomials and their Cauchy transforms [31,41–46]. Generalizing the results of [46] we find that the partition
function (23) for matrix size N is given by

 Z Nf�1j1� �fmfg; m;�� �
1

rN	1�Nf�1�fm2
fg�

��������������������������

hN	1�m;�� � � � hN�Nf �m;��
pN	1�m� � � � pN�Nf �m�
pN	1�m1� � � � pN�Nf �m1�

..

. ..
.

pN	1�mNf � � � � pN�Nf �mNf �

��������������������������
: (35)

In order to make contact with QCD we take the microscopic limit of this result. The orthogonal polynomials corresponding
to the weight (30) are the complex Laguerre polynomials. In the microscopic limit, ẑ � 2Nz for N ! 1, the polynomial
pN	1=rN	1 is

 

pN	1�ẑ; �̂�
rN	1

� e	2�̂2
I0�ẑ�; (36)

where we have adopted the normalization used in [47]. Taking the limit of all quark masses equal to m we obtain in the
microscopic limit (also in the remainder of the paper the quark masses will be taken equal to m, which is indicated by the
notation)

 ZNf�1j1� �m̂; �̂� �
1

2Nf�1

1

m̂Nf�Nf�1�

��������������������

X�0��m̂; �̂� � � � X�Nf�1��m̂; �̂�
I0�m̂� � � � �

Nf�1
m̂ I0�m̂�

..

. ..
.

�
Nf
m̂ I0�m̂� � � � �

2Nf�1
m̂ I0�m̂�

��������������������
: (37)

Here, �m̂ 
 m̂ d
dm̂ and

 X�k��m̂; �̂� 
 	
1

4�
1

�̂2 e
	2�̂2

Z
C

d2z
w�z; z�; �̂��kz�I0�z��

z2 	 m̂2 :

(38)

This result was first presented in the paper [37]. On the next
pages we examine this result in detail.

Denoting the integrand of the X�k� by F�k��z; z��, we
conclude from the properties of Bessel functions that
�F�k��z; z��� � F�k��z�; z�. Therefore, the imaginary part
of the X�k� vanishes after integration over d2z.

By using the identity (z � x� iy)
 

Ik�z�� �
�	1�k

�

�����
z�
p���������
	z�
p �Kk�z�� 	 �	1�kKk�	z���;

k � 0; 1; 2; � � � ;
(39)

we can perform the y-integral in (38) by a contour integral
in the complex y-plane. By changing variables z! 	z and
z� ! 	z� it can be easily shown that both terms in (39)
give the same integral. Our result is thus given by

 

X�k��m̂; �̂� �
1

2�2

1

�̂2 e
	2�̂2

Z 1
	1

dx
Z 1
	1

dy
jzj2

z2 	 m̂2

� K0

�
jzj2

4�̂2

�
exp

�
	
�z2 � z�2�

8�̂2

�

� �kz�
� �����

z�
p���������
	z�
p K0�	z

��

�
: (40)

The only nonanalyticities in the complex y-plane are on the
imaginary y-axis, and for jyj ! 1, the integrand vanishes
sufficiently fast in the lower part of the complex y-plane to
deform the integration contour as

 Z 	�
	1

dy � � � ! 	
Z 	�	i1
	�

dy � � � ;

Z 1
�
dy � � � !

Z �	i1

�
dy � � � :

(41)

We integrate over the new contour by parametrizing y �
	is� � which gives an additional 	i from the Jacobian.
The pole term can be decomposed into a principal value
part and a �-function,
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1

z2 	 m̂2
�

1

2m̂

�
1

z	 m̂
	

1

z� m̂

�

�
1

2m̂

�
x� s	 m̂� i�

�x� s	 m̂�2 � �2

	
x� s� m̂� i�

�x� s� m̂�2 � �2

�
: (42)

The principal value part combines with the discontinuity
across the negative imaginary y-axis of the other factors in
the integrand in (40),

 

X�k�cut�m̂; �̂� �
i

2�2

1

�̂2 e
	�m̂2=8�̂2�e	2�̂2

Z 1
0
ds
Z 1
	1

dxjzj2
1

2m̂

�
P

1

x� s� m̂
	 P

1

x� s	 m̂

�

� Disc
�
K0

�
jzj2

4�̂2

�
exp

�
	
�z2 � z�2�

8�̂2

�
�kz�

� �����
z�
p���������
	z�
p K0�	z

��

��
: (43)

Using the orthogonality of the polynomials on which this integral is based, it can be shown that this integral vanishes [48]

 X�k�cut�m̂; �̂� � 0: (44)

What remains is the �-function part of (42) in combination with the part of the factors in the integrand that are continuous
across the negative imaginary y-axis. By inspection one easily finds that the contribution of the pole at s � 	x	 m̂
vanishes. For the contribution of the pole at s � x	 m̂ we have to distinguish m̂	 x < x and m̂	 x > x. Because�����
z�
p

=
���������
	z�
p

has a cut for all values of s (notice that z� � x	 s� �), in the first case the nonvanishing contribution comes
from the cut in K0�jzj

2� and in the second case from the cut in K0�	z
��. We thus find

 X�k��m̂; �̂� � 	
1

4�̂2 e
	�m̂2=8�̂2�e	2�̂2

�Z m̂=2

	1
dx�2x	 m̂�I0

�
�2x	 m̂�m̂

4�̂2

�
exp

�
	
�m̂	 2x�2

8�̂2

�
�km̂	2x�K0�m̂	 2x�

	
Z m̂

m̂=2
dx�2x	 m̂�K0

�
�2x	 m̂�m̂

4�̂2

�
exp

�
	
�2x	 m̂�2

8�̂2

�
�k2x	m̂�I0�2x	 m̂�

�
: (45)

This result can be simplified to
 

X�k��m̂; �̂� � e	2�̂2 1

4�̂2 e
	�m̂2=8�̂2�

�Z m̂

0
duu exp

�
	

u2

8�̂2

�
K0

�
um̂

4�̂2

�
�u@u�

kI0�u�

�
Z 1

0
duu exp

�
	

u2

8�̂2

�
I0

�
um̂

4�̂2

�
�u@u�kK0�u�

�
: (46)

Making use of the identities derived in Appendix B these integrals can be rewritten as the sum of a polynomial in�2 and an
integral with an essential singularity at � � 0,

 X�0��m̂; �̂� � K0�m̂� 	 e
	2�̂2 1

4�̂2 e
	�m̂2=8�̂2�

Z 1
m̂
duu exp

�
	

u2

8�̂2

�
K0

�
um̂

4�̂2

�
I0�u�; (47)

 X�1��m̂; �̂� � 	m̂K1�m̂� � 4�̂2K0�m̂� 	 e
	2�̂2 1

4�̂2 e
	�m̂2=8�̂2�

Z 1
m̂
duu exp

�
	

u2

8�̂2

�
K0

�
um̂

4�̂2

�
u@uI0�u�; (48)

