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The construction of the first baryon operators for staggered lattice QCD exploited the taste symmetry to
emulate physical quark flavor; contemporary 2� 1 flavor simulations explicitly include three physical
quark flavors and necessitate interpreting a valence sector with 12 quarks. After discussing expected
features of the resulting baryon spectrum, I consider the spectra of operators transforming irreducibly
under SU�3�F � GTS, the direct product of flavor SU�3�F and the geometrical time-slice group of the
1-flavor staggered theory. I then describe the construction of a set of maximally local baryon operators
transforming irreducibly under SU�3�F � GTS and enumerate this set. In principle, the operators listed
here could be used to extract the masses of all the lightest spin- 1

2 and spin- 3
2 baryon resonances of

staggered QCD. Using appropriate operators from this set in partially quenched simulations should allow
for particularly clean 2� 1 flavor calculations of the masses of the nucleon, �, ��, ��, and ��.
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I. INTRODUCTION

The advantages [1] of the staggered formulation [2] of
lattice QCD have allowed successful calculations of many
hadron masses, decay constants, and other quantities of
phenomenological importance [3–8]. However, to date this
success has been most pronounced in the meson sector.
Progress calculating baryonic quantities has been impeded
by comparatively large statistical errors, questions of in-
terpretation affecting systematics, and a lack of staggered
chiral forms, which would improve control over the chiral
and continuum limits.

Moreover, the staggered formulation incorporates the
conjecture [9] that taking the fourth root of the fermion
determinant eliminates, in the continuum limit, the effects
of remnant quark doublers in the sea. If we are to know that
the rooted staggered formulation is an authentic regulator
of QCD, this conjecture must be demonstrated. The last
few months have seen good progress in our understanding
of the fourth root trick [10,11] and the replica trick [12–14]
used to incorporate the fourth root in staggered chiral
perturbation theory [15]. However, the results of [15]
have yet to be extended to the baryon sector, and many
of the assumptions of [11,15] have not yet been tested.
Lacking proof of these assumptions, calculations of ex-
perimentally well-known baryonic quantities provide valu-
able additional tests of the validity of the fourth root and
replica tricks. With an eye toward such calculations, this
paper addresses the questions of interpretation encountered
in 2� 1 flavor staggered simulations of the lightest octet
and decuplet baryons.

These questions were first considered in [16]. In that
work baryon operators transforming within irreducible
representations (irreps) of the lattice symmetry group of
a time slice (the ‘‘geometrical time-slice group,’’ GTS)
were constructed from elementary staggered quark fields.

The four degenerate pseudoflavors of the staggered for-
mulation were interpreted as physical quark flavors with
the idea that one could introduce additional terms in the
action to break the degeneracy [16–18]. This approach
proved to involve fine-tuning of the symmetry-breaking
terms and other difficulties [18,19] and has since fallen into
disfavor.

In contemporary studies employing staggered fermions,
three physical quark flavors are explicitly included in the
action [6]; the four pseudoflavors per physical quark flavor
are called ‘‘tastes.’’ From this perspective, the interpolating
fields of [16] correspond to staggered QCD with only one
physical quark flavor. However, one can still use the op-
erators of [16] to perform simulations of baryons with
nondegenerate valence quarks: Varying the quark masses
in the propagators amounts to specifying interpolating
fields that have definite upness, downness, and strangeness.
Unfortunately, operators lacking definite isospin do not
distinguish the �0 from the � and cannot be used to study
isospin breaking. Operators transforming within irreps of
SU�3�F accommodate isospin automatically, so one might
hope to use such operators to address these issues directly.

When working with staggered fermions, operators pos-
sessing SU�3�F quantum numbers confer advantages that
operators possessing only isospin cannot confer. The pres-
ence of taste quantum numbers implies that the valence
sector of staggered QCD contains more baryons than na-
ture does. The restoration of taste symmetry in the contin-
uum limit plays a key role in [10,11,15], and I assume taste
restoration throughout. Then the staggered baryons are
degenerate, in the continuum limit, within irreps of the
taste symmetry group, SU�4�T , and baryons composed of
valence quarks of the same taste are easily seen to be
degenerate with physical states. At nonzero lattice spacing,
discretization effects lift the degeneracies and induce mix-
ing among baryons with different SU�4�T quantum num-
bers. The resulting spectrum consists of many nearly
degenerate states separated by energies crudely estimated*Electronic address: jabailey@wustl.edu
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to be 10–40 MeV [20]. Although presenting no problem of
principle, this situation makes spectrum calculations diffi-
cult. However, for calculating the isospin limits of the
masses of the nucleon and the lightest decuplet baryons,
I show in Secs. II and III that a judicious choice of quark
masses and operators transforming within irreps of
SU�3�F � GTS allows one to interpolate to states that are
not part of nearly degenerate multiplets, thus avoiding the
practical difficulties presented by the splittings and mix-
ings in the staggered baryon spectrum.

In Sec. II, I note two basic assumptions about the baryon
mass spectrum of staggered QCD, present the continuum
and lattice symmetries of the valence sector of staggered
QCD, and discuss the implied features of the mass spec-
trum of the lightest spin- 1

2 and spin- 3
2 staggered baryons.

Given these features one can deduce semiquantitative in-
formation about the spectra of operators transforming irre-
ducibly under SU�3�F � GTS. This information in turn
allows one to make specific statements about the utility
and limitations of such operators; Sec. III contains a dis-
cussion of the spectra of operators transforming irreducibly
under SU�3�F � GTS and the implications for practical
spectrum calculations. In Sec. IV, I extend the approach
of [16] to construct operators transforming within irreps of
SU�3�F � GTS. Section V contains a summary and some
comments about related work. Couplings of the operators
to excited states are discussed in an appendix.

II. SYMMETRY AND THE STAGGERED BARYON
SPECTRUM

In the SU�6� quark model, the lightest octet and decuplet
baryons transform within spin-flavor SU�2�S � SU�3�F
irreps embedded in the symmetric irrep of SU�6�,
 

SU�6� � SU�2�S � SU�3�F

56S ! �
1
2; 8M� � �

3
2; 10S�;

(1)

where the subscripts indicate the symmetry of each irrep,
either symmetric or mixed. Independently of whether one
takes the fourth root in the sea, the valence sector of
staggered QCD with three light quarks possesses an
SU�12�f flavor-taste symmetry; assuming that the stag-
gered baryons fall into the symmetric and mixed three-
quark irreps of SU�2�S � SU�12�f embedded in the sym-
metric irrep of SU�24� means considering

 

SU�24� � SU�2�S � SU�12�f

2600S ! �
1
2; 572M� � �

3
2; 364S�:

(2)

To deduce information about the masses of these baryons, I
further assume that baryons constructed out of valence
quarks of the same taste (‘‘single-taste baryons’’) become
degenerate, in the continuum limit, with physical baryons.
This assumption must be true if staggered QCD describes
the real world: In the continuum limit, taste restoration
implies that each quark flavor comes in four equivalent
tastes. If we choose the same taste for each flavor, then the
taste degree of freedom is irrelevant, and baryons con-
structed in accord with (2) necessarily possess the same
spin and flavor structure as the physical baryons of (1).

The first step in the analysis is to disentangle the flavor
and taste quantum numbers. Decomposing the SU�12�f
irreps into irreps of the direct product of flavor SU�3�F
and taste SU�4�T gives
 

SU�12�f � SU�3�F � SU�4�T
572M ! �10S; 20M� � �8M; 20S� � �8M; 20M�

� �8M; �4A� � �1A; 20M� (3a)

364S ! �10S; 20S� � �8M; 20M� � �1A; �4A�; (3b)

where the symmetries of the irreps are symmetric, mixed,
or antisymmetric. Single-taste baryons must transform in
the symmetric three-quark irrep of SU�4�T , the 20S; this
irrep contains precisely four single-taste members, one for
each quark taste. Examining the decompositions (3), we
see that only the �8M; 20S� and the �10S; 20S� contain
single-taste baryons. As expected if these baryons are to
be degenerate with the physical baryons, there exist a
spin- 1

2 octet and a spin- 3
2 decuplet for each of the four

valence quark tastes. In the continuum limit, members
within the same SU�4�T irrep are degenerate. Therefore
we expect all 20 octets of the �8M; 20S� to become degen-
erate with the physical octet, and all 20 decuplets in the
�10S; 20S�, with the lightest decuplet.

To make further progress, we consider the continuum
flavor symmetries as well as the taste symmetry. In what
follows, mx, my, and mz respectively denote the masses of
the up, down, and strange valence quarks, mu, md, and ms
denote the physical quark masses, and m̂ 	 1

2 �mu �md�.
There are four cases of interest, which are summarized in
Table I. The second line of Table I corresponds to fully

TABLE I. The valence quark masses and the valence sector symmetries for the four cases of
interest; m̂ 	 1

2 �mu �md�, and mu, md, and ms denote the physical quark masses.

Case Symmetry for a 	 0 Symmetry for a � 0

mx 	 my 	 mz 	 m̂ SU�12�f SU�3�F � GTS
mx 	 my 	 m̂, mz 	 ms SU�8�x;y � SU�4�z SU�2�I � U�1�z � GTS
mx 	 my 	 mz 	 ms SU�12�f SU�3�F � GTS
mx 	 my 	 ms, mz 	 m̂ SU�8�x;y � SU�4�z SU�2�I � U�1�z � GTS

JON A. BAILEY PHYSICAL REVIEW D 75, 114505 (2007)

114505-2



dynamical, 2� 1 flavor QCD, while the other cases turn
out to be useful, when used with certain operators identi-
fied in Sec. III, for cleanly extracting the masses of physi-
cal states. For clarity, the valence masses and physical
masses are taken to be related as shown in Table I and
the masses of the up, down, and strange sea quarks are
respectively set equal to m̂, m̂, and ms throughout.
However, the valence symmetries depend only on the
lattice spacing and the relative values of the valence quark
masses; accordingly, conclusions about the existence of
degeneracies and mixings, which depend upon the valence
symmetries alone, hold for all simulations in which the
valence masses are related as shown in Table I. Since we
are concerned with the consequences of the valence sector
symmetries, we use ‘‘isospin’’ and ‘‘strangeness’’ to refer
to quantum numbers of valence quarks. Finally, until fur-
ther notice, we work in the continuum limit.

Setting mx 	 my 	 mz 	 m̂, the valence sector pos-
sesses the full SU�12�f symmetry, and the baryons are
degenerate within irreps of SU�2�S � SU�12�f. All mem-
bers of the 572M are degenerate with the single-taste
nucleon [of the �8M; 20S�], and all members of the 364S,
with the single-taste � [of the �10S; 20S�]. If we now break
flavor SU�3�F by taking mz 	 ms, the spin- 1

2 and spin- 3
2

baryons with zero strangeness remain degenerate, respec-
tively, with the nucleon or the �, while baryons with non-
zero strangeness have masses that reflect the remaining
valence sector symmetry.

We can freely rotate the eight up and down valence
quarks together or, independently, the four strange valence
quarks. Therefore the valence symmetry for the second
case in Table I is SU�8�x;y � SU�4�z; the taste SU�4�T
symmetry is the subgroup of this group consisting of
identical SU�4� transformations on all three quark flavors.
The members of the 572M and 364S are degenerate within
irreps of SU�8�x;y � SU�4�z. To identify the baryons in the
572M and the 364S that are degenerate with the octet and
decuplet baryons, we perform a series of decompositions:

 

SU�12�f � SU�8�x;y � SU�4�z

SU�8�x;y � SU�4�z � SU�2�I � SU�4�T

SU�3�F � SU�4�T � SU�2�I � SU�4�T:

The first decomposition reveals the SU�8�x;y � SU�4�z
irreps in which the baryons are degenerate. The second
decomposition allows us to identify the SU�2�I �U�1�z �
SU�4�T irreps of the various members of the SU�8�x;y �
SU�4�z irreps; as we will see below, the strangeness is
revealed by the SU�4�z irrep. The last decomposition con-
nects the results of the first two with the more physically
transparent decompositions (3); the presence of an SU�4�T
20S (taste-symmetric) irrep alerts us to the presence of
baryons that have physical masses, while the degeneracies
are dictated by SU�8�x;y � SU�4�z. Explicitly,

 

SU�12�f � SU�8�x;y � SU�4�z
572M ! �168M; 1� � �28A; 4� � �36S; 4� � �8; 6A� � �8; 10S� � �1; 20M� (4a)

364S ! �120S; 1� � �36S; 4� � �8; 10S� � �1; 20S�; (4b)

 

SU�8�x;y � SU�4�z � SU�2�I � SU�4�T
�168M; 1�0 ! �32; 20M�0 � �

1
2; 20S�0 � �

1
2;

�4A�0 � �12; 20M�0 (5a)

�28A; 4��1 ! �1; 20M��1 � �1; �4A��1 � �0; 20S��1 � �0; 20M��1 (5b)

�36S; 4��1 ! �1; 20S��1 � �1; 20M��1 � �0; 20M��1 � �0; �4A��1 (5c)

�8; 6A��2 ! �
1
2; 20M��2 � �

1
2;

�4A��2 (5d)

�8; 10S��2 ! �
1
2; 20M��2 � �

1
2; 20S��2 (5e)

�1; 20M��3 ! �0; 20M��3 (5f)

�120S; 1�0 ! �
3
2; 20S�0 � �

1
2; 20M�0 (5g)