 

X�2��m̂; �̂� � K0�m̂��m̂
2 � 16�̂4 � 8�̂2� 	 8K1�m̂�m̂�̂

2 	 e	2�̂2 1

4�̂2 e
	�m̂2=8�̂2�

�
Z 1
m̂
duu exp

�
	

u2

8�̂2

�
K0

�
um̂

4�̂2

�
�u@u�2I0�u�; (49)

 X�3��m̂; �̂� � K0�m̂��12m̂2�̂2 � 64�̂6 � 96�̂4 � 2m̂2 � 16�̂2� 	 K1�m̂��48m̂�̂4 � m̂3 � 24m̂�̂2�

	 e	2�̂2 1

4�̂2 e
	�m̂2=8�̂2�

Z 1
m̂
duu exp

�
	

u2

8�̂2

�
K0

�
um̂

4�̂2

�
�u@u�3I0�u�: (50)
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The analytic properties of the X�k� will be discussed further
in Sec. VII.

In order to complete the computation of the average
phase factor (22) we only need to recall that the ordinary
(� independent) microscopic partition function is given by
[3]

 ZNf �m̂� � m̂
	Nf�Nf	1� det��k�lm̂ I0�m̂�k;l�0;...;Nf	1: (51)

In the next section we will discuss explicitly the result for
the average phase factor for Nf � 0, 1, and 2.

VI. EXPLICIT RESULTS AND THE
THERMODYNAMIC LIMIT OF THE PHASE

FACTOR

In this section we will take a closer look at several
specific cases and derive the large m̂ and large �̂ asymp-

totic expansions of the average phase factor from the exact
microscopic expressions given in the previous section. We
refer to this as the thermodynamic limit of the microscopic
results. These results confirm the expressions for the aver-
age phase factor obtained in Sec. II from the mean field
argument. For the technical details of the asymptotic ex-
pansion we refer to Appendix C.

A. The quenched case

We first consider the expectation value of the phase
factor in the quenched case. Then

 

he2i�iNf�0 �

���������X
�0��m̂; �̂� X�1��m̂; �̂�

I0�m̂� m̂I1�m̂�

��������� (52)

 � 1	 4�̂2I0�m̂�K0�m̂� 	 e
	2�̂2 1

4�̂2 e
	�m̂2=8�̂2�

Z 1
m̂
dxx exp

�
	

x2

8�̂2

�
K0

�
xm̂

4�̂2

�
�I0�x�m̂I1�m̂� 	 xI1�x�I0�m̂��;

(53)

where we made use of the Wronskian identity m̂I0�m̂�K1�m̂� � m̂I1�m̂�K0�m̂� � 1.
We now take the thermodynamic limit m̂! 1 and �̂! 1. In the normal phase we can use the leading order asymptotic

expansions for the X�k� and the Bessel functions whereas in the condensed phase we have to include the subleading
corrections. Substituting the expressions obtained in Appendix C we find (the result form� < 2� is not valid very close to
the critical point (see Appendix C))

 he2i�iNf�0 �

8<: �1	
4�2

m2
�
�e0 for m� > 2�;

1
V3=2

�����
2�
p 1

m2
�F3

��
1

2�1	m2
�=4�2�2

e	2VF2
��2�1	m2

�=4�2�2 for m� < 2�:
(54)

For m� < 2� the leading order terms contributing to the prefactor cancel. This asymptotic result agrees with the result we
have obtained from the general arguments in Sec. II.

B. Full QCD for Nf � 1

For one flavor, the explicit microscopic expression for the expectation value of the phase factor is given by

 he2i�iNf�1 �
1

2m̂2I0�m̂�

�������������
X�0��m̂�; �̂� X�1��m̂�; �̂� X�2��m̂�; �̂�
I0�m̂� m̂I1�m̂� m̂2I0�m̂�
m̂I1�m̂� m̂2I0�m̂� m̂2�2I0�m̂� � m̂I1�m̂��

�������������; (55)

where the X�k� have been given in the previous section and we used that ZNf�1�m̂; �̂� � I0�m̂�. With the expressions found
for X�k� the average phase factor can be written as
 

he2i�iNf�1 � 1	 4
�
m̂K0�m̂�I0�m̂� �

I1�m̂�
2

I0�m̂�
�K0�m̂� 	 m̂K1�m̂��

�
�̂2 � 8K0�m̂�

I0�m̂�
2 	 I1�m̂�

2

I0�m̂�
�̂4

	
e	2�̂2	�m̂2=8�̂2�

8m̂2�̂2I0�m̂�

Z 1
m̂
dxx exp

�
	

x2

8�̂2

�
K0

�
xm̂

4�̂2

����������������
I0�x� �xI1�x� ��x�2I0�x�

I0�m̂� �m̂I0�m̂� ��m̂�2I0�m̂�

�m̂I0�m̂� ��m̂�2I0�m̂� ��m̂�3I0�m̂�

���������������: (56)
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The large m̂ and �̂ limit of the expectation value of the phase follows from the asymptotic expressions for the X�k� given
in Appendix C and the asymptotic expressions for the Bessel functions

 he2i�iNf�1 �

8<
: �1	

4�2

m2
�
�2e0 for m� > 2�

O� 1
V5=2�e	2VF2

��2�1	m2
�=4�2�2 for m� < 2�:

(57)

The first three orders contributing to the prefactor of the
result for m� < 2� vanish.

Since the average phase factor is the ratio of two parti-
tion functions it is necessarily real even if the ‘‘statistical
weight’’ is complex such as for Nf � 1. This does not
imply that hsin2�i vanishes such as in the quenched theory
or the phase quenched theory. Since hsin2�i �
hexp�2i�� 	 exp�	2i��i=2i and

 he	2i�iNf�1 �
ZNf�1� �m;��

ZNf�1�m;��
� 1; (58)

we have in the microscopic limit that

 hsin2�iNf�1 �
1

2i
�he2i�iNf�1 	 1: (59)

We thus find that the expectation value hsin2�iNf�1 is
generally nonzero and purely imaginary. Its thermody-
namic limit is given by

 hsin�2��iNf�1 �

8<: 1
2i ��1	

4�2

m2
�
�2 	 1� for m� > 2�;

	 1
2i for m� < 2�:

(60)

Since the average of the inverse phase factor is 1 we
automatically also know the variance of the phase factor

 he2i�e	2i�iNf�1 	 he
2i�iNf�1he

	2i�iNf�1 � 1	 he2i�iNf�1:

(61)

So while the average phase factor goes to zero, its variance
goes to 1 for �>m�=2, what would also have been the
result for a uniformly random distribution of the phase.
This central feature of the sign problem is also present for
larger number of flavors as well as for quenched and phase
quenched QCD (in the latter two cases there is of course no
sign problem).