�1; 20S��3 ! �0; 20S��3; (5h)

where all numbers in parentheses denote the dimensions of
the corresponding irreps except those listed for SU�2�I,
where the total isospin quantum number is given; sub-
scripts outside the parentheses indicate the strangeness of
the irrep. The strangeness of the SU�8�x;y � SU�4�z irreps
can be deduced by considering the transformations of the
members of these irreps under SU�4�z. For example, mem-

bers of the �168M; 1� of SU�8�x;y � SU�4�z are invariant
under SU�4�z; therefore, they have no valence strangeness:
Z 	 0. Members of the �28A; 4� and �36S; 4� transform in
the fundamental representation (rep) of SU�4�z, and there-
fore have Z 	 �1. The 6A and 10S are the antisymmetric
and symmetric linear combinations of two fundamental
reps of SU�4�, so these irreps carry Z 	 �2.
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To connect these results with the decompositions (3), consider the decomposition of the SU�3�F � SU�4�T irreps in (3)
into irreps of SU�2�I � SU�4�T :
 

SU�3�F � SU�4�T � SU�2�I � SU�4�T
�10S; 20M� ! �

3
2; 20M�0 � �1; 20M��1 � �

1
2; 20M��2 � �0; 20M��3 (6a)

�8M; 20S� ! �
1
2; 20S�0 � �1; 20S��1 � �0; 20S��1 � �

1
2; 20S��2 (6b)

�8M; 20M� ! �
1
2; 20M�0 � �1; 20M��1 � �0; 20M��1 � �

1
2; 20M��2 (6c)

�8M; �4A� ! �
1
2;

�4A�0 � �1; �4A��1 � �0; �4A��1 � �
1
2;

�4A��2 (6d)

�1A; 20M� ! �0; 20M��1 (6e)

�10S; 20S� ! �
3
2; 20S�0 � �1; 20S��1 � �

1
2; 20S��2 � �0; 20S��3 (6f)

�1A; �4A� ! �0; �4A��1: (6g)

Substituting these results into (3) gives the decomposition
of the SU�12�f irreps under SU�2�I � SU�4�T . The same
decompositions must result if one substitutes the decom-
positions (5) into the decompositions (4); this fact fur-
nishes a nice consistency check of the decompositions.

Consider the SU�8�x;y � SU�4�z irreps appearing in
(4b), the decomposition of the 364S. Comparing their
decompositions (5g), (5c), (5e), and (5h) with the decom-
position given in (6f), we note that the taste-symmetric
irreps correspond one-to-one. Now the staggered baryons
are degenerate within irreps of SU�8�x;y � SU�4�z, and we
are assuming that the single-taste baryons have physical
masses. Therefore, all members of the �120S; 1� are degen-
erate with the �, members of the �36S; 4� appearing in (4b)
are degenerate with the ��, members of the �8; 10S� in (4b)
are degenerate with the ��, and members of the �1; 20S�,
with the ��. Noting the strangeness of these SU�8�x;y �
SU�4�z irreps, we see that all members of the 364S having
the same strangeness are degenerate, and all baryons of the
�32 ; 364S� have masses that are degenerate with the baryons
of the lightest physical decuplet.

Now consider the SU�8�x;y � SU�4�z irreps appearing in
(4a), the decomposition of the 572M. Comparing the de-
compositions given in (5a) through (5f) with the decom-
positions (6a) through (6e), we see that the situation for
baryons in the �12 ; 572M� is somewhat more complicated
than for those in the �32 ; 364S� because three of the
SU�2�I � SU�4�T irreps each arise in the decompositions
of two of the SU�8�x;y � SU�4�z irreps appearing in (4a).
Both the �1; 20M��1 and the �0; 20M��1 appear in (5b) and
(5c), while the �12 ; 20M��2 appears in (5d) and (5e).
Without working out the indicial details, one cannot say
which linear combinations of these irreps appear in the
decompositions (6a), (6c), and (6e). However, the remain-
der of the analysis goes through as before.

The �12 ; 20S�0 appears in (5) only once, in the decom-
position (5a) of the �168M; 1�0. Referring to (4a), we see
that all Z 	 0 members of the 572M are degenerate with
the single-taste nucleon. Similarly, the appearance in (5) of
the �0; 20S��1 in the decomposition (5b) of the �28A; 4��1

shows that all members of the �28A; 4��1 are degenerate
with the single-taste �, while the appearance of the
�1; 20S��1 in the decomposition (5c) shows that all mem-
bers of the �36S; 4��1 are degenerate with the �.

Noting the other SU�2�I � SU�4�T irreps appearing in
the decompositions (5b) and (5c) and where these irreps
appear in the decompositions (6), we conclude that some
linear combination of the �1; 20M��1 irreps appearing in
the decompositions (6a) and (6c) of the �10S; 20M� and the
�8M; 20M�, some linear combination of the �0; 20M��1

irreps appearing in the decompositions (6c) and (6e) of
the �8M; 20M� and the �1A; 20M�, and the �1; �4A��1 appear-
ing in the decomposition (6d) of the �8M; �4A� are degener-
ate with the �. In the same way, a second linear
combination of the �0; 20M��1 irreps appearing in the
decompositions (6c) and (6e) of the �8M; 20M� and the
�1A; 20M�, a second linear combination of the �1; 20M��1

irreps appearing in the decompositions (6a) and (6c) of the
�10S; 20M� and the �8M; 20M�, and the �0; �4A��1 appearing
in the decomposition (6d) of the �8M; �4A� are degenerate
with the �.

For Z 	 �2 baryons in the 572M, the situation is very
similar to the Z 	 �1 case, with one notable exception:
Although the appearance of �12 ; 20S��2 in (6b) and (5e)
shows that members of the �8; 10S��2 are degenerate with
the single-taste �, symmetry does not constrain the mass
of the �8; 6A��2 to any physical value because no taste-
symmetric irrep appears in the decomposition (5d) of
�8; 6A��2 under SU�2�I � SU�4�T . In our discussion of
the fourth case of Table I, we will find that the mass of
this irrep can be obtained by taking an appropriate limit of
the mass of the partially quenched �. For now we simply
conclude that some linear combination of the �12 ; 20M��2

irreps appearing in the decompositions (6a) and (6c) of the
�10S; 20M� and the �8M; 20M� is degenerate with the �,
while the �12 ;

�4A��2 appearing in the decompositions (6d)
and (5d) and a second linear combination of the �12 ; 20M��2

irreps are degenerate but have an unphysical mass. Below
these states are denoted by �s.

Finally, the mass of the Z 	 �3 irrep in the decompo-
sitions (4a) and (5f), �1; 20M� 	 �0; 20M��3, is not con-
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strained to be physical. This irrep contains 20 states that are
identical to the single-flavor nucleons of the �10S; 20M�
except for having strange valence quarks instead of up (or
down) valence quarks. Therefore, the mass of this irrep
may be obtained by equating the masses of the valence
quarks of the partially quenched nucleon and the mass ms
of the strange quark. Below this irrep is denoted by Ns. A
preliminary estimate based on tree-level chiral perturba-
tion theory suggests that the mass of this state should be
roughly 1600 MeV; in progress is work to decrease the
large uncertainty in this estimate.

The first three columns of Table II summarize the con-
clusions reached thus far; for the first two cases listed in
Table I, all the states in the 364S have masses that are
degenerate with the masses of decuplet baryons, while
nearly all the states in the 572M have masses that are
degenerate with the masses of octet baryons. The excep-
tions arise in the second case, for which flavor SU�3�F is
broken to isospin; in this case one energy level has a mass
equal to that of the partially quenched �, while a second
energy level has a mass equal to that of the partially
quenched nucleon. The appearance of these resonances
reflects the partially quenched nature of staggered QCD
at nonzero lattice spacing [15,19].

At nonzero lattice spacing, discretization effects break
the continuum symmetry to that of the lattice, lifting
degeneracies within the continuum irreps and introducing
mixing among states with the same conserved lattice
quantum numbers. Degeneracies and mixings at nonzero
lattice spacing are governed by the lattice symmetry.
Decomposing the continuum irreps into irreps of the lattice
symmetries reveals the number of splittings that symmetry
breaking effects introduce within each continuum irrep and
the presence of off-diagonal elements that these discretiza-
tion effects introduce in the mass matrix. For the first case

of Table I, the decomposition is most easily obtained by
considering

 SU�2�S � SU�12�f � SU�2�S � SU�3�F � SU�4�T

� SU�3�F � GTS; (7)

while for the second case of Table I, we consider

 SU�2�S � SU�8�x;y � SU�4�z

� SU�2�S � SU�2�I � SU�4�T � SU�2�I � GTS: (8)

Discretization effects break continuum parity-spin-taste
P � SU�2�S � SU�4�T down to P � GTS. The subgroup
of GTS consisting of cubic rotations is embedded in the
diagonal of the direct product of SU�2�S and the diagonal
SU�2� subgroup of the spinor SO�4� subgroup of SU�4�T ;
GTS includes cubic rotations, spatial inversion of the
lattice, and spatial shifts by one lattice site [16]. The direct
product with continuum parity that occurs in decomposi-
tions under the lattice symmetry and the parity quantum
numbers of the P � GTS irreps are suppressed in (7) and
(8) and the rest of Secs. II and III. Recalling the relevant
decompositions from Table 5 of [16],
 

SU�2�S � SU�4�T � GTS

�12; 20S� ! 8 � 2�16� (9a)

�12; 20M� ! 3�8� � 16 (9b)

�12;
�4A� ! 8 (9c)

�32; 20S� ! 2�8� � 2�80� � 3�16� (9d)

�32; 20M� ! 8 � 80 � 4�16� (9e)

�32;
�4A� ! 16: (9f)

Combining these results with the decompositions (3) im-
mediately gives

TABLE II. Expected continuum degeneracies of the irreps of the continuum valence symme-
tries (first three columns) and the number of lattice irreps appearing in the decomposition of each
continuum irrep (last column).

Case and symmetry for a 	 0 Irreps for a 	 0 Expected mass No. of lattice irreps

mx 	 my 	 mz 	 m̂ �12 ; 572M� N 16
SU�2�S � SU�12�f �32 ; 364S� � 14

mx 	 my 	 m̂, mz 	 ms �12 ; 168M; 1� N 12
SU�2�S � SU�8�x;y � SU�4�z �12 ; 28A; 4� � 12

�12 ; 36S; 4� � 12
�12 ; 8; 10S� � 7
�12 ; 8; 6A� �s 5
�12 ; 1; 20M� Ns 4
�32 ; 120S; 1� � 13
�32 ; 36S; 4� �� 20
�32 ; 8; 10S� �� 13
�32 ; 1; 20S� �� 7
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SU�2�S � SU�12�f � SU�3�F � GTS

�12; 572M� ! 3�10S; 8� � �10S; 16� � 5�8M; 8�

� 3�8M; 16� � 3�1A; 8� � �1A; 16�

(10a)

�32; 364S� ! 2�10S; 8� � 2�10S; 80� � 3�10S; 16�

� �8M; 8� � �8M; 80� � 4�8M; 16�

� �1A; 16�: (10b)

For degenerate valence quarks, the baryons are degenerate
within irreps of SU�3�F � GTS. A chiral perturbation the-
ory calculation suggests that the splittings between the
SU�3�F � GTS irreps are about 10–40 MeV, depending
on the precise values of the quark masses and lattice
spacing [20]. From (10a) and the second and third columns
of the first case of Table II, we see that there exist 16 nearly
degenerate SU�3�F � GTS multiplets of staggered baryons
with masses that become exactly degenerate in the contin-
uum limit with the nucleon. Similarly, from (10b) and
Table II, 14 nearly degenerate SU�3�F � GTS multiplets
of staggered baryons have masses that become exactly

degenerate in the continuum limit with the �. These con-
clusions are summarized by the first two entries of the last
column of Table II.

The presence of multiple SU�3�F � GTS irreps of the
same type in the decompositions (10) implies that the
baryon mass matrix will in general contain off-diagonal
elements in subspaces corresponding to states with the
same conserved SU�3�F � GTS quantum numbers, i.e.,
corresponding states transforming in the same type of
SU�3�F � GTS irrep. For example, corresponding mem-
bers of the �10S; 8�’s mix, and the �10S; 8� occurs 3 times in
(10a) and 2 times in (10b). Therefore, for each of the 80
members of this SU�3�F � GTS irrep, there exists a 5-
dimensional submatrix of the mass matrix in which all
off-diagonal elements are generically nonzero. In the con-
tinuum limit, the off-diagonal elements vanish and the
diagonal elements of three of the five members of each
submatrix are degenerate with the nucleon, while two are
degenerate with the �.

For the second case of Table I, the baryons are degen-
erate within irreps of SU�2�I �U�1�z � GTS. Combining
the decompositions (9) with those in (5) gives

 

SU�2�S � SU�8�x;y � SU�4�z � SU�2�I � GTS

�12; 168M; 1� ! 3�32; 8�0 � �
3
2; 16�0 � 5�12; 8�0 � 3�12; 16�0 (11a)

�12; 28A; 4� ! 4�1; 8��1 � �1; 16��1 � 4�0; 8��1 � 3�0; 16��1 (11b)

�12; 36S; 4� ! 4�1; 8��1 � 3�1; 16��1 � 4�0; 8��1 � �0; 16��1 (11c)

�12; 8; 10S� ! 4�12; 8��2 � 3�12; 16��2 (11d)

�12; 8; 6A� ! 4�12; 8��2 � �
1
2; 16��2 (11e)

�12; 1; 20M� ! 3�0; 8��3 � �0; 16��3 (11f)

for the spin- 1
2 baryons. For the spin- 3

2 states we have
 

SU�2�S � SU�8�x;y � SU�4�z � SU�2�I � GTS

�32; 120S; 1� ! 2�32; 8�0 � 2�32; 8
0�0 � 3�32; 16�0 � �12; 8�0 � �

1
2; 8
0�0 � 4�12; 16�0 (12a)

�32; 36S; 4� ! 3�1; 8��1 � 3�1; 80��1 � 7�1; 16��1 � �0; 8��1 � �0; 80��1 � 5�0; 16��1 (12b)

�32; 8; 10S� ! 3�12; 8��2 � 3�12; 8
0��2 � 7�12; 16��2 (12c)

�32; 1; 20S� ! 2�0; 8��3 � 2�0; 80��3 � 3�0; 16��3 (12d)

From the decompositions (11) and (12) and the expected
masses of the SU�2�S � SU�8�x;y � SU�4�z irreps listed in
Table II, we conclude that there exist 12 nearly degenerate
SU�2�I �U�1�z � GTS multiplets of staggered baryons
with masses that become exactly degenerate in the contin-
uum limit with the nucleon, 12 that become degenerate
with the �, 12 that become degenerate with the �, 7 that
become degenerate with the �, and so forth. These con-
clusions are summarized by the last column of Table II.

Just as for the case of degenerate valence quarks, the
presence of multiple SU�2�I �U�1�z � GTS irreps of the
same type in (11) and (12) implies that the baryon mass
matrix contains off-diagonal elements in subspaces corre-

sponding to states with the same conserved SU�2�I �
U�1�z � GTS quantum numbers. For example, correspond-
ing members of the �0; 8��1’s mix, and the �0; 8��1 occurs 4
times in (11b), 4 times in (11c), and once in (12b). So for
each of the eight members of this SU�2�I �U�1�z � GTS
irrep, there exists a 9-dimensional submatrix of the mass
matrix in which all off-diagonal elements are generically
nonzero. In the continuum limit, the off-diagonal elements
vanish and the diagonal elements of four of the nine
members of each submatrix are degenerate with the �,
four are degenerate with the �, and one, with the ��.

We now consider the baryon spectra corresponding to
the third and fourth lines of Table I. For the rest of this
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section, all statements about masses apply in the contin-
uum limit. Begin with the second case in Table I and
imagine increasing mx and my until mx 	 my 	 mz 	

ms. This procedure leaves the masses of the Ns and the
�� unchanged, while the restoration of SU�2�S �
SU�12�f implies the degeneracy of all the members of
the �12 ; 572M� and the degeneracy of all members of the
�32 ; 364S�.

Now consider decreasing mz until mz 	 m̂. In this case
the valence symmetry is again SU�8�x;y � SU�4�z, but now
we have two valence quarks with the mass of the strange
quark and only one valence quark with the mass m̂.
Decreasing mz changes nothing for the Z 	 0 members
of the SU�2�S � SU�12�f irreps, so the masses of the Z 	
0 states remain the same: The Z 	 0 baryons in the
�12 ; 572M� remain degenerate with the Ns, and those in
the �32 ; 364S�, with the ��. However, the masses of the Z �

0 baryons change in a way that is not immediately obvious.
Consider the Z 	 �3 baryons. If we vary the massesmx

and my, the masses of the Z 	 �3 baryons are unchanged.
In particular, decreasing the masses mx and my until mx 	

my 	 mz 	 m̂, we return to the first case of Table I, and all
members of the �12 ; 572M� are degenerate with the nucleon,
while all members of the �32 ; 364S� are degenerate with the
�. Therefore, formx 	 my 	 ms andmz 	 m̂, the mass of
the Z 	 �3 baryon in the �12 ; 572M� is degenerate with the
nucleon, while the Z 	 �3 baryon in the �32 ; 364S� is
degenerate with the �. Taking mx 	 my 	 ms and mz 	

m̂ instead of mx 	 my 	 m̂ and mz 	 ms switches the
masses of the Z 	 0 and Z 	 �3 baryons without chang-
ing either the continuum or the lattice valence symmetry
groups. Therefore, the decompositions and related analysis
summarized in Table II can be immediately applied to the
fourth case of Table I.

Next consider the Z 	 �1 and Z 	 �2 baryons of the
�10S; 20S� appearing in the decomposition (3b) of the 364S.
For definiteness, consider one of the single-taste baryons.
For the second case of Table I, the Z 	 �1 baryons are
degenerate with the ��, while the Z 	 �2 baryons are
degenerate with the ��. The I3 	 1 member of the iso-
triplet has quark content uus, and the I3 	

1
2 member of the

isodoublet has quark content uss. From the point of view of
the valence quark symmetries, these two states are identi-
cal except for the values of the valence quark masses.
Therefore, taking mx 	 my 	 ms and mz 	 m̂ instead of
mx 	 my 	 m̂ and mz 	 ms switches the masses of these
two baryons. The continuum and lattice valence symme-
tries then imply that changing the quark masses in this way
switches the masses of all the Z 	 �1 and Z 	 �2 bary-
ons in the �32 ; 364S�. To summarize, switching the masses of
the light and strange valence quarks interchanges the con-
tinuum masses of the members of the �32 ; 364S�:

 �$ �� �� $ �� (13)

Now consider the Z 	 �1 and Z 	 �2 members of the
�12 ; 572M�. First consider the effect of switching the light
and strange valence quark masses on the continuum masses
of the single-taste baryons in the �8M; 20S�. The Z 	 �1
isotriplet with I3 	 1 is degenerate with the � and has
quark content uus; the Z 	 �2 isodoublet with I3 	

1
2 is

degenerate with the � and has quark content uss. As
before, these two states differ only in the values of the
valence quark masses. Therefore, we conclude as before
that switching the light and strange valence quark masses
switches the masses of these states and all states that are
degenerate with them. Finally, consider the Z 	 �1 and
Z 	 �2 baryons of the �8M; �4A�. According to the decom-
positions (5b) and (5d) and Table II, baryons in the
�1; �4A��1 are degenerate with the �, and baryons in the
�12 ;

�4A��2, with the �s. Again focusing on a specific taste,
consider the I3 	 1 member of the isotriplet and the I3 	

1
2

member of the isodoublet. The quark content is as before,
and again we know that these two states differ only in the
values of the valence quark masses. We conclude that the
masses of the � and the �s switch if we switch the values
of the light and strange valence quark masses.

In a partially quenched simulation with valence and sea
quark masses unrelated, the �s and the � are essentially
the same state. The situation here exactly parallels that for
the partially quenched � and the partially quenched ��:
Strictly speaking the valence quarks are different, but the
freedom to vary the valence quark masses independently of
the sea quark masses means that the masses of the two
baryons in each case can be freely switched. As discussed
below in Sec. III, this freedom implies that in each case the
same operators can be used to extract the masses of both
states.

These observations allow us to obtain an estimate of the
masses of the �s and Ns from chiral perturbation theory:
We have only to respectively calculate the masses of the
partially quenched � and nucleon, and then switch the
masses of the light and strange valence quarks. A prelimi-
nary tree-level result for Ns was noted above; for the �s,
one finds roughly 1400 MeV.

In summary, the continuum and lattice valence symme-
tries are the same for the third and fourth cases as for the
first two cases of Table I, so all the decompositions go
through unchanged. The discussion leading to Table II for
the first and second cases of Table I and the accompanying
conclusions remain valid if one respectively substitutes the
third and fourth cases of Table I for the first and second and
makes the following replacements everywhere:

 

N $ Ns �$ �s �$ �

�$ �� �� $ ��
(14)

Any operator that can be used to extract the mass of one
member of the above pairs can also be used to extract the
mass of the other. As shown in Sec. III, this observation
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will prove especially useful for extracting the mass of the
��.

III. SYMMETRY AND OPERATOR SPECTRA

An operator transforming irreducibly under the lattice
symmetries generically interpolates to all states in the
�12 ; 572M�, �

3
2 ; 364S�, and higher energy SU�2�S �

SU�12�f irreps that have the conserved lattice quantum
numbers of the operator in question. The decompositions
(10)–(12) reveal the conserved lattice quantum numbers of
states in the continuum irreps of Table II. Therefore these
decompositions reveal the states in the continuum irreps of
Table II that are created by operators transforming irredu-
cibly under the lattice symmetries.

For example, for the first case of Table I, consider an
operator transforming as a member of the SU�3�F � GTS
irrep �8M; 8�. This irrep appears 5 times in (10a) and once
in (10b). According to the discussion of Sec. II summa-
rized in Table II, all members of the �12 ; 572M�, including
the members of the five �8M; 8�’s appearing in (10a), are
degenerate, in the continuum limit, with the nucleon, while
all members of the �32 ; 364S�, including the members of the
single �8M; 8� of (10b), are degenerate with the �. At
nonzero lattice spacing, spin-taste violations lift the degen-
eracy of the five �8M; 8� irreps and introduce mixing within
sets of six states with the same conserved SU�3�F � GTS
quantum numbers. The operator in question possesses the
conserved SU�3�F � GTS quantum numbers of one mem-
ber of the �8M; 8� and interpolates to all six states in the
�12 ; 572M� and �32 ; 364S� with these quantum numbers; i.e.,
the operator interpolates to the five corresponding states in
the �8M; 8�’s appearing in the decomposition (10a) of the
�12 ; 572M� and the single corresponding state in the �8M; 8�
appearing in the decomposition (10b) of the �32 ; 364S�.

Making analogous observations for each of the lattice
irreps appearing in the decompositions (10)–(12) of the
continuum irreps of Table II gives the number of non-
degenerate staggered baryons created by an operator trans-
forming in each lattice irrep that have masses that become
degenerate, in the continuum limit, with each of the ex-
pected masses listed in Table II. This number is simply
equal to the number of times that the lattice irrep of the
operator in question occurs in the decomposition of the
corresponding continuum irrep. The results of this analysis
are listed in Tables III and IV. Because a given operator
interpolates to states that have the same conserved lattice
quantum numbers, states in a given line of Table III and IV
are mixed by spin-taste violations. Just as Table II,
Tables III and IV remain valid if we respectively substitute
the quark masses in lines 3 and 4 of Table I for the quark
masses of Tables III and IV and make the substitutions
(14).

Because the splittings and mixings introduced by spin-
taste violations in the spectrum of a given operator are

probably on the order of a few tens of MeV at currently
practical quark masses and lattice spacings, simply ignor-
ing excited states and mixing when fitting to correlators to
extract masses may introduce significant systematic errors.
Ideally, one would like to use operators that interpolate to
only a few states having very different masses. Referring to
Tables III and IV, two SU�3�F � GTS irreps and two
SU�2�I �U�1�z � GTS irreps stand out: the �8M; 80� and
�1A; 16� of SU�3�F � GTS and the �12 ; 8

0�0 and �0; 80��1 of
SU�2�I �U�1�z � GTS. When used with the quark masses
shown in the tables, operators transforming in these irreps
interpolate to states that are not part of nearly degenerate
lattice multiplets split and mixed by spin-taste violations;

TABLE IV. For operators transforming in a given SU�2�I �
U�1�z � GTS irrep, the number of corresponding nondegenerate
baryons in the staggered spectrum that are expected to be
degenerate, in the continuum limit, with the listed states.

Case and symmetry
for a � 0

Operator irreps
(for a � 0)

States
created/mixed

mx 	 my 	 m̂, mz 	 ms �32 ; 8�0 3N and 2�

SU�2�I �U�1�z � GTS �32 ; 8
0�0 2�

�32 ; 16�0 1N and 3�

�12 ; 8�0 5N and 1�

�12 ; 8
0�0 1�

�12 ; 16�0 3N and 4�
�1; 8��1 4�, 4�, and 3��

�1; 80��1 3��

�1; 16��1 1�, 3�, and 7��

�0; 8��1 4�, 4�, and 1��

�0; 80��1 1��

�0; 16��1 3�, 1�, and 5��

�12 ; 8��2 4�, 4�s, and 3��

�12 ; 8
0��2 3��

�12 ; 16��2 3�, 1�s, and 7��

�0; 8��3 3Ns and 2��

�0; 80��3 2��

�0; 16��3 1Ns and 3��

TABLE III. For operators transforming in a given SU�3�F �
GTS irrep, the number of corresponding nondegenerate baryons
in the staggered spectrum that are expected to be degenerate, in
the continuum limit, with the listed states.

Case and symmetry
for a � 0

Operator irreps
(for a � 0)

States
created/mixed

mx 	 my 	 mz 	 m̂ �10S; 8� 3N and 2�
SU�3�F � GTS �10S; 80� 2�

�10S; 16� 1N and 3�
�8M; 8� 5N and 1�
�8M; 80� 1�
�8M; 16� 3N and 4�
�1A; 8� 3N
�1A; 16� 1N and 1�
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therefore, such operators could be used to extract the
corresponding baryon masses without needing to account
for these splittings and mixings.

When used with the quark masses of the first line of
Table I, operators transforming in the �8M; 80� create states
in a single � irrep, while operators in the �1A; 16� inter-
polate to a nucleon irrep and another � irrep. Although
operators in the �1A; 16� also interpolate to a � irrep, the
physical splitting between the nucleon and the � is about
300 MeV, so accounting for this excited state would be
much more feasible than accounting for those associated
with the spin-taste violations in other channels.
Considering the third case of Table I and making the
substitutions (14) in Table III, we see that the �8M; 80�
interpolates to a single �� irrep, and the �1A; 16�, to an
Ns irrep and an �� irrep; as for the nucleon and �,
channels with splittings and mixings are avoided.