C. Two dynamical flavors

With two flavors the explicit microscopic expression for
the average phase factor is
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FIG. 1 (color online). Left: The average phase factor for two dynamical flavors as a function of the chemical potential for fixed quark
mass. The full curve represents the result in the thermodynamic limit. Note that the convergence to the thermodynamic limit is
particularly rapid for small values of the chemical potential. Right: The average phase factor as a function of the quark mass for fixed
chemical potential. The full curve again displays the result in the thermodynamic limit.
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 he2i�iNf�2 �
1

8m̂6�I0�m̂�
2 	 I1�m̂�

2�

������������������
X�0��m̂�; �̂� X�1��m̂�; �̂� X�2��m̂�; �̂� X�3��m̂�; �̂�
I0�m̂� �m̂I0�m̂� ��m̂�

2I0�m̂� ��m̂�
3I0�m̂�

�m̂I0�m̂� ��m̂�2I0�m̂� ��m̂�3I0�m̂� ��m̂�4I0�m̂�
��m̂�

2I0�m̂� ��m̂�
3I0�m̂� ��m̂�

4I0�m̂� ��m̂�
5I0�m̂�

������������������
: (62)

For �<m�=2 the thermodynamic limit of this result is

 he2i�iNf�2 �

�
1	

4�2

m2
�

�
3
e0 for m� > 2�: (63)

As the chemical potential increases beyond half the pion
mass the average phase factor is again exponentially small
in the volume in agreement with (9). The fast convergence
to the thermodynamic limit is illustrated in Fig. 1.

VII. ANALYTIC CONTINUATION FROM
IMAGINARY CHEMICAL POTENTIAL

For purely imaginary chemical potential the fermion
determinant is real, and the phase factor is equal to unity.
Thus it seems to be impossible to calculate the average
phase factor at imaginary values of � and then perform an
analytic continuation in �. However, if we first use that
det�D���0 �m�

� � det�D	��0 �m� to write the
average phase factor at real chemical potential as

 he2i����iNf �

�
det�D���0 �m�
det�D	��0 �m�

�
Nf

; (64)

and subsequently substitute � by i� we obtain a real
number

 he2i��i��iNf 


�
det�D� i��0 �m�
det�D	 i��0 �m�

�
Nf

(65)

that is (typically) different from one. Below we will use
this analytical continuation between real and imaginary
chemical potential.

The microscopic limit of the quenched average of (65)
for imaginary chemical potential can be derived by means
of the supersymmetric method. It is given by [49]

 he2i��i��iNf�0 � 1� 4�̂2I0�m̂�K0�m̂�: (66)

Since the result is a polynomial in �̂2, analytical continu-
ation to real chemical potential is trivial: we simply flip the
sign of �2. This result should be contrasted with the result
for real � given in Eq. (53):

 

he2i����iNf�0 � 1	 4�̂2I0�m̂�K0�m̂� 	
e	2�̂2

4�̂2 e	�m̂
2=8�̂2�

Z 1
m̂
dxxe	�x

2=8�̂2�K0

�
xm̂

4�̂2

�
�I0�x�m̂I1�m̂� 	 xI1�x�I0�m̂��

� 1	 4�̂2I0�m̂�K0�m̂� � �̂2K0

�
m̂2

4�̂2

�
e	�m̂

2=4�̂2�	2�̂2
�I0�m̂�2 	 I1�m̂�2� for �̂! 0: (67)

What is reproduced by the expression (66) for purely
imaginary chemical potential are the analytic terms in �,
but the term with the essential singularity is not obtained.
Note that the nonanalytic term does not contribute to the
Taylor series of (67). The Taylor expansion around � � 0
of (67) is thus given by the first two terms only. This
expansion can be analytically continued in � and neces-
sarily reproduces the result for imaginary � because its
Taylor expansion is finite.

The microscopic limit of the average phase factor for
imaginary � can also be evaluated for Nf � 0 using the
supersymmetric method of [50]. However, it is possible to
obtain hexp�2i��i���iNf from the results at real�without a
detailed computation. We only need that the average phase
factor for imaginary � is given by a finite power series in
�2. This immediately follows from the supersymmetric
approach where i� only occurs in combination with
Grassmann variables. Therefore, also for Nf � 0, the exact

average phase factor at imaginary � can be obtained from
the analytical continuation of the Taylor expansion of the
expression for real �. For example, for Nf � 1 we obtain
the result
 

he2i��i��iNf�1 � 1� 4
�
m̂K0�m̂�I0�m̂�

�
I1�m̂�2

I0�m̂�
�K0�m̂� 	 m̂K1�m̂��

�
�̂2

� 8K0�m̂�
I0�m̂�

2 	 I1�m̂�
2

I0�m̂�
�̂4: (68)

Conversely, if we would have calculated the ‘‘phase
factor’’ for imaginary chemical potential and then made
the analytical continuation to real � we only would have
obtained the polynomial terms in �. Terms for which all
derivatives at � � 0 vanish cannot possibly be obtained
from a Taylor expansion.

K. SPLITTORFF AND J. J. M. VERBAARSCHOT PHYSICAL REVIEW D 75, 116003 (2007)

116003-10



For �� m�=2 the term with the essential singularity is
not important. However, it becomes the dominant term
when � approaches m�=2. For �>m�=2 the nonanalytic
term cancels the terms that are polynomial in �, and is
responsible for the exponential suppression of the average
phase factor. In the thermodynamic limit, the nonanalytic
term has a phase transition at � � m�=2. For �<m�=2
the saddle point is outside the integration range and the
leading contribution to the integral comes from its lower
limit. One easily shows that the integral vanishes for V !
1 and�<m�=2. For�>m�=2 the saddle point is inside
the integration domain and its leading order exactly can-
cels the thermodynamic limit of the terms that are poly-
nomial in �.

A similar essential singularity at � � 0 is found for
Nf � 2, and the results obtained by Taylor expansion or
analytic continuation in � only reproduce the finite poly-
nomial series in �̂2. What is not reproduced by analytic
continuation are precisely the contributions given by the
integrals in (47)–(49).