When flavor SU�3�F is broken to isospin, operators
transforming in the �12 ; 8

0�0 create states in a � irrep, and
operators transforming in the �0; 80��1 create states in a ��

irrep. Given the results for the case of degenerate valence
quarks, the first observation here is not surprising: The
�8M; 80� appears only once in the decomposition of the
�32 ; 364S� and, in the decomposition of SU�3�F �GTS
irreps into SU�2�I �U�1�z � GTS irreps, the �12 ; 8

0�0 ap-
pears only in the decomposition of the �8M; 80�. In contrast,
the emergence of the isosinglet �0; 80��1 as a �� irrep is
counterintuitive; although the isospin is unphysical, one
could use an operator in this irrep to cleanly extract the
mass of the ��. Considering the fourth case of Table I and
making the substitutions (14) in Table IV, the isosinglet
�0; 80��1 interpolates to a single irrep having the mass of
the ��. In summary, by using appropriate operators and
quark masses, we can extract the masses of the entire
decuplet while completely avoiding the splittings and mix-
ings introduced by spin-taste violations.

Unfortunately, our ability to vary the valence quark
masses and thereby use the same operators to extract the

masses of the � and �s is not so useful; the same comment
applies to the masses of the � and � [cf. (16)]. The reason
is that there exist no SU�2�I �U�1�z � GTS irreps in
Table IV that interpolate to a single �, �, �, or �s. The
complications due to spin-taste violations must be over-
come if one is to extract the masses of the �, �, and � with
complete control over systematic errors.

The lattice irreps of operators interpolating to at most
one lattice multiplet in each of the �12 ; 572M� and �32 ; 364S�

irreps are listed again in Table V. Using operators trans-
forming in these irreps with the valence quark masses
shown would allow one to extract the masses of the nu-
cleon, �, ��, ��, and �� without having to account for
splittings and mixings due to spin-taste violations. These
splittings and mixings are completely absent from the
spectra of spin- 1

2 and spin- 3
2 states created by such

operators.

IV. OPERATORS TRANSFORMING IRREDUCIBLY
UNDER SU�3�F �GTS

The enumeration parallels that in [16]. Baryon operators
transforming irreducibly under SU�3�F � GTS are con-
structed of three staggered fields, each transforming in
the fundamental rep of SU�3�F � GTS. The baryons are
color singlet fermions, so the operators are antisymmetric
under permutation of the color indices and under simulta-
neous permutation of color, flavor, and GTS indices. One
way to understand the symmetry requirement on the GTS
indices is to note that they correspond to the continuum
spin and taste indices. Alternatively, simultaneously inter-
changing all indices is equivalent to interchanging the
staggered fields themselves.

Employing the notation of [16], one considers the ob-
jects

 ijk
~BABC 


X
x;xkeven

1

6
�abcDA�ai �x�DB�bj �x�DC�ck�x�;

(15)

where i, j, and k are SU�3�F indices, a, b, and c are color
indices, �ai �x� is a staggered field transforming in the �3; 8�
of SU�3�F � GTS, the sum is over all elementary cubes in
the block lattice, A, B, and C are GTS indices, and DA is a
symmetric shift operator defined on the staggered fields by

 DA�
a
i �x� 	

1
2��

a
i �x� aA� � �ai �x� aA��; (16)

where aA points to one of the eight corners of an elemen-
tary cube. For each set of GTS indices, we apply the
reduction rule of [16] to obtain operators that are maxi-
mally local: Whenever two or three symmetric shift opera-
tors of the same type act separately on staggered fields in
(15), we replace these shift operators with a single shift of
the same type acting on the product of the associated
staggered fields. This procedure does not change the trans-

TABLE V. Irreps of operators that interpolate to at most one
lattice multiplet in each of the irreps �12 ; 572M� and �32 ; 364S�. The
spectra of lightest spin- 1

2 and spin- 3
2 baryons created by such

operators are not split or mixed by spin-taste violations.

Case and symmetry
for a � 0

Operator irreps
(for a � 0)

States
created/mixed

mx 	 my 	 mz 	 m̂ �8M; 80� 1�
SU�3�F � GTS �1A; 16� 1N and 1�

mx 	 my 	 m̂, mz 	 ms �12 ; 8
0�0 1�

SU�2�I �U�1�z � GTS �0; 80��1 1��

mx 	 my 	 mz 	 ms �8M; 80� 1��

SU�3�F � GTS �1A; 16� 1Ns and 1��

mx 	 my 	 ms, mz 	 m̂ �12 ; 8
0�0 1��

SU�2�I �U�1�z � GTS �0; 80��1 1��
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formation properties of the operators under GTS or
SU�3�F.

The operators ~B are completely symmetric under simul-
taneous permutation of flavor and GTS indices:

 ijk
~BABC 	 jki

~BBCA 	 kij
~BCAB 	 jik

~BBAC 	 ikj
~BACB

	 kji
~BCBA:

Embedding the fundamental rep of GTS in the fundamen-
tal rep of SU�8�, the symmetry of ~B under simultaneous
interchange of flavor and GTS indices implies that ~B trans-
forms in the completely symmetric representation of
SU�24�, where the fundamental rep of SU�24� coincides
with the fundamental rep [the �3; 8�] of SU�3�F � GTS.
The appearance of the symmetric irrep of SU�24� could
have been anticipated from the nonrelativistic quark model
or the continuum symmetries of the valence sector of
staggered QCD; referring to the decompositions (2) and
(10), the uniqueness of the decompositions implies that
operators derived by decomposing the symmetric irrep of
SU�24� into irreps of SU�3�F � GTS will transform in
irreps whose types correspond one-to-one with the
SU�3�F � GTS irreps of (10). Hence, the resulting set of
operators is complete in the sense that, neglecting contami-
nation from excited states, the operators could be used with
matrix fits to extract the masses of all the lightest spin- 1

2
and spin- 3

2 states. This completeness also provides a con-
sistency check for the enumeration of the operators: The
decomposition of the symmetric irrep of SU�24� deduced
by applying SU�3�F � GTS transformations to the inde-
pendent components of ~B must match that implied by the
decompositions (2) and (10).

Decomposing the symmetric rep of SU�24� under
SU�3�F � SU�8� gives three product irreps:
 

SU�24� � SU�3�F � SU�8�

2600S ! �10S; 120S� � �8M; 168M� � �1A; 56A�
(17)

In terms of the corresponding tensor components, the
decomposition (17) means

 ijk
~BABC 	 ijkSABC � ijkMABC � ijkAABC;

where S is symmetric under arbitrary, independent permu-
tations of SU�3�F and GTS indices, A is antisymmetric
under arbitrary, independent permutations of SU�3�F and
GTS indices, and M is defined by the relations
 

ijkMABC 	 jkiMBCA 	 kijMCAB 	 jikMBAC 	 ikjMACB

	 kjiMCBA

ijkMABC � jkiMABC � kijMABC 	 0

ijkMABC � ijkMBCA � ijkMCAB 	 0:

Hence, S, M, and A all have the same symmetry as ~B;
they are completely symmetric under simultaneous permu-
tation of SU�3�F and GTS indices. By construction, the

independent, orthonormal components of S, M, and A
have definite SU�3�F quantum numbers. The reader can
verify that

 

ijkSABC 	
1
6�ijk

~BABC � jki
~BABC � kij

~BABC

� jik
~BABC � ikj

~BABC � kji
~BABC� (18a)

ijkMABC 	
1
3�2ijk

~BABC � jki
~BABC � kij

~BABC� (18b)

ijkAABC 	
1
6�ijk

~BABC � jki
~BABC � kij

~BABC � jik
~BABC

� ikj
~BABC � kji

~BABC�: (18c)

To proceed further one must decompose these SU�3�F �
SU�8� irreps into irreps of SU�3�F � GTS. Following [16],
one identifies a minimal set of independent field compo-
nents from which all others can be obtained by applying
GTS transformations. (See Eqs. (5.4) of [16].) The action
of GTS on the underlying staggered fields then dictates the
linear combinations of the independent components that
transform irreducibly under SU�3�F � GTS. One can find
these irreducible components (irreducibly transforming
linear combinations of the independent fields) by consid-
ering an arbitrary linear combination of the independent
fields, applying the generators of GTS to these fields by
explicitly transforming the staggered fields, and then fixing
the coefficients by demanding that the linear combination
transform within one of the irreps of GTS. Since all group
elements can be written as products of the generators, this
procedure exhausts the irreducibility constraints on the
coefficients.

In [16], this analysis was much expedited by two
observations: First, the minimal set of independent com-
ponents fall into seven distinct geometric classes distin-
guished by the relative elementary-cube locations where
the staggered fields reside. Because members of different
geometric classes are not mixed by the elements of GTS,
irreducible components must be linear combinations of
independent components that belong to the same geometric
class. This observation allows one to restrict the search
for irreducible components to subspaces of the 120-
dimensional vector space defined by the independent
fields; in practice, the largest of these subspaces is only
3-dimensional. When searching for irreducible compo-
nents in the 2600-dimensional space considered here, this
observation proves its worth many times over; the largest
subspaces that one need consider are only 12-dimensional.

The second observation is that one can uniquely identify
irreducible components transforming in the irreps 8, 80, and
16 of GTS by identifying irreducible components trans-
forming respectively in the irreps A
1 , A
2 , and E
 of the
octahedral group Oh � GTS; GTS is the union of Oh and
spatial shifts by one lattice site. Given a set of independent
components that is closed under Oh, one can ignore the
transformation properties under spatial shifts and work
exclusively with the generators of Oh. This observation
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follows from the decomposition of the GTS irreps under Oh

[16]:
 

GTS � Oh

8! A�1 � A
�
1 � . . .

80 ! A�2 � A
�
2 � . . .

16! E� � E� � . . . ;

where the neglected irreps of Oh do not affect the obser-
vation. Constructing the components ~B of (15) using the
symmetric shift operators DA and imposing periodic
boundary conditions in the spatial directions, one ensures
that the components of ~B have definite parity under spatial
inversion, Is. Therefore one can find the irreducible com-
ponents by working with the generators of the cubic rota-
tion group O � Oh. The spatial shifts in GTS relate the
components of different Oh irreps within the same GTS
irrep; once one has operators transforming irreducibly
under Oh, applying the shifts to derive the remaining
operators in each GTS irrep is superfluous because all
operators within a given lattice irrep interpolate to pre-
cisely the same spectrum. These observations prove
equally useful when constructing operators with SU�3�F
quantum numbers.

To make these details concrete, we will explicitly search
a specific subspace for irreducible components. First we
require the matrix representations of the generators of O in
each irrep of interest. The A irreps of O are 1-dimensional;
in any basis, the matrices of the group elements are equal to
the characters. Choosing R12 and R23, rotations by �

2 in the
12- and 23-planes, respectively, as the generators of O, and
looking up the characters ([21], p. 127), we have R12 	
R23 	 1 in the trivial irrep, A1, and R12 	 R23 	 �1 in A2.
The E irrep is 2-dimensional; to find the matrix represen-
tations of R12 and R23, it suffices to consider an arbitrary
(not necessarily irreducible) rep of O that contains at least
one E in its decomposition into irreps of O, project onto the
E irrep using the characters ([21], pp. 111–113), construct
the matrices of R12 and R23, and block diagonalize the
results if the projected subspace contains more than one E.
Carrying out this procedure and diagonalizing R12 gives

 R12 	
1 0
0 �1

� �
and R23 	

� 1
2

��
3
p

2��
3
p

2
1
2

 !
: (19)

Consider the subspace corresponding to the class 2
operators of [16]; the three staggered fields of such opera-
tors reside at two sites within each elementary cube that are
separated by one and only one lattice spacing. Two fields
reside at one site, and one, at the other site. In our case, one
set of class 2 operators is given by

 ijkS011 

1
3�ijk

~B011 � jki
~B011 � kij

~B011� (20)

for each ijk. Here we have the GTS indices ABC 	 011;
with respect to a single elementary cube, one staggered

field is evaluated at the origin of the cube, and the other two
fields are evaluated at the site removed by one lattice
spacing in the positive 1-direction. For each elementary
cube contributing to a component ~B, the symmetric shift
operators incorporate fields from neighboring elementary
cubes; by definition, the geometric classes are not changed
by the symmetric shift operators in ~B (15).

Applying Is and the generators of O to the staggered
fields in the components of ~B in (20) gives
 

Is: ijkS011 ! ijkS011 (21a)

R12: ijkS011 ! ijkS022 (21b)

R23: ijkS011 ! ijkS011 (21c)

R12: ijkS022 ! ijkS011 (21d)

R23: ijkS022 ! ijkS033 (21e)

R12: ijkS033 ! ijkS033 (21f)

R23: ijkS033 ! ijkS022 (21g)

The sequence of transformations ends because the compo-
nents ijkS011, ijkS022, and ijkS033 are closed under O; these
components correspond to a 3-dimensional subspace. The
components ijkS022 and ijkS033, like ijkS011, are invariant
under Is because O � Oh; i.e., cubic rotations do not
change Is parity.

Now we search for irreducible components of O.
Consider the linear combination

 � ijkS011 � � ijkS022 � � ijkS033: (22)

We want to find the coefficients �, �, and � such that the
resulting linear combination transforms irreducibly under
the A1, A2, or E irrep of O. In A1, R12 	 R23 	 1; compo-
nents transforming in the A1 irrep are invariant under O.
Transforming (22) under R12 according to (21b), (21d), and
(21f), and demanding invariance gives

 �ijkS022 � �ijkS011 � �ijkS033

	 �ijkS011 � �ijkS022 � �ijkS033;

so � 	 �. Applying R23 in accord with (21c), (21e), and
(21g), implies � 	 �, and we conclude that

 ijkS011 � ijkS022 � ijkS033 � A
�
1 � 8;

the overall normalization does not affect and is therefore
not fixed by the transformation properties, and we have a
single irreducible component transforming in the A�1 of Oh

and therefore the 8 of GTS. Because we are dealing with a
completely reducible 3-dimensional subspace and the O
irreps have dimensions 1, 2, and 3, we see that the remain-
ing irrep(s) must be either two A2’s or one E.

In A2, R12 	 R23 	 �1. Then the transformation of (22)
under R12 implies that � 	 �� and � 	 0, while that
under R23 gives � 	 �� and � 	 0; hence we have � 	
� 	 � 	 0, which means that there exist no irreducible
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components of A2 in this subspace. The remaining irrep
must be an E.

To find the irreducible components of E, we consider the
linear combinations

 �� 
 �� ijkS011 � �� ijkS022 � �� ijkS033

�� 
 �� ijkS011 � �� ijkS022 � �� ijkS033:

According to (19),
 

R12: �� ! �� (23a)

R23: �� ! �
1

2
�� �

���
3
p

2
�� (23b)

and

 R12: �� ! ��� (23c)

 R23: �� !

���
3
p

2
�� �

1

2
�� (23d)

Transforming �� and �� under R12 according to (21) and
demanding (23a) and (23c) gives �� 	 ��, �� 	 ���,
and �� 	 0. Incorporating this information, transforming
�� and �� under R23 according to (21), and demanding
(23b) and (23d) then gives �� 	

���
3
p
�� and �� 	 �2��,

and we conclude that

 ijkS011 � ijkS022 � 2ijkS033 � E
�
1 � 16

and

 ijkS011 � ijkS022 � E
�
�1 � 16;

where the subscripts on E indicate the eigenvalue of R12.

We have decomposed the 3-dimensional subspace into
irreps of Oh and found that for each set of SU�3�F indices,
the subspace is an A�1 � E

� of Oh; since operators trans-
forming within the same GTS irrep create identical spectra
and Oh � GTS, we have constructed all the operators with
linearly independent spectra in the corresponding 8 � 16 of
GTS. The symmetry of the SU�3�F indices then implies
that we have found operators transforming in a �10S; 8� and
a �10S; 16� appearing in the decomposition of the
�10S; 120S� of SU�3�F � SU�8� into irreps of SU�3�F �
GTS.

Comparing these results with those for the class 2 op-
erators of Table 3 of [16], we see that the irreducible
operators obtained from the decomposition of the
�10S; 120S� under SU�3�F � GTS are a direct generaliza-
tion of the single-flavor operators given in [16]. In fact, all
the flavor-symmetric operators with linearly independent
spectra can be immediately read off from Table 3 of [16]:
One simply adds a flavor index to each staggered field in
the single-flavor operator and then symmetrizes the flavor
indices to get the result. This fact may be understood by
considering the indicial symmetries involved in the two
cases. In [16], the objects corresponding to ~B in (15) are
completely symmetric in the GTS indices. (See Eq. (5.2) of
[16].) Likewise, the components of S are completely sym-
metric in the GTS indices. The remainder of the analysis of
[16] utilized only the transformation properties of the
staggered fields under GTS and this symmetry under per-
mutation of the GTS indices. Therefore the analysis goes
through unchanged for each member of the 10S in the
�10S; 120S�, and the claimed result follows. For complete-
ness, the resulting operators are listed in Table VI, where
we have adopted the notation of [16] for the GTS indices.

TABLE VI. Operators transforming within irreps of SU�3�F � GTS obtained by decomposing
the �10S; 120S� of SU�3�F � SU�8�.

Operators Oh irrep SU�3�F � GTS irrep Class

ijkS000 A�1 �10S; 8� 1

ijkS011 � ijkS022 � ijkS033 A�1 �10S; 8� 2

ijkS011 � ijkS022 � 2ijkS033 E�1 �10S; 16� 2

ijkS011 � ijkS022 E��1 �10S; 16� 2

ijkS0;23;23 � ijkS0;13;13 � ijkS0;12;12 A�1 �10S; 8� 3

ijkS0;23;23 � ijkS0;13;13 � 2ijkS0;12;12 E�1 �10S; 16� 3

ijkS0;23;23 � ijkS0;13;13 E��1 �10S; 16� 3

ijkS1;12;13 � ijkS2;21;23 � ijkS3;31;32 A�2 �10S; 80� 4

ijkS1;12;13 � ijkS2;21;23 E�1 �10S; 16� 4

ijkS1;12;13 � ijkS2;21;23 � 2ijkS3;31;32 E��1 �10S; 16� 4

ijkS0;0;123 A�1 �10S; 8� 5

ijkS0;1;23 � ijkS0;2;13 � ijkS0;3;12 A�1 �10S; 8� 6

ijkS0;1;23 � ijkS0;2;13 � 2ijkS0;3;12 E�1 �10S; 16� 6

ijkS0;1;23 � ijkS0;2;13 E��1 �10S; 16� 6

ijkS123 A�2 �10S; 80� 7
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Since pairs of operators transforming in the same E trans-
form in the same 16 of GTS, we have
 

SU�3�F � SU�8� � SU�3�F � GTS

�10S; 120S� ! 5�10S; 8� � 2�10S; 80� � 4�10S; 16�
(24)

in accord with Eq. (5.5) of [16]. For each member of the
10S, the irrep 120S of SU�8� corresponds to the 120 op-
erators of [16]; the irrep 120S is the reducible rep �8� 8�
8�S of GTS analyzed in [16].

The search for irreducible components of SU�3�F �
GTS in the irrep �1A; 56A� proceeds in almost the same
way. The list of allowed independent components is shorter
than the one for S because the components of A are
completely antisymmetric under permutations of GTS in-
dices; accordingly, operators from classes 1, 2, 3, and 5 are
disallowed (cf. Table VI). Limiting the search to compo-
nents from classes 4, 6, and 7 and fixing the coefficients in
exactly the same manner as before gives the results shown
in Table VII. The results of Table VII represent all opera-

tors with distinct spectra obtained by decomposing
�1A; 56A� into irreps of SU�3�F � GTS; operators obtained
from these by applying shifts and rotations transform in the
same irreps of GTS and therefore add nothing new. The
results of Table VII thus imply that

 

SU�3�F � SU�8� � SU�3�F � GTS

�1A; 56A� ! 3�1A; 8� � 2�1A; 16�:
(25)

The search for irreducible operators in the irrep
�8M; 168M� proceeds in the same way except for one addi-
tional step at the end. After constructing linear combina-
tions transforming irreducibly under GTS, we construct
linear combinations that have definite isospin using com-
ponents transforming within the same type of GTS irrep.
This issue did not arise when considering the other
SU�3�F � SU�8� irreps because the upness, downness,
and strangeness suffice to distinguish members within the
10S and 1A of SU�3�F.

TABLE VIII. Class 2 operators transforming within irreps of SU�3�F � GTS obtained by decomposing the �8M; 168M� of SU�3�F �
SU�8�. The class 2 operators transform within two SU�3�F � GTS irreps, an �8M; 8� and an �8M; 16�.

Operator(s) Oh irrep SU�2�I �U�1�z � GTS irrep(s) I3

iijM011 � iijM022 � iijM033 A�1 �12 ; 8�0 
 1
2

�1; 8��1 
1
�12 ; 8��2 
 1

2

312M011 � 312M022 � 312M033 A�1 �1; 8��1 0

312M011 � 312M022 � 312M033 � . . . A�1 �0; 8��1 0

2�123M011 � 123M022 � 123M033�

iijM011 � iijM022 � 2iijM033 E�1 �12 ; 16�0 
 1
2

�1; 16��1 
1
�12 ; 16��2 
 1

2

312M011 � 312M022 � 2312M033 E�1 �1; 16��1 0

312M011 � 312M022 � 2312M033 � . . . E�1 �0; 16��1 0
2�123M011 � 123M022 � 2123M033�

iijM011 � iijM022 E��1 �12 ; 16�0 
 1
2

�1; 16��1 
1
�12 ; 16��2 
 1

2

312M011 � 312M022 E��1 �1; 16��1 0

312M011 � 312M022 � 2�123M011 � 123M022� E��1 �0; 16��1 0

TABLE VII. Operators transforming within irreps of SU�3�F � GTS obtained by decompos-
ing the �1A; 56A� of SU�3�F � SU�8�.

Operators Oh irrep SU�3�F � GTS irrep Class

ijkA1;12;13 � ijkA2;21;23 � ijkA3;31;32 A�1 �1A; 8� 4

ijkA1;12;13 � ijkA2;21;23 � 2ijkA3;31;32 E�1 �1A; 16� 4

ijkA1;12;13 � ijkA2;21;23 E��1 �1A; 16� 4

ijkA0;1;23 � ijkA0;2;13 � ijkA0;3;12 A�1 �1A; 8� 6

ijkA0;1;23 � ijkA0;2;13 � 2ijkA0;3;12 E�1 �1A; 16� 6

ijkA0;1;23 � ijkA0;2;13 E��1 �1A; 16� 6

ijkA123 A�1 �1A; 8� 7
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The results of the analysis are shown in Tables VIII, IX,
X, XI, XII, XIII, XIV, XV, XVI, and XVII; in all these
tables, i � j and some care must be taken in interpreting
the flavor indices: For the operators to have the indicated
isospin, a flavor index of 3 corresponds to the strange

valence quark. The results in these tables imply that

 

SU�3�F � SU�8� � SU�3�F � GTS

�8M; 168M� ! 6�8M; 8� � �8M; 80� � 7�8M; 16�:
(26)

TABLE X. Class 5 operators transforming within irreps of SU�3�F � GTS obtained by decomposing the �8M; 168M� of SU�3�F �
SU�8�. The class 5 operators transform within a single SU�3�F � GTS irrep, an �8M; 8�.

Operator(s) Oh irrep SU�2�I �U�1�z � GTS irrep(s) I3

iijM123;0;0 A�1 �12 ; 8�0 
 1
2

�1; 8��1 
1
�12 ; 8��2 
 1

2

312M123;0;0 A�1 �1; 8��1 0

312M123;0;0 � 2123M123;0;0 A�1 �0; 8��1 0

TABLE XI. Class 7 operators transforming within an �8M; 16� of SU�3�F � GTS.

Operator(s) Oh irrep SU�2�I �U�1�z � GTS irrep(s) I3

iijM123 � 2ijiM123 E�1 �12 ; 16�0 
 1
2

�1; 16��1 
1
�12 ; 16��2 
 1

2
2312M123 � 312M132 � 312M312 � 312M213 E�1 �1; 16��1 0

312M132 � 312M312 � 312M213 E�1 �0; 16��1 0

iijM123 E��1 �12 ; 16�0 
 1
2

�1; 16��1 
1
�12 ; 16��2 
 1

2

312M123 � 312M312 � 312M213 E��1 �1; 16��1 0

312M123 � 2312M132 � 312M312 � 312M213 E��1 �0; 16��1 0

TABLE IX. Class 3 operators transforming within irreps of SU�3�F � GTS obtained by decomposing the �8M; 168M� of SU�3�F �
SU�8�. The class 3 operators transform within an �8M; 8� and an �8M; 16� of SU�3�F � GTS.

Operator(s) Oh irrep SU�2�I �U�1�z � GTS irrep(s) I3

iijM0;23;23 � iijM0;13;13 � iijM0;12;12 A�1 �12 ; 8�0 
 1
2

�1; 8��1 
1
�12 ; 8��2 
 1

2

312M0;23;23 � 312M0;13;13 � 312M0;12;12 A�1 �1; 8��1 0

312M0;23;23 � 312M0;13;13 � 312M0;12;12 � . . . A�1 �0; 8��1 0
2�123M0;23;23 � 123M0;13;13 � 123M0;12;12�

iijM0;23;23 � iijM0;13;13 � 2iijM0;12;12 E�1 �12 ; 16�0 
 1
2

�1; 16��1 
1
�12 ; 16��2 
 1

2

312M0;23;23 � 312M0;13;13 � 2312M0;12;12 E�1 �1; 16��1 0

312M0;23;23 � 312M0;13;13 � 2312M0;12;12 � . . . E�1 �0; 16��1 0
2�123M0;23;23 � 123M0;13;13 � 2123M0;12;12�

iijM0;23;23 � iijM0;13;13 E��1 �12 ; 16�0 
 1
2

�1; 16��1 
1
�12 ; 16��2 
 1

2

312M0;23;23 � 312M0;13;13 E��1 �1; 16��1 0

312M0;23;23 � 312M0;13;13 � . . . E��1 �0; 16��1 0
2�123M0;23;23 � 123M0;13;13�
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Together with the decompositions (17), (24), and (25),
decomposition (26) implies that
 

SU�24� � SU�3�F � GTS

2600S ! 5�10S; 8� � 2�10S; 80� � 4�10S; 16�

� 6�8M; 8� � �8M; 80� � 7�8M; 16�

� 3�1A; 8� � 2�1A; 16�:

(27)

To check this decomposition against our previous results,
recall from (2) that

 

SU�24� � SU�2�S � SU�12�f

2600S ! �
3
2; 364S� � �

1
2; 572M�:

Comparing the decomposition (27) with the direct sum of
the decompositions (10a) and (10b), we see that the
SU�3�F � GTS irreps correspond one-to-one, as they must.