The integrals with the essential singularity are due to
Dirac eigenvalues with real part larger than m. This is best
illustrated by considering X�0� which is the partition func-
tion for one bosonic flavor [47]. In terms of a joint eigen-
value distribution it is given by
 

ZNNf�	1�m;�� �
1

�2N

Z Y
k

d2zkj�N�fz2
l g�j

2

�
YN
k�1

w�zk; z�k;��
1

�m2 	 z2
k�
; (69)

where the Vandermonde determinant and the joint proba-
bility distribution are defined in (29) and (30), respectively.
If we single out one eigenvalue, which we will denote byw
this can be reexpressed as
 

ZNNf�	1�m;�� �
N

�2

Z
d2wjwj2K0

�
N�1��2�

2�2 jwj2
�

� exp
�
	
N�1	�2�

4�2 �w2 � w�2�
�

�
1

�m2 	 w2�
ZN	1
Nf�1�w

��; (70)

where we have used the identity [46]

 

YN
k�1

1

m2 	 z2
k

�
XN
j�1

1

m2 	 z2
j

YN
k�j

1

z2
j 	 z

2
k

: (71)

Using that in the microscopic limit the partition function
ZN	1
Nf�1�w

�� is given by

 ZN	1
Nf�1�w

�� ! I0�ŵ��; (72)

we obtain for the microscopic limit of ZNNf�	1 (which as

before is denoted by X�0� using the same normalization)

 

X�0��m̂; �̂� �
1

4�
1

�̂2

Z
d2ŵjŵj2

1

�m̂2 	 ŵ2�
K0

�
jŵj2

2�̂2

�

� exp
�
	
ŵ� ŵ�2

4�̂2

�
I0�ŵ��: (73)

The expression for X�0� given in (47) is obtained by inte-
gration over the imaginary part of ŵ by means of Cauchy’s
theorem and introducing the variable u � 2 Re�ŵ� 	 m̂.
The integral over u > m̂ in (47), thus corresponds to con-
tributions with the real part of one of the eigenvalues larger
than m. The same argument can be made for X�k>0��m̂; �̂�.

For �̂2 > m̂=2 the probability that one of the eigenval-
ues has a real part larger than m remains nonzero in the
thermodynamic limit so that the nonanalytic term becomes
important. In the thermodynamic limit it exactly cancels
the analytic term resulting in a vanishing average phase
factor. In Fig. 2 we illustrate that the contribution of the
nonanalytic term (given by the difference between the
upper and lower dashed curve) is important close to the
critical value of � and beyond. For comparison we also
give the thermodynamic limit of the average phase factor
(full curve).

The source of the nonanalyticity is the inverse determi-
nant of a non-Hermitian operator. For example, for the
partition function with one bosonic flavor with imaginary
chemical potential the commutator term in the chiral
Lagrangian vanishes resulting in a microscopic partition
function that is independent of �. For real � the bosonic
determinant has to be regularized resulting in a
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FIG. 2 (color online). The quenched average of the phase
factor. Shown is the microscopic result for real � (upper
short-dashed curve) and the microscopic result obtained by
analytic continuation from imaginary chemical potential (lower
long-dashed curve). The full curve represents the thermody-
namic result for real �. Note that while the average phase factor
is nonanalytic at � � 0, the analytic continuation from imagi-
nary � follows closely the correct result for 2�=m� � 1.
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�-dependent effective Lagrangian (see [47] for details),
and a partition function that is �-dependent and therefore
nonanalytic at � � 0.

The message we would like to convey is that the Taylor
expansion in � about zero of averages which involve an
inverse quark determinant has zero radius of convergence.
Also traces of the inverse of non-Hermitian operators lead
to essential singularities at � � 0 unless the inverse is
compensated by a factor from the fermionic determinant.
The simplest example is the quenched chiral condensate
which is nonanalytic in � at � � 0.

Note that the average phase factor in the phase quenched
theory (11) does not involve averages of inverse determi-
nants and is analytic in� at� � 0 as can easily be verified
from (15).

VIII. ONE-LOOP CORRECTIONS

So far we have focused on the average phase factor in the
microscopic domain where m2

�F2
� � 1=V and �2F2

� �
1=V as the volume is taken to infinity. A perturbative
expansion scheme where p� 1=L,m�F� � 1=L2,�F� �
1=L2 is known as the �-expansion [2]. The microscopic
domain is the leading order term in the �-expansion. In this
section we consider the so-called p-expansion where p�
1=L, m� � 1=L, �� 1=L and work out the average phase
factor in an expansion in m2

�L2 and �2L2 for a finite but
large box. In the p-expansion, the microscopic variables
�2F2

�V and m�V are large, and consequently the leading
term in the expansion is given by the asymptotic limit of
the microscopic expression. Below we will compute sub-
leading terms up to order m2

��
2L4 and �4L4. This corre-

sponds to the 1-loop corrections generated by the nonzero
momentum terms of the Goldstone bosons. For simplicity
we will consider only the average phase factor in the phase
quenched theory for �<m�=2.

One-loop Integral at � � 0

In the standard notation of chiral perturbation theory we
have [51]

 he2i�i1�1� �
ZNf�2

Z1�1�
� exp�G0�� � 0� 	G0����: (74)

Notice that the contribution of the neutral Goldstone bo-
sons cancels, and that we have a factor 2 in the exponent
because the contribution of the two oppositely charged
Goldstone bosons is the same. The 1-loop contributions
of a single charged Goldstone boson with charge 2 (� is the
quark chemical potential so a pion made from an up and a
down quark has charge 2) in a box with volume Ld is given
by

 eG0���=2 
 exp
�
	

1

2

X
pk�

log� ~p2
k �m

2
� � �pk0 	 2i��2�

�
;

(75)

where

 pk� �
2�k�
L�

; k� integer: (76)

(For a fermionic Goldstone boson the sign of the exponent
is positive.) The contribution to the free energy given by
G0��� is divergent. However, the difference between
G0��� and G0��� for V � 1 is finite, that is

 G0��� � G0���jV�1 � g0��� (77)

with g0��� finite. SinceG0���jV�1 is independent of� for
�<m�=2 (in dimensional regularization, see e.g. [52])
we have that

 he2i�i1�1� �
ZNf�2

Z1�1�
� exp�g0�� � 0� 	 g0����: (78)

We wish to evaluate this 1-loop contribution including the
1=V corrections. This can be done along the lines of [51]
where the expression for g0 was worked out for � � 0.
The first step is to perform a Poisson resummation
 

G0��� � 	
X
pk�

log� ~p2
k �m

2
� � �pk0 	 2i��2�

� 	V
X
l�

Z ddp

�2��d
eiL�p�l�

� log� ~p2 �m2
� � �p0 	 2i��2�; (79)

where the sum is over all integers. The thermodynamic
limit, G0jV�1, is given by the term l� � 0. Since this term
does not contribute to hexp�2i��i we exclude it from now
on. For �<m�=2 we can shift the p0 variable by 2i�.
This results in
 

g0 � 	V
X0

l�

Z ddp

�2��d
eiL�p�l�	2�l0L0 log� ~p2 �m2

� � p2
0�

� 	V
X0

l�

Z ddp

�2��d
eiL�p�l�	2�l0L0

� lim
�!0

�
	��

1

�
	
Z 1

0

d�

�1	� e
	� ~p2�m2

��p2
0��
�
; (80)

where � is the Euler constant. The 1=�	 �-terms do not
contribute because the term with all l� � 0 has been ex-
cluded from the sum. After performing the momentum
integrals, the limit �! 0 can be taken safely resulting in
 

g0 � V
X0

l�

1

�2��d
�d=2e	2�l0L0

�
Z 1

0

d�
�
�	d=2e	l

2
�L2

�=4�e	m
2
��: (81)