As an example in the use of the tables, consider the third
line of Table VII. The given operator transforms within the
�1A; 16� of SU�3�F � GTS and therefore, according to the
discussion of Sec. III summarized in Table V, could be used

TABLE XIII. Class 4, E�1 operators transforming within two �8M; 16�’s of SU�3�F � GTS.

Operator(s) Oh irrep SU�2�I �U�1�z � GTS irrep(s) I3

iijM1;12;13 � iijM2;21;23 � 2iijM3;31;32 � . . . E�1 �12 ; 16�0 
 1
2

�ijiM1;12;13 � ijiM2;21;23 � 2ijiM3;31;32� �1; 16��1 
1
�12 ; 16��2 
 1

2

312M1;12;13 � 312M2;21;23 � 2312M3;31;32 � . . . E�1 �1; 16��1 0
�312M1;13;12 � 312M2;23;21 � 2312M3;32;31� � . . .
2�312M13;1;12 � 312M23;2;21 � 2312M32;3;31 � . . .
�312M12;1;13 � 312M21;2;23 � 2312M31;3;32��

312M1;12;13 � 312M2;21;23 � 2312M3;31;32 � . . . E�1 �0; 16��1 0
�312M1;13;12 � 312M2;23;21 � 2312M3;32;31�

iijM1;12;13 � iijM2;21;23 � . . . E�1 �12 ; 16�0 
 1
2

�ijiM1;12;13 � ijiM2;21;23� �1; 16��1 
1
�12 ; 16��2 
 1

2

312M1;12;13 � 312M2;21;23 � . . . E�1 �1; 16��1 0
�312M1;13;12 � 312M2;23;21�

312M1;12;13 � 312M2;21;23 � . . . E�1 �0; 16��1 0
�312M1;13;12 � 312M2;23;21� � . . .
2�312M13;1;12 � 312M23;2;21 � . . .
�312M12;1;13 � 312M21;2;23��

TABLE XII. Class 4 operators transforming within an �8M; 8� and �8M; 80� of SU�3�F � GTS.

Operator(s) Oh irrep SU�2�I �U�1�z � GTS irrep(s) I3

iijM1;12;13 � iijM2;21;23 � iijM3;31;32 � . . . A�1 �12 ; 8�0 
 1
2

�ijiM1;12;13 � ijiM2;21;23 � ijiM3;31;32� �1; 8��1 
1
�12 ; 8��2 
 1

2

312M1;12;13 � 312M2;21;23 � 312M3;31;32 � . . . A�1 �1; 8��1 0
�312M1;13;12 � 312M2;23;21 � 312M3;32;31� � . . .
2�312M13;1;12 � 312M23;2;21 � 312M32;3;31 � . . .
�312M12;1;13 � 312M21;2;23 � 312M31;3;32��

312M1;12;13 � 312M2;21;23 � 312M3;31;32 � . . . A�1 �0; 8��1 0
�312M1;13;12 � 312M2;23;21 � 312M3;32;31�

iijM1;12;13 � iijM2;21;23 � iijM3;31;32 � . . . A�2 �12 ; 8
0�0 
 1

2
�ijiM1;12;13 � ijiM2;21;23 � ijiM3;31;32� �1; 80��1 
1

�12 ; 8
0��2 
 1

2

312M1;12;13 � 312M2;21;23 � 312M3;31;32 � . . . A�2 �1; 80��1 0
�312M1;13;12 � 312M2;23;21 � 312M3;32;31�

312M1;12;13 � 312M2;21;23 � 312M3;31;32 � . . . A�2 �0; 80��1 0
�312M1;13;12 � 312M2;23;21 � 312M3;32;31� � . . .
2�312M13;1;12 � 312M23;2;21 � 312M32;3;31 � . . .
�312M12;1;13 � 312M21;2;23 � 312M31;3;32��
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to extract the masses of the nucleon, �, Ns, and ��

without needing to account for splittings and mixings due
to spin-taste violations. Noting that the operator is a flavor
singlet, we consider

 123A1;12;13 � 123A2;21;23 	
1
6�
ijk�ijk

~B1;12;13 � ijk
~B2;21;23�:

Unpacking the components of ~B using (15) and applying
the reduction rule gives

 X
x;xkeven

1

6
�ijk

1

6
�abc

�X
"2"3

�ai �x� a1��
b
j �x� a1 � "2a2��

c
k�x� a1 � "3a3�

�
X
"1"3

�ai �x� a2��
b
j �x� "1a1 � a2��

c
k�x� a2 � "3a3�

�

TABLE XV. Class 6 operators transforming within two �8M; 8�’s of SU�3�F � GTS.

Operator(s) Oh irrep SU�2�I �U�1�z � GTS irrep(s) I3

iijM0;1;23 � iijM0;2;13 � iijM0;3;12 A�1 �12 ; 8�0 
 1
2

�1; 8��1 
1
�12 ; 8��2 
 1

2

312M0;1;23 � 312M0;2;13 � 312M0;3;12 � . . . A�1 �1; 8��1 0
�312M23;0;1 � 312M13;0;2 � 312M12;0;3� � . . .
�312M1;0;23 � 312M2;0;13 � 312M3;0;12�

312M0;1;23 � 312M0;2;13 � 312M0;3;12 � . . . A�1 �0; 8��1 0
�312M23;0;1 � 312M13;0;2 � 312M12;0;3� � . . .
�312M1;0;23 � 312M2;0;13 � 312M3;0;12�

ijiM0;1;23 � ijiM0;2;13 � ijiM0;3;12 A�1 �12 ; 8�0 
 1
2

�1; 8��1 
1
�12 ; 8��2 
 1

2

312M0;23;1 � 312M0;13;2 � 312M0;12;3 � . . . A�1 �1; 8��1 0
�312M23;0;1 � 312M13;0;2 � 312M12;0;3� � . . .
�312M1;0;23 � 312M2;0;13 � 312M3;0;12�

312M0;23;1 � 312M0;13;2 � 312M0;12;3 � . . . A�1 �0; 8��1 0
�312M23;0;1 � 312M13;0;2 � 312M12;0;3� � . . .
�312M1;0;23 � 312M2;0;13 � 312M3;0;12�

TABLE XIV. Class 4, E��1 operators transforming within two �8M; 16�’s of SU�3�F � GTS. Each operator transforms in the same
�8M; 16� as the operator on the corresponding lines of Table XIII.

Operator(s) Oh irrep SU�2�I �U�1�z � GTS irrep(s) I3

iijM1;12;13 � iijM2;21;23 � . . . E��1 �12 ; 16�0 
 1
2

�ijiM1;12;13 � ijiM2;21;23� �1; 16��1 
1
�12 ; 16��2 
 1

2

312M1;12;13 � 312M2;21;23 � . . . E��1 �1; 16��1 0
�312M1;13;12 � 312M2;23;21� � . . .
2�312M13;1;12 � 312M23;2;21 � . . .
�312M12;1;13 � 312M21;2;23��

312M1;12;13 � 312M2;21;23 � . . . E��1 �0; 16��1 0
�312M1;13;12 � 312M2;23;21�

iijM1;12;13 � iijM2;21;23 � 2iijM3;31;32 � . . . E��1 �12 ; 16�0 
 1
2

�ijiM1;12;13 � ijiM2;21;23 � 2ijiM3;31;32� �1; 16��1 
1
�12 ; 16��2 
 1

2

312M1;12;13 � 312M2;21;23 � 2312M3;31;32 � . . . E��1 �1; 16��1 0
�312M1;13;12 � 312M2;23;21 � 2312M3;32;31�

312M1;12;13 � 312M2;21;23 � 2312M3;31;32 � . . . E��1 �0; 16��1 0
�312M1;13;12 � 312M2;23;21 � 2312M3;32;31� � . . .
2�312M13;1;12 � 312M23;2;21 � 2312M32;3;31 � . . .
�312M12;1;13 � 312M21;2;23 � 2312M31;3;32��
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where the symmetric shifts have been taken into account by summing over "1;2;3 	 
1.
Obtaining the gauge invariant counterpart of this operator is straightforward. Adding gauge links to the shortest paths in

the elementary cube that connect the staggered fields [16] gives
 X
x;xkeven

1

6
�ijk

1

6
�abc

�X
"2"3

�ai �x� a1��U�x� a1;x� a1 � "2a2��j�x� a1 � "2a2��
b

� �U�x� a1;x� a1 � "3a3��k�x� a1 � "3a3��
c �

X
"1"3

�ai �x� a2��U�x� a2;x� "1a1 � a2��j�x� "1a1 � a2��
b

� �U�x� a2;x� a2 � "3a3��k�x� a2 � "3a3��
c
�

TABLE XVII. Class 6, E��1 operators transforming within two �8M; 16�’s of SU�3�F � GTS. Each operator transforms in the same
�8M; 16� as the operator on the corresponding lines of Table XVI.

Operator(s) Oh irrep SU�2�I �U�1�z � GTS irrep(s) I3

iijM0;1;23 � iijM0;2;13 E��1 �12 ; 16�0 
 1
2

�1; 16��1 
1
�12 ; 16��2 
 1

2

312M0;1;23 � 312M0;2;13 � . . . E��1 �1; 16��1 0
�312M23;0;1 � 312M13;0;2� � . . .
�312M1;0;23 � 312M2;0;13�

312M0;1;23 � 312M0;2;13 � . . . E��1 �0; 16��1 0
�312M23;0;1 � 312M13;0;2� � . . .
�312M1;0;23 � 312M2;0;13�

ijiM0;1;23 � ijiM0;2;13 E��1 �12 ; 16�0 
 1
2

�1; 16��1 
1
�12 ; 16��2 
 1

2

312M0;23;1 � 312M0;13;2 � . . . E��1 �1; 16��1 0
�312M23;0;1 � 312M13;0;2� � . . .
�312M1;0;23 � 312M2;0;13�

312M0;23;1 � 312M0;13;2 � . . . E��1 �0; 16��1 0
�312M23;0;1 � 312M13;0;2� � . . .
�312M1;0;23 � 312M2;0;13�

TABLE XVI. Class 6, E�1 operators transforming within two �8M; 16�’s of SU�3�F � GTS.

Operator(s) Oh irrep SU�2�I � U�1�z � GTS irrep(s) I3

iijM0;1;23 � iijM0;2;13 � 2iijM0;3;12 E�1 �12 ; 16�0 
 1
2

�1; 16��1 
1
�12 ; 16��2 
 1

2

312M0;1;23 � 312M0;2;13 � 2312M0;3;12 � . . . E�1 �1; 16��1 0
�312M23;0;1 � 312M13;0;2 � 2312M12;0;3� � . . .
�312M1;0;23 � 312M2;0;13 � 2312M3;0;12�

312M0;1;23 � 312M0;2;13 � 2312M0;3;12 � . . . E�1 �0; 16��1 0
�312M23;0;1 � 312M13;0;2 � 2312M12;0;3� � . . .
�312M1;0;23 � 312M2;0;13 � 2312M3;0;12�

ijiM0;1;23 � ijiM0;2;13 � 2ijiM0;3;12 E�1 �12 ; 16�0 
 1
2

�1; 16��1 
1
�12 ; 16��2 
 1

2

312M0;23;1 � 312M0;13;2 � 2312M0;12;3 � . . . E�1 �1; 16��1 0
�312M23;0;1 � 312M13;0;2 � 2312M12;0;3� � . . .
�312M1;0;23 � 312M2;0;13 � 2312M3;0;12�

312M0;23;1 � 312M0;13;2 � 2312M0;12;3 � . . . E�1 �0; 16��1 0
�312M23;0;1 � 312M13;0;2 � 2312M12;0;3� � . . .
�312M1;0;23 � 312M2;0;13 � 2312M3;0;12�
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Gauge invariant operators transforming in the other lattice
irreps of Table V can be obtained similarly. The relevant
results are listed in Tables VII and XII. Although trivial for
the above example, averaging gauge links over all shortest
paths can be used to maintain cubic covariance.

V. CONCLUSIONS

For the cases given in Table I, we have examined the
utility and limitations of operators transforming in irreps of
SU�3�F � GTS and identified the continuum limits of the
masses of the states created by such operators. A set of
operators transforming irreducibly under SU�3�F � GTS
was constructed by decomposing the 2600S irrep of
SU�24� under SU�3�F � GTS. The operators of this set
are linearly independent and transform within irreps that
correspond one-to-one with the types of irreps contained
in the decompositions of the continuum spin-flavor irreps
of the lightest spin- 1

2 and spin- 3
2 staggered baryons.

Therefore, these operators could be used with matrix fits
to extract the masses of all these states. In practice, the
splittings and mixings in the spectrum could render this
program difficult.

However, for the nucleon, �, ��, ��, and ��, there
exist operators that can be used to interpolate to isolated
staggered states; the splittings and mixings introduced by
spin-taste breaking discretization effects are thus avoided,
and one should be able to cleanly extract the masses of
these baryons. The required quark masses and irreps are
given in Table V, while operators transforming in these
irreps are listed in Tables VII and XII. We are planning to
test these operators for the extraction of physics in the near
future [22].

It turns out that all the operators transforming in the
irreps of Table V possess unphysical flavor structure. The
interpolating field for the nucleon is antisymmetric in
flavor, that for the � and �� transforms within an
SU�3�F octet, and that for the �� and �� is an isosinglet.
This counterintuitive state of affairs is possible because, in
the continuum limit, we can use taste degrees of freedom
instead of flavor degrees of freedom to construct physical
states. At nonzero lattice spacing, the flavor irreps must be
combined with the GTS irreps so that the combined prod-
uct irreps have the spin-flavor symmetry of the valence
sector of 2� 1 flavor staggered QCD, a valence sector
containing four quark tastes for each of the three quark
flavors. Although the most numerically convenient baryons
have unphysical flavor structure, the conclusion that they
become degenerate in the continuum limit with the physi-
cal nucleon and decuplet baryons rests upon the existence
of a transparently physical subspace of baryons, which
have physical flavor structure by definition. The need to
identify such a subspace of baryons is a manifestation of
the ‘‘valence rooting issue’’ [19]; the existence of this
subspace rests upon the assumption that taste symmetry
is restored in the continuum limit, in which case the

valence quark tastes become equivalent to physical quark
flavors. Taste restoration is in turn supported by increas-
ingly cogent analytic [11] and numerical evidence [5,23].

For the case of 2� 1 flavors, baryons with continuum
masses that are unphysical have been identified with par-
tially quenched states. The fact that the baryons with
unphysical masses can all be identified with partially
quenched states underscores the conclusion noted in
[14,19]: At nonzero lattice spacing, staggered QCD is a
necessarily partially quenched theory.

The analysis leading to Tables II, III, and IV has also
been performed for the case of nondegenerate valence
quarks (1� 1� 1 flavor simulations), but the details are
much the same and are therefore omitted here. In this case
the continuum valence symmetry is SU�4�x � SU�4�y �
SU�4�z, and the lattice valence symmetry, U�1�x �
U�1�y �U�1�z � GTS. The analysis shows that operators
with definite isospin (or definite SU�3�F quantum num-
bers) do not possess any clear advantage over operators
transforming in irreps of U�1�x �U�1�y �U�1�z � GTS
for interpolating to the non-nucleon states in the ground
state multiplet, viz., the �, �, �, and �s.
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APPENDIX: EXCITED BARYONS AND
SU�3�F �GTS OPERATORS

Here we consider how to extend the analyses of Secs. II
and III to excited baryons. As for the ground state baryons,
we seek to learn as much as possible about the staggered
spectrum by extending and then breaking the valence
symmetry group to account respectively for the presence
of taste and the violation of continuum taste symmetry.

In the standard nonrelativistic quark model, the light-
quark baryons transform in SU�6� �O�3� supermultiplets
that fall into harmonic oscillator energy bands. The ground
state representation has zero orbital angular momentum,
positive parity, and corresponds to the ground state of the
oscillator; the ground state baryons transform in �56S; 0

�
0 �,

where the energy quanta of the oscillator and the parity
of the representation are denoted respectively by a sub-
script and superscript on the orbital angular momentum
quantum number. The first excited energy band of the
oscillator contains a �70M; 1�1 �, and the second
energy band, five supermultiplets: �56S; 0

�
2 �, �70M; 0

�
2 �,

�56S; 2�2 �, �70M; 2�2 �, and �20A; 1�2 �. Identification of the
members of these multiplets with the observed baryons
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indicates that the states of the �56S; 0
�
2 � are almost always

lighter than the corresponding octet and decuplet members
of the �70M; 1�1 � [24].

Extending the quark model to account for the valence
symmetry of staggered QCD is straightforward. One must
simply replace the SU�6� multiplets with the correspond-
ing SU�24� multiplets and execute the appropriate decom-
positions to identify continuum irreps that are degenerate
with physical baryons and the lattice irreps of operators
that couple to them. In SU�6� we have

 6 � 6 � 6! 56S � 70M � 70M � 20A:

The corresponding decomposition in SU�24� is

 24 � 24 � 24! 2600S � 4600M � 4600M � 2024A:

Decomposing the SU�6� irreps under the spin-flavor
SU�2�S � SU�3�F gives

 

56S ! �
3
2; 10S� � �

1
2; 8M� (A1a)

70M ! �
1
2; 10S� � �

3
2; 8M� � �

1
2; 8M� � �

1
2; 1A� (A1b)

20A ! �
1
2; 8M� � �

3
2; 1A�: (A1c)

The corresponding decompositions of SU�24� irreps under
SU�2�S � SU�12�f are

 

2600S ! �
3
2; 364S� � �

1
2; 572M� (A2a)

4600M ! �
1
2; 364S� � �

3
2; 572M� � �

1
2; 572M� � �

1
2; 220A�

(A2b)

2024A ! �
1
2; 572M� � �

3
2; 220A�: (A2c)

We classify the staggered baryons in supermultiplets of
SU�24� �O�3� that fall into harmonic oscillator energy
bands. The zeroth energy band contains only the ground
state baryons, which transform in the �2600S; 0

�
0 �. The first

energy band contains only the negative parity �4600M; 1
�
1 �

baryons. The second energy band contains the five
supermultiplets �2600S; 0

�
2 �, �4600M; 0

�
2 �, �2600S; 2

�
2 �,

�4600M; 2�2 �, and �2024A; 1�2 �.
The next step is to identify baryons degenerate with

physical baryons in the continuum limit; for definiteness,
consider the second case of Table I. We decompose the
SU�12�f irreps under flavor-taste SU�3�F � SU�4�T and
search for symmetric irreps of taste SU�4�T:

 

364S ! �10S; 20S� � �8M; 20M� � �1A; �4A� (A3a)

572M ! �10S; 20M� � �8M; 20S� � �8M; 20M�

� �8M; �4A� � �1A; 20M� (A3b)

220A ! �10S; �4A� � �8M; 20M� � �1A; 20S�: (A3c)

In each of these decompositions, the symmetric taste irrep
appears with the flavor SU�3�F irrep that has the same
symmetry as the SU�12�f irrep. The symmetry of each
SU�12�f irrep appearing in the decompositions (A2) is
the same as the symmetry of the corresponding SU�3�F
irreps appearing in the decompositions (A1). Finally, the
symmetry of each SU�24� irrep in the SU�24� �O�3�
supermultiplets is the same as the symmetry of the SU�6�
irrep in the corresponding SU�6� �O�3� supermultiplets.
Therefore, the fact that the SU�3�F octet, decuplet, and
singlet appear once and only once with the symmetric taste
irrep in the decompositions (A3) implies that for every
resonance identified within the context of the SU�6� �
O�3� quark model, there exists a taste-symmetric
SU�3�F � SU�4�T irrep that contains 20 baryons that be-
come degenerate, in the continuum limit, with the given
resonance.

For example, for the ground state supermultiplet, the
decompositions (A2a) and (A3) imply the existence of a
spin- 1

2 octet and a spin- 3
2 decuplet that are respectively

degenerate with the lightest octet and decuplet of nature.
The lightest excited states must reside in the �2600S; 0�2 �,
and (A2a) then implies the existence of a spin- 1

2 octet
including a state degenerate with the N�1440� and a
spin- 3

2 decuplet whose lightest members are degenerate
with the ��1600�. Supermultiplets with nontrivial orbital
angular momentum that transform in the 2600S of SU�24�
are handled in much the same way. Referring to [24], we
see that the �2600S; 2�2 � contains a spin- 3

2 octet containing
the N�1720�, a spin- 5

2 octet containing the N�1680�, a
spin- 5

2 decuplet containing the ��1905�, and so on. For
the �4600M; 1�1 �, the decompositions (A2b) and (A3) re-
veal octets containing the N�1535�, N�1520�, N�1650�,
N�1700�, and N�1675� and decuplets containing the
��1620� and ��1700� (cf. [24]).

To identify all the staggered baryons degenerate with the
states of these quark-model assignments, we identify the
continuum valence symmetry irreps in which the taste-
symmetric baryons transform. Decomposing the SU�12�f
irreps under SU�8�x;y � SU�4�z gives

 

364S ! �120S; 1� � �36S; 4� � �8; 10S� � �1; 20S�; (A4a)

572M ! �168M; 1� � �28A; 4� � �36S; 4� � �8; 6A�

� �8; 10S� � �1; 20M� (A4b)

220A ! �56A; 1� � �28A; 4� � �8; 6A� � �1; �4A�: (A4c)

The decompositions under SU�2�I � SU�4�T of the
SU�8�x;y � SU�4�z irreps appearing in (A4a) and (A4b)
are given in (5); the decompositions under SU�2�I �
SU�4�T of the SU�3�F � SU�4�T irreps appearing in
(A3a) and (A3b) are given in (6). For the additional
SU�8�x;y � SU�4�z irreps appearing in (A4c), decomposing
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under SU�2�I � SU�4�T gives

 

�56A; 1�0 ! �32;
�4A�0 � �

1
2; 20M�0

�1; �4A��3 ! �0; �4A��3;

while decomposing the new SU�3�F � SU�4�T irreps ap-
pearing in (A3c) gives

 

�10S; �4A� ! �
3
2;

�4A�0 � �1; �4A��1 � �
1
2;

�4A��2 � �0; �4A��3

�1A; 20S� ! �0; 20S��1:

Noting that the decompositions of the 364S and 572M are
the same for excited supermultiplets as for the ground state
supermultiplet, we see that the first three columns of
Table II and the observations summarized in (14) can be
immediately taken over for the excited states.

To identify continuum valence irreps of baryons degen-
erate with the physical SU�3�F singlets, we search for
�0; 20S��1 irreps in the decompositions of the irreps in
(A4c) under SU�2�I � SU�4�T . Because only the �28A; 4�
contains such an irrep, we conclude that the members of
the �28A; 4� become degenerate with the singlets of the
corresponding physical supermultiplets. Under inter-
change of the valence up-down and strange quark masses,
the masses of the �28A; 4� and �8; 6A� are interchanged, as
are the masses of the �56A; 1� and �1; �4A�. As for continuum

irreps corresponding to physical octets, the �28A; 4� corre-
sponds to the �, and the �8; 6A�, to the �s. The �56A; 1� and
�1; �4A� are not constrained to have physical masses in the
continuum limit; in what follows, they are respectively
denoted the �u and �ss irreps. Expected continuum de-
generacies for some of the baryons in the �2600S; 0�2 �,
�4600M; 1

�
1 �, �4600M; 0

�
2 �, and �2600S; 2

�
2 � are given in

Tables XVIII, XIX, XX, XXI, XXII, and XXIII. The
degeneracies correspond to quark-model assignments and
therefore inherit the limitations of the quark model; mix-
ings between baryons with the same spin and parity are
often quite large, and some assignments are highly tenta-
tive [24].

At nonzero lattice spacing, we consider the decomposi-
tion of the continuum P � SU�2�J � SU�4�T irreps under
P � GTS. For J 	 1

2 ;
3
2 the relevant decompositions (sup-

pressing parity quantum numbers) are given in (9). For J 	
5
2 ;

7
2 we also require

 

SU�2�J � SU�4�T � GTS

�52; 20S� ! 2�8� � 3�80� � 5�16� (A5a)

�52; 20M� ! 8 � 4�80� � 5�16� (A5b)

�52;
�4A� ! 80 � 16 (A5c)

�72; 20S� ! 3�8� � 3�80� � 7�16� (A5)

�72; 20M� ! 4�8� � 4�80� � 6�16� (A5e)

�72;
�4A� ! 8 � 80 � 16: (A5f)

Together with the decompositions (10)–(12), we find

TABLE XVIII. For baryons in the �2600S; 0
�
2 �, expected continuum degeneracies and the

number of corresponding lattice irreps. The results are qualitatively identical to the results of
Table II.

Case and symmetry for a 	 0 Irreps for a 	 0 Expected mass No. of lattice irreps

mx 	 my 	 mz 	 m̂ �12 ; 572M� N�1440� 16
SU�2�S � SU�12�f �32 ; 364S� ��1600� 14

mx 	 my 	 m̂; mz 	 ms �12 ; 168M; 1� N�1440� 12
SU�2�S � SU�8�x;y � SU�4�z �12 ; 28A; 4� ��1600� 12

�12 ; 36S; 4� ��1660� 12
�12 ; 8; 10S� ��?� 7
�12 ; 8; 6A� �s�?� 5
�12 ; 1; 20M� Ns�?� 4
�32 ; 120S; 1� ��1600� 13
�32 ; 36S; 4� ���?� 20
�32 ; 8; 10S� ���?� 13
�32 ; 1; 20S� ���?� 7
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TABLE XIX. For baryons in the �12 ; 572M� in �4600M; 1
�
1 � [cf. (A2b)], expected continuum

degeneracies and the number of corresponding lattice irreps. Note that the spin J of the baryon is
no longer equal to the net spin S of the quarks.