Next we change to dimensionless integration variables by

 �! �
L2

4�
with L �

�Y
�

L�

�
1=d

(82)
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and interchange the sums and the integral to arrive at

 g0 �
Z 1

0

d�
�
�	d=2e	m

2
�L2�=4�

�Y
�

X
l�

e	2�l0L0��0e	�l
2
�L2

�=�L2
	 1

�
: (83)

The integral over � can be split into a part with � < 1 and a part with � > 1. On the second part we apply Jacobi’s
imaginary transformation

 

X1
k�	1

e	ak
2	bk �

����
�
a

r
eb

2=4a
X1

k�	1

e	�
2k2=a	�ibk=a: (84)

This leads to

 g0 �
Z 1

0

d�
�
�	d=2e	m

2
�L2�=4�

�Y
�

X
l�

e	2�l0L0��0e	�l
2
�L2

�=�L2
	 1

�

�
Z 1

1

d�
�
e�

2L2�=�e	m
2
�L2�=4�

�Y
�

X
l�

e	2i�l0��0�L2=L0e	�l
2
��L2=L2

� 	 1
�
� r0: (85)

The Jacobi imaginary transformation is applied to the full sum so that the subtracted term before and after the trans-
formation is different. This difference, denoted by r0, is given by

 r0 �
Z 1

1

d�
�
e�

2L2�=�e	m
2
�L2�=4� 	

Z 1
1

d�
�
�	d=2e	m

2
�L2�=4�: (86)

Finally, we change �! 1=� in the Jacobi transformed terms in g0 to obtain

 g0 �
Z 1

0

d�
�
�	d=2e	m

2
�L2�=4�

�Y
�

X
l�

e	2�l0L0��0e	�l
2
�L2

�=�L2
	 1

�

�
Z 1

0

d�
�
e�

2L2=��e	m
2
�L2=4��

�Y
�

X
l�

e	2i�l0��0L2=L0�e	�l
2
�L2=L2

�� 	 1
�
� r0: (87)

The expansion of r0 follows immediately from [51]. The only modification is that the Goldstone boson mass in one of
the terms now depends on the chemical potential. We find

 r0 � 	 log
�m2

� 	 4�2�L2

4�
	 �	

X1
n�1

1

n!n

�
	
�m2

� 	 4�2�L2

4�

�
n
�

1

2

�
m2
�L

2

4�

�
2
�

log
m2
�L

2

4�
� �	

3

2

�
	

1

2
�
m2
�L

2

4�

�
X1
n�3

1

n!�n	 2�

�
	
m2
�L

2

4�

�
n
: (88)

For the difference g0 	 r0 we obtain the expansion

 g0 	 r0 �
X1
n�0

X1
m�0

1

n!�2m�!

��
	
m2
�L

2

4�

�
n
�4�2L2�mSn	2;m �

�
	
�m2

� 	 4�2�L2

4�

�
n
�	4�2L2�mS	n	2m;m

�
: (89)

For a d-dimensional hypercubic box the shape coefficients Sk;l are given by

 Sk;l>0 �
Z 1

0

d�
�
�k
X
l0

l2l0 e
	�l20=�

�X
l1

e	�l
2
1=�
�
d	1

; Sk;0 �
Z 1

0

d�
�
�k
��X

l1

e	�l
2
1=�
�
d
	 1

�
: (90)

The shape coefficients Sk;0 already enter in the expansion for� � 0 [51]. In the table below we give the numerical value of
a few low order coefficients. The lowest order terms of the expansion are given by

Sk;l l � 0 l � 1 l � 2

k � 0 0.093 756 85 0.025 131 706 0.025 139 306
k � 	1 0.117 457 59 0.031 290 174 0.031 298 318
k � 	2 0.153 650 38 0.040 637 153 0.040 645 920
k � 	3 0.212 510 23 0.055 744 392 0.055 753 879
k � 	4 0.315 506 08 0.082 023 256 0.082 033 581
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g0 � 	 log
�m2

� 	 4�2�L2

4�
	 �	

1

2
� S0;0 � S	2;0 �

1

2

�
m2
�L2

4�

�
2
�

log
m2
�L2

4�
� �	

3

2

�
�
�m2

� 	 4�2�L2

4�
�1	 S	1;0�

�
m2
�L

2

4�
�1	 S	1;0� �

�
�m2

� 	 4�2�L2

4�

�
2
�
	

1

4
�

1

2
S	2;0

�
�

�
m2
�L

2

4�

�
2 1

2
S0;0 �

m2
�L

2

8�
4�2L2�	S	1;1 � S	3;1�

� �4�2L2�2
�

1

24
S	2;2 �

1

24
S	4;2 	

1

8�
S	3;1

�
: (91)

The � independent terms do not contribute to the average phase so that at next-to-next-to-leading order we find

 

he2i�i1�1� �

�
1	

4�2

m2
�

�
exp

�
4�2L2

4�
�1	 S	1;0

�
�

8m2
��

2L4 	 16�4L4

�4��2

�
	

1

4
�

1

2
S	2;0

�

	
m2
�L

2

8�
4�2L2�	S	1;1 � S	3;1� 	 �4�

2L2�2
�

1

24
S	2;2 �

1

24
S	4;2 	

1

8�
S	3;1�

�
: (92)

The �L! 0, m�L! 0 limit of this expression should
reproduce the �̂! 1, m̂! 1 limit of the microscopic
result which is indeed the case (see (21)). The correction
factor computed in (92) drives the average phase factor
closer to 1 (see Fig. 3). Note that the correction is small
even though m�L is set to 1.

IX. CONCLUSIONS

We have computed the average phase factor in the
microscopic domain of quenched, unquenched, as well as
phase quenched QCD and have found that in the thermo-
dynamic limit the average phase factor undergoes a phase
transition at � � m�=2. For �<m�=2 it falls off poly-
nomially with � and is equal to zero starting from � �
m�=2. This implies that the phase problem becomes severe

for �>m�=2. Physically this should be the case because
the phase factor has to wipe out the Bose condensate that
would be the vacuum state if the fermion determinant
would have been replaced by its absolute value.

The results for the average phase factor in the micro-
scopic limit of QCD were derived from a chiral random
matrix model exploiting the equivalence of these two
theories in the microscopic domain. Powerful random
matrix methods such as the method of orthogonal poly-
nomials and their Cauchy transforms enabled us to obtain
exact analytical results. The thermodynamic limit of these
exact results was also derived from simple mean field
arguments. The starting point was that the average phase
factor is the inverse ratio of the QCD partition function and
the partition function with the fermion determinant of
QCD and an additional conjugate bosonic quark and a
fermionic quark. For �<m�=2 the partition function
with the additional quarks is in the same phase as the
partition function without additional quarks. The ratio of
the two partition functions is therefore determined by the
1=V corrections to the free energies. For larger values of �
the presence of the conjugate bosonic quark induces a pion
condensate and the two free energies no longer cancel in
the thermodynamic limit. This causes the exponential sup-
pression with the volume of the average phase factor.

While the average phase factor is exponentially small for
�>m�=2 the fluctuations of the phase factor become
unity for �>m�=2. The sign problem is therefore par-
ticularly severe for �>m�=2.

The finiteness of the average phase factor for�<m�=2
suggests that it should be possible to test the predictions of
this paper by means of lattice QCD simulations. We note
however that the quenched and unquenched phase factor is
nonanalytic in� at� � 0. As has been shown explicitly in
the quenched case, the phase factor as defined by the ratio
of two determinants with opposite sign of the chemical
potential, cannot be analytically continued from negative
�2 to positive �2. It is our experience that analyticity at
� � 0 is lost for averages involving the inverse (determi-
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FIG. 3 (color online). The average phase factor in the phase
quenched theory as a function of the chemical potential in the
normal phase. The full line gives the result at leading order (21)
and the dashed line includes the corrections up to next-to-next-
to-leading order (92) when m�L � 1.
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nant) of the non-Hermitian Dirac operator when the singu-
larity is not compensated by a similar factor from the
fermion determinant. In such cases lattice methods that
rely on analyticity cannot be used. On the other hand, we
expect observables that are derivatives of the usual fermi-
onic partition functions to be are analytic in � for �! 0
and can be computed by means of the Taylor expansion
method or the imaginary chemical potential method.

Since each eigenvalue contributes to the phase factor it is
perhaps surprising that the average phase factor is not
sensitive to the ultraviolet cutoff. The reason goes back
to the renormalizablity of chiral perturbation theory: If the
theory is renormalized at � � 0, the � dependence does
not introduce any additional infinities. Since the average
phase factor is a partition function at � � 0 divided by the
same partition function � � 0, it is therefore necessarily
ultraviolet finite. We have shown this explicitly to 1-loop
order for the phase quenched partition function. This fol-
lows from the microscopic theory as well. In lattice QCD
the Hasenfratz-Karsch prescription [53] to introduce the
chemical potential does not give rise to additional ultra-
violet divergences in lattice perturbation theory. However,
nonperturbatively the situation on the lattice is less clear.
Potentially dangerous ultraviolet contributions may appear
for a naive evaluation of the phase factor of the fermion
determinant on the lattice. Despite of these and other
potential pitfalls, it is our hope that the results of this paper
can be compared to lattice QCD and contribute construc-
tively to our understanding of QCD at finite density.
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APPENDIX A: PARAMETRIZATION
INDEPENDENCE OF MEAN FIELD RESULTS

In this appendix we illustrate that the mean field result
including the 1-loop fluctuations about the saddle point
(see Eq. (7)) does not depend on the parametrization of the
integration manifold. The nontrivial example we study is
the phase quenched partition function in the condensed
phase, i.e. for �>m�=2. Because of the presence of an
exactly massless mode in this phase, we include a pion
source which explicitly breaks the U�1� symmetry that is
responsible for the massless mode. This allows us to use
the saddle point approximation to show that the partition
function is independent of the representation whereas the
Jacobian and masses are representation dependent.

The pion condensate source term enters in the mass
matrix

 

m 0
0 m

� �
!

m �
	� m

� �
(A1)

so that the otherwise massless mode obtains a mass �
����
�
p

.
We will consider two different representations of the
Goldstone fields
 

U �
cos�ei� ei	 sin�

	e	i	 sin� cos�e	i�

 !
ei! and

U � ei ��
1ei�k
kei!;
(A2)

where �� is a vacuum angle that will be determined by the
saddle point equations. The Pauli matrices are labeled 
k.
The partition function in either variables is given by (�̂ �
��V)

 ZA
1�1� �m̂; �̂; �̂� �

Z
d�d�d	d! sin� cos�e2�̂2sin2��2m̂ cos� cos� cos!�2�̂ sin� cos	 cos!; (A3)

and
 

ZB
1�1� �m̂; �̂; �̂� �

Z
d�1d�2d�3d!

sin2�

�2 e�̂
2��cos ���sin�=���1�cos� sin ���2��cos ���sin�=���2�sin ���sin�=���3�

2

� e2m̂�cos �� cos�	sin ���sin�=���1 cos!��̂�cos ���sin�=���1�cos� sin �� cos!; (A4)

where � �
������������������������������
�2

1 � �
2
2 � �

2
3

q
. We will evaluate both parti-

tion functions in the thermodynamic limit, �̂2 ! 1, m̂!
1, and �̂! 1, where the integrals can be performed by a
saddle point approximation. The parameter �� will be
chosen such that the saddle point of the �k variables is at
zero. It turns out that this is also the saddle point of the
�-integral in (A3). In terms of the �	 �			! varia-
bles the squared masses are given by

 m̂ cos ��; �̂ sin ��; 2�̂2sin2 ���
�̂

sin ��
;

m̂ cos ��� �̂ sin ��

(A5)

with �� determined by the saddle point equation

 2�̂2 cos �� sin ��	 m̂ sin ��� �̂ cos �� � 0: (A6)

The squared masses in terms �k 	!-variables can be

QCD SIGN PROBLEM FOR SMALL CHEMICAL POTENTIAL PHYSICAL REVIEW D 75, 116003 (2007)

116003-15



rewritten by using the saddle point equation which is also
given by (A6). We find
 

2�̂2 �
�̂

sin ��
�

m̂

cos ��
;

�̂

sin ��
; 2�̂2sin2 ���

�̂

sin ��
;

m̂ cos ��� �̂ sin ��: (A7)

The product of the squared masses is different for the two
parametrizations. The contribution from the Jacobian in
(A3), sin �� cos �� exactly compensates for this difference
such that the mean field partition function (7) is identical
in the two cases. In the limit of �̂� m̂ and �̂� �̂2 we
obtain

 Z1�1� �m̂; �̂; �̂� �
�2

m̂
����̂
�

p ��������������������������������
2�̂2 	 m̂2=2�̂2

p e2�̂2�m̂2=2�̂2
;

(A8)

in agreement with the general expression (7).
What we have learned from this example is that the

chemical potential dependence of the partition function
originates both from the masses and the Jacobian with
neither of them being representation independent.

APPENDIX B: INTEGRALS APPEARING IN
CAUCHY TRANSFORMS

In this appendix we evaluate some integrals that appear
in the Cauchy transforms X�k� given in (46).

To simplify the integrals appearing in X�k� the following
integral is useful

 

Z 1
0
dtte	p

2t2�K0�at�I0�bt� � I0�at�K0�bt�

�
1

2p2 e
�a2�b2�=4p2

K0

�
ab

2p2

�
: (B1)

This identity can be proved by considering the integral

 

Z 1
0
dtte	p

2t2�K0�at�I0�bt� � I0�at�K0�bt�

� lim
�!0

Z 1
0
dtte	p

2t2�K��at�I��bt� � I	��at�K	��bt�;

(B2)

and using the identity

 K��x� �
�
2

I	��x� 	 I��x�
sin����

(B3)

to replace the K�� function by I�� functions.
By differentiation with respect to the parameters of this

integral, we can derive the following useful identities:

 

Z 1
0
dtt2e	p

2t2�K0�at�I1�bt� 	 I0�at�K1�bt�

�
1

4p4 e
�a2�b2�=4p2

�
bK0

�
ab

2p2

�
	 aK1

�
ab

2p2

��
; (B4)

 

Z 1
0
dtt3e	p

2t2�K0�at�I0�bt� � I0�at�K0�bt�

�
1

4p4 e
�a2�b2�=4p2

��
2�

a2 � b2

2p2

�
K0

�
ab

2p2

�

	
ab

p2 K1

�
ab

2p2

��
; (B5)

 Z 1
0
dtt4e	p

2t2�K0�at�I1�bt� 	 I0�at�K1�bt�

�
1

8p6
e�a

2�b2�=4p2

��
4b�

b�3a2 � b2�

2p2

�
K0

�
ab

2p2

�

	

�
2a�

a�a2 � 3b2�

2p2

�
K1

�
ab

2p2

��
: (B6)

APPENDIX C: ASYMPTOTIC EXPANSION OF
INTEGRALS OCCURRING IN THE X�k�

In this section we calculate the asymptotic expansion of
the integrals occurring in the X�k� given in Eq. (46). We
separately consider the integral

 Sp;� �
Z m̂

0
dxxp exp

�
	

x2

8�̂2

�
K0

�
xm̂

4�̂2

�
I��x� (C1)

in the normal phase and in the condensed phase.
In the normal phase, for m̂=4< �̂2 < m̂=2, the saddle

point at �x � 4�̂2 	 m̂ of the integral (C1) is inside the
integration domain. For m̂! 1 and �̂2 ! 1 the Bessel
functions can be expanded to leading order resulting in

 Snormal
p;� � 4

�������
�

2m̂

r
�̂2�4�̂2 	 m̂�p	1e2�̂2	m̂�m̂2=8�̂2

: (C2)

For �̂2 < m̂=4 the leading saddle point contribution comes
from the second integral in the X�k�. We leave it up to the
reader to show that the leading order saddle point approxi-
mation results in the same expression.

In the condensed phase the leading order expansion of
Sp;� cancels in the expression for the average phase.
Therefore we have to include the subleading terms in its
asymptotic expansion. Including the expansion of the
Bessel functions to subleading order we obtain for Sp;�
 

Scondensed
p;� �

������
�̂2

m̂

s Z m̂

0
dxxp	1e	x

2=8�̂2	xm̂=4�̂2�x

�

�
1	

�̂2

2xm̂
	

4�2 	 1

8

1

x

�
: (C3)

Next put x � m̂	 t. Since the integral is dominated by the
vicinity of t � 0 we can safely extend the integration range
to 1,
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 Scondensed
p;� �

������
�̂2

m̂

s
em̂	3m̂2=8�̂2

Z 1
0
dt�m̂p	1 	 �p	 1�m̂p	2t�e	t�1	m̂=2�̂2�	t2=8�̂2

�
1	

�̂2

2m̂2 	
4�2 	 1

8

1

m̂

�
: (C4)

To leading nonvanishing order it suffices to expand exp�	t2=8�̂2� as 1	 t2

8�̂2 . After performing the integral over t we find

 Scondensed
p;� �

������
�̂2

m̂

s
em̂	3m̂2=8�̂2

m̂p	2

�
2m̂

2	 m̂
�̂2

	
4�p	 1�

�2	 m̂
�̂2�

2
	

2m̂

�̂2�2	 m̂=�̂2�3
	

1

�2	 m̂=�̂2�

�
�̂2

m̂
�

4�2 	 1

4

��
: (C5)

Combining the different terms we obtain for the thermodynamic limit of the expectation value of the quenched phase

 hexp�2i��iNf�0 �
1�����������

2�m̂
p

1

�̂2�2	 m̂=�̂2�2

������
�̂2

m̂

s
e2m̂	m̂=2�̂2	2�̂2

for 1� m̂ < 2�̂2: (C6)

The condition for the validity of the derivation of (C6) is that �2�̂2 	 m̂�=�̂� 1, which is only violated very close to the
critical point because the natural magnitude of this ratio of O�

����
V
p
�. We can also evaluate the integral (C4) when this

condition is not satisfied. Then the integral (C4) is cut off by the Gaussian factor exp�	t2=2�̂2� instead of the exponential
factor resulting in an expression that remains finite for m � 2�2.

[1] I. M. Barbour, S. E. Morrison, E. G. Klepfish, J. B. Kogut,
and M. P. Lombardo, Nucl. Phys. Proc. Suppl. 60A, 220
(1998).

[2] J. Gasser and H. Leutwyler, Phys. Lett. B 188, 477 (1987).
[3] H. Leutwyler and A. Smilga, Phys. Rev. D 46, 5607

(1992).
[4] Z. Fodor and S. D. Katz, J. High Energy Phys. 03 (2002)

014.
[5] Z. Fodor and S. D. Katz, J. High Energy Phys. 04 (2004)

050.
[6] P. de Forcrand and O. Philipsen, Nucl. Phys. B642, 290

(2002).
[7] P. de Forcrand and O. Philipsen, Nucl. Phys. B673, 170

(2003).
[8] M. D’Elia and M. P. Lombardo, Phys. Rev. D 67, 014505

(2003).
[9] C. R. Allton et al., Phys. Rev. D 66, 074507 (2002).

[10] C. R. Allton, S. Ejiri, S. J. Hands, O. Kaczmarek, F.
Karsch, E. Laermann, and C. Schmidt, Phys. Rev. D 68,
014507 (2003).

[11] C. R. Allton et al., Phys. Rev. D 71, 054508 (2005).
[12] R. V. Gavai and S. Gupta, Phys. Rev. D 68, 034506 (2003).
[13] V. Azcoiti, G. di Carlo, and A. F. Grillo, Phys. Rev. Lett.

65, 2239 (1990); J. Ambjorn, K. N. Anagnostopoulos, J.
Nishimura, and J. J. M. Verbaarschot, J. High Energy Phys.
10 (2002) 062; C. Schmidt, Z. Fodor, and S. D. Katz,
arXiv:hep-lat/0512032.

[14] C. Schmidt, Proc. Sci., LAT2006 (2006) 021 [arXiv:hep-
lat/0610116].

[15] D. Toussaint, Nucl. Phys. B, Proc. Suppl. 17, 248 (1990).
[16] P. de Forcrand and V. Laliena, Phys. Rev. D 61, 034502

(2000).
[17] Y. Sasai, A. Nakamura, and T. Takaishi, Nucl. Phys. B,

Proc. Suppl. 129, 539 (2004).
[18] S. Ejiri, Phys. Rev. D 69, 094506 (2004).
[19] S. Ejiri, Phys. Rev. D 73, 054502 (2006).

[20] P. E. Gibbs, GLASGOW Report No. PRINT-86-0389;
Phys. Lett. B 182, 369 (1986).

[21] J. B. Kogut, H. Matsuoka, M. Stone, H. W. Wyld, S. H.
Shenker, J. Shigemitsu, and D. K. Sinclair, Nucl. Phys.
B225, 93 (1983); I. Barbour, N. E. Behilil, E. Dagotto,
F. Karsch, A. Moreo, M. Stone, and H. W. Wyld, Nucl.
Phys. B275, 296 (1986).

[22] M. Alford, A. Kapustin, and F. Wilczek, Phys. Rev. D 59,
054502 (1999).

[23] J. B. Kogut, M. A. Stephanov, and D. Toublan, Phys. Lett.
B 464, 183 (1999).

[24] J. B. Kogut, M. A. Stephanov, D. Toublan, J. J. M.
Verbaarschot, and A. Zhitnitsky, Nucl. Phys. B582, 477
(2000).

[25] D. T. Son and M. A. Stephanov, Phys. Rev. Lett. 86, 592
(2001).

[26] K. Splittorff, D. T. Son, and M. A. Stephanov, Phys. Rev. D
64, 016003 (2001); J. B. Kogut and D. Toublan, Phys. Rev.
D 64, 034007 (2001); J. T. Lenaghan, F. Sannino, and
K. Splittorff, Phys. Rev. D 65, 054002 (2002); J.
Wirstam, J. T. Lenaghan, and K. Splittorff, Phys. Rev. D
67, 034021 (2003); G. V. Dunne and S. M. Nishigaki,
Nucl. Phys. B654, 445 (2003); B670, 307 (2003); T.
Brauner, Mod. Phys. Lett. A 21, 559 (2006).

[27] M. Stephanov, Phys. Rev. Lett. 76, 4472 (1996).
[28] V. L. Girko, Theory of Random Determinants (Kluwer,

Dordrecht, 1990).
[29] M. P. Lombardo, J. B. Kogut, and D. K. Sinclair, Phys.

Rev. D 54, 2303 (1996).
[30] K. Splittorff, Proc. Sci., LAT2006 (2006) 023 [arXiv:hep-

lat/0610072].
[31] G. Akemann, J. C. Osborn, K. Splittorff, and J. J. M.

Verbaarschot, Nucl. Phys. B712, 287 (2005).
[32] J. C. Osborn, Phys. Rev. Lett. 93, 222001 (2004).
[33] J. C. Osborn, K. Splittorff, and J. J. M. Verbaarschot, Phys.

Rev. Lett. 94, 202001 (2005).

QCD SIGN PROBLEM FOR SMALL CHEMICAL POTENTIAL PHYSICAL REVIEW D 75, 116003 (2007)

116003-17



[34] E. V. Shuryak and J. J. M. Verbaarschot, Nucl. Phys. A560,
306 (1993).

[35] J. J. M. Verbaarschot, Phys. Rev. Lett. 72, 2531 (1994).
[36] J. J. M. Verbaarschot, Phys. Lett. B 368, 137 (1996).
[37] K. Splittorff and J. J. M. Verbaarschot, Phys. Rev. Lett. 98,

031601 (2007).
[38] In order to write the denominator of the h. . .i as a bosonic

integral, it has to be ‘‘Hermiticized’’ [54,55] which re-
quires the introduction of an additional bosonic and fer-
mionic determinant. Since the contribution of the
additional fermion and boson cancels trivially in the
mean field argument we can safely ignore this.

[39] K. Splittorff and J. J. M. Verbaarschot, Nucl. Phys. B683,
467 (2004).

[40] J. J. M. Verbaarschot and T. Wettig, Annu. Rev. Nucl. Part.
Sci. 50, 343 (2000).

[41] Y. V. Fyodorov, B. Khoruzhenko, and H. J. Sommers, Ann.
Inst. Henri Poincare 68, 449 (1998).

[42] G. Akemann, Phys. Rev. Lett. 89, 072002 (2002); J. Phys.
A 36, 3363 (2003).

[43] G. Akemann, Y. V. Fyodorov, and G. Vernizzi, Nucl. Phys.
B694, 59 (2004).

[44] M. C. Bergère, arXiv:hep-th/0311227.

[45] M. C. Bergère, arXiv:hep-th/0404126.
[46] G. Akemann and A. Pottier, J. Phys. A 37, L453 (2004).
[47] K. Splittorff and J. J. M. Verbaarschot, Nucl. Phys. B757,

259 (2006).
[48] J. C. Osborn, K. Splittorff, and J. J. M. Verbaarschot (un-

published).
[49] This result was obtained in collaboration with P. H.

Damgaard. To derive it one adds 	�2F2
�V=4Str��3; U�

��3; U
	1 to the action in Sec. 4 of [50] and computes the

partition function for equal masses.
[50] P. H. Damgaard, J. C. Osborn, D. Toublan, and J. J. M.

Verbaarschot, Nucl. Phys. B547, 305 (1999).
[51] P. Hasenfratz and H. Leutwyler, Nucl. Phys. B343, 241

(1990).
[52] K. Splittorff, D. Toublan, and J. J. M. Verbaarschot, Nucl.

Phys. B620, 290 (2002); B639, 524 (2002).
[53] P. Hasenfratz and F. Karsch, Phys. Lett. B 125, 308 (1983).
[54] R. A. Janik, M. A. Nowak, G. Papp, and I. Zahed, Phys.

Rev. Lett. 77, 4876 (1996); R. A. Janik, M. A. Nowak, G.
Papp, J. Wambach, and I. Zahed, Phys. Rev. E 55, 4100
(1997); R. A. Janik, M. A. Nowak, G. Papp, and I. Zahed,
Nucl. Phys. B501, 603 (1997).

[55] J. Feinberg and A. Zee, Nucl. Phys. B504, 579 (1997).

K. SPLITTORFF AND J. J. M. VERBAARSCHOT PHYSICAL REVIEW D 75, 116003 (2007)

116003-18