Case and symmetry for a 	 0 Irreps for a 	 0 Expected mass No. of lattice irreps

mx 	 my 	 mz 	 m̂ �12 ; 572M� N�1535� 16
SU�2�J � SU�12�f �32 ; 572M� N�1520� 26

mx 	 my 	 m̂; mz 	 ms �12 ; 168M; 1� N�1535� 12
SU�2�J � SU�8�x;y � SU�4�z �12 ; 28A; 4� ��1670� 12

�12 ; 36S; 4� ��1620� 12
�12 ; 8; 10S� ��?� 7
�12 ; 8; 6A� �s�?� 5
�12 ; 1; 20M� Ns�?� 4
�32 ; 168M; 1� N�1520� 20
�32 ; 28A; 4� ��1690� 20
�32 ; 36S; 4� ��1670� 20
�32 ; 8; 10S� ��1820� 13
�32 ; 8; 6A� �s�?� 7
�32 ; 1; 20M� Ns�?� 6

TABLE XX. For baryons in the �12 ; 364S� and �12 ; 220A� in �4600M; 1
�
1 � [cf. (A2b)], expected

continuum degeneracies and the number of corresponding lattice irreps.

Case and symmetry for a 	 0 Irreps for a 	 0 Expected mass No. of lattice irreps

mx 	 my 	 mz 	 m̂ �12 ; 364S� ��1620� 8
SU�2�J � SU�12�f �32 ; 364S� ��1700� 14

�12 ; 220A� �u�?� 8
�32 ; 220A� �u�?� 14

mx 	 my 	 m̂; mz 	 ms �12 ; 120S; 1� ��1620� 7
SU�2�J � SU�8�x;y � SU�4�z �12 ; 36S; 4� ���?� 12

�12 ; 8; 10S� ���?� 7
�12 ; 1; 20S� ���?� 3
�32 ; 120S; 1� ��1700� 13
�32 ; 36S; 4� ���?� 20
�32 ; 8; 10S� ���?� 13
�32 ; 1; 20S� ���?� 7
�12 ; 56A; 1� �u�?� 5
�12 ; 28A; 4� ��1405� 12
�12 ; 8; 6A� �s�?� 5
�12 ; 1;

�4A� �ss�?� 1
�32 ; 56A; 1� �u�?� 7
�32 ; 28A; 4� ��1520� 20
�32 ; 8; 6A� �s�?� 7
�32 ; 1;

�4A� �ss�?� 1
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SU�2�J � SU�12�f � SU�3�F � GTS

�12; 364S� ! �10S; 8� � 2�10S; 16� � 3�8M; 8� � �8M; 16� � �1A; 8� (A6a)

�52; 364S� ! 2�10S; 8� � 3�10S; 80� � 5�10S; 16� � �8M; 8� � 4�8M; 80� � 5�8M; 16� � �1A; 80� � �1A; 16� (A6b)

�72; 364S� ! 3�10S; 8� � 3�10S; 80� � 7�10S; 16� � 4�8M; 8� � 4�8M; 80� � 6�8M; 16� � �1A; 8� � �1A; 80�

� �1A; 16� (A6c)

�32; 572M� ! �10S; 8� � �10S; 80� � 4�10S; 16� � 3�8M; 8� � 3�8M; 80� � 8�8M; 16� � �1A; 8� � �1A; 80� � 4�1A; 16�

(A6d)

�52; 572M� ! �10S; 8� � 4�10S; 80� � 5�10S; 16� � 3�8M; 8� � 8�8M; 80� � 11�8M; 16� � �1A; 8� � 4�1A; 80�

� 5�1A; 16� (A6e)

�12; 220A� ! �10S; 8� � 3�8M; 8� � �8M; 16� � �1A; 8� � 2�1A; 16� (A6f)

�32; 220A� ! �10S; 16� � �8M; 8� � �8M; 80� � 4�8M; 16� � 2�1A; 8� � 2�1A; 80� � 3�1A; 16�; (A6g)

TABLE XXI. For baryons in the �32 ; 572M� in �4600M; 1
�
1 � [cf. (A2b)], expected continuum

degeneracies and the number of corresponding lattice irreps.

Case and symmetry for a 	 0 Irreps for a 	 0 Expected mass No. of lattice irreps

mx 	 my 	 mz 	 m̂ �12 ; 572M� N�1650� 16
SU�2�J � SU�12�f �32 ; 572M� N�1700� 26

�52 ; 572M� N�1675� 42

mx 	 my 	 m̂; mz 	 ms �12 ; 168M; 1� N�1650� 12
SU�2�J � SU�8�x;y � SU�4�z �12 ; 28A; 4� ��1800� 12

�12 ; 36S; 4� ��1750� 12
�12 ; 8; 10S� ��?� 7
�12 ; 8; 6A� �s�?� 5
�12 ; 1; 20M� Ns�?� 4
�32 ; 168M; 1� N�1700� 20
�32 ; 28A; 4� ��?� 20
�32 ; 36S; 4� ��?� 20
�32 ; 8; 10S� ��?� 13
�32 ; 8; 6A� �s�?� 7
�32 ; 1; 20M� Ns�?� 6
�52 ; 168M; 1� N�1675� 32
�52 ; 28A; 4� ��1830� 32
�52 ; 36S; 4� ��1775� 32
�52 ; 8; 10S� ��?� 20
�52 ; 8; 6A� �s�?� 12
�52 ; 1; 20M� Ns�?� 10
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TABLE XXIII. For baryons in the �12 ; 572M� and the J 	 5
2 ;

7
2 members of the �32 ; 364S�

in �2600S; 2
�
2 �, expected continuum degeneracies and the number of corresponding lattice

irreps.

Case and symmetry for a 	 0 Irreps for a 	 0 Expected mass No. of lattice irreps

mx 	 my 	 mz 	 m̂ �32 ; 572M� N�1720� 26
SU�2�J � SU�12�f �52 ; 572M� N�1680� 42

�52 ; 364S� ��1905� 22
�72 ; 364S� ��1950� 30

mx 	 my 	 m̂; mz 	 ms �32 ; 168M; 1� N�1720� 20
SU�2�J � SU�8�x;y � SU�4�z �32 ; 28A; 4� ��1890� 20

�32 ; 36S; 4� ��?� 20
�32 ; 8; 10S� ��?� 13
�32 ; 8; 6A� �s�?� 7
�32 ; 1; 20M� Ns�?� 6
�52 ; 168M; 1� N�1680� 32
�52 ; 28A; 4� ��1820� 32
�52 ; 36S; 4� ��1915� 32
�52 ; 8; 10S� ��2030� 20
�52 ; 8; 6A� �s�?� 12
�52 ; 1; 20M� Ns�?� 10
�52 ; 120S; 1� ��1905� 20
�52 ; 36S; 4� ���?� 32
�52 ; 8; 10S� ���?� 20
�52 ; 1; 20S� ���?� 10
�72 ; 120S; 1� ��1950� 27
�72 ; 36S; 4� ���2030� 44
�72 ; 8; 10S� ���?� 27
�72 ; 1; 20S� ���?� 13

TABLE XXII. For baryons in the �12 ; 572M� in �4600M; 0
�
2 � [cf. (A2b)], expected continuum

degeneracies and the number of corresponding lattice irreps. The results are qualitatively
identical to the results of Table II.

Case and symmetry for a 	 0 Irreps for a 	 0 Expected mass No. of lattice irreps

mx 	 my 	 mz 	 m̂ �12 ; 572M� N�1710� 16
SU�2�S � SU�12�f

mx 	 my 	 m̂; mz 	 ms �12 ; 168M; 1� N�1710� 12
SU�2�S � SU�8�x;y � SU�4�z �12 ; 28A; 4� ��1810� 12

�12 ; 36S; 4� ��1880� 12
�12 ; 8; 10S� ��?� 7
�12 ; 8; 6A� �s�?� 5
�12 ; 1; 20M� Ns�?� 4

STAGGERED BARYON OPERATORS WITH FLAVOR . . . PHYSICAL REVIEW D 75, 114505 (2007)

114505-23



 

SU�2�J � SU�8�x;y � SU�4�z � SU�2�I � GTS

�12; 120S; 1� ! �32; 8�0 � 2�32; 16�0 � 3�12; 8�0 � �
1
2; 16�0 (A7a)

�12; 1; 20S� ! �0; 8��3 � 2�0; 16��3 (A7b)

�52; 120S; 1� ! 2�32; 8�0 � 3�32; 8
0�0 � 5�32; 16�0 � �12; 8�0 � 4�12; 8

0�0 � 5�12; 16�0 (A7c)

�52; 36S; 4� ! 3�1; 8��1 � 7�1; 80��1 � 10�1; 16��1 � �0; 8��1 � 5�0; 80��1 � 6�0; 16��1 (A7d)

�52; 8; 10S� ! 3�12; 8��2 � 7�12; 8
0��2 � 10�12; 16��2 (A7e)

�52; 1; 20S� ! 2�0; 8��3 � 3�0; 80��3 � 5�0; 16��3 (A7f)

�72; 120S; 1� ! 3�32; 8�0 � 3�32; 8
0�0 � 7�32; 16�0 � 4�12; 8�0 � 4�12; 8

0�0 � 6�12; 16�0 (A7g)

�72; 36S; 4� ! 7�1; 8��1 � 7�1; 80��1 � 13�1; 16��1 � 5�0; 8��1 � 5�0; 80��1 � 7�0; 16��1 (A7h)

�72; 8; 10S� ! 7�12; 8��2 � 7�12; 8
0��2 � 13�12; 16��2 (A7i)

�72; 1; 20S� ! 3�0; 8��3 � 3�0; 80��3 � 7�0; 16��3; (A7j)

 

SU�2�J � SU�8�x;y � SU�4�z � SU�2�I � GTS

�32; 168M; 1� ! �32; 8�0 � �
3
2; 8
0�0 � 4�32; 16�0 � 3�12; 8�0 � 3�12; 8

0�0 � 8�12; 16�0 (A8a)

�32; 28A; 4� ! �1; 8��1 � �1; 80��1 � 5�1; 16��1 � 3�0; 8��1 � 3�0; 80��1 � 7�0; 16��1 (A8b)

�32; 8; 6A� ! �
1
2; 8��2 � �

1
2; 8
0��2 � 5�12; 16��2 (A8c)

�32; 1; 20M� ! �0; 8��3 � �0; 80��3 � 4�0; 16��3 (A8d)

�52; 168M; 1� ! �32; 8�0 � 4�32; 8
0�0 � 5�32; 16�0 � 3�12; 8�0 � 8�12; 8

0�0 � 11�12; 16�0 (A8e)

�52; 28A; 4� ! �1; 8��1 � 5�1; 80��1 � 6�1; 16��1 � 3�0; 8��1 � 7�0; 80��1 � 10�0; 16��1 (A8f)

�52; 36S; 4� ! 3�1; 8��1 � 7�1; 80��1 � 10�1; 16��1 � �0; 8��1 � 5�0; 80��1 � 6�0; 16��1 (A8g)

�52; 8; 10S� ! 3�12; 8��2 � 7�12; 8
0��2 � 10�12; 16��2 (A8h)

�52; 8; 6A� ! �
1
2; 8��2 � 5�12; 8

0��2 � 6�12; 16��2 (A8i)

�52; 1; 20M� ! �0; 8��3 � 4�0; 80��3 � 5�0; 16��3; (A8j)

 

SU�2�J � SU�8�x;y � SU�4�z � SU�2�I � GTS

�12; 56A; 1� ! �32; 8�0 � 3�12; 8�0 � �
1
2; 16�0 (A9a)

�12; 1;
�4A� ! �0; 8��3 (A9b)

�32; 56A; 1� ! �32; 16�0 � �12; 8�0 � �
1
2; 8
0�0 � 4�12; 16�0 (A9c)

�32; 28A; 4� ! �1; 8��1 � �1; 80��1 � 5�1; 16��1 � 3�0; 8��1 � 3�0; 80��1 � 7�0; 16��1 (A9d)

�32; 8; 6A� ! �
1
2; 8��2 � �

1
2; 8
0��2 � 5�12; 16��2 (A9e)

�32; 1;
�4A� ! �0; 16��3: (A9f)

Counting the number of lattice irreps occuring in each
decomposition gives the fourth column in Tables XVIII,
XIX, XX, XXI, XXII, and XXIII. As for the analogous
results for the ground state multiplets (cf. Table II), the
results summarized in these tables remain valid if one
everywhere makes the replacements m̂$ ms, (14), and
�u $ �ss. From these tables and the decompositions
(10)–(12) and (A6)–(A9), we find quark-model assign-
ments of the continuum irreps overlapped by operators
transforming irreducibly under SU�3�F � GTS. These re-
sults are given in Tables XXIV, XXV, XXVI, XXVII,
XXVIII, XXIX, XXX, XXXI, XXXII, and XXXIII.

Columns for energy levels corresponding to the same
type of continuum spin-flavor irrep are identical. In par-
ticular, the column for states that become degenerate with
the N�939� would be identical to that for the N�1440�, and
that for the ��1232� would be identical to that for the
��1600� (see Tables XXIV and XXV).

Several aspects of these results deserve further com-
ment. First, the spectra generically include both positive
and negative parity states. This situation does not present
any problem in practice because one can fit the associated
oscillations in the correlators to extract the masses of both.
For example, consider the excited states created by opera-
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tors in the irreps of Table V. For degenerate valence quarks
equal to m̂, the spectrum of operators transforming in
�8M; 80� contains a single ��1232�, a single JP 	 3

2
� �u,

three states that correspond in the continuum limit to the
dominant representation of the N�1520�, a single ��1600�
representation, and representations corresponding to vari-

ous heavier excited nucleons and �’s. Because the �u is a
negative parity state, its contribution to the correlator will
oscillate and can be removed even if its mass is close to that
of the ��1232�. The next nearest state is the N�1520�,
separated by nearly 300 MeV. Similar considerations apply
to the spectra of the other operators listed in Table V. We

TABLE XXVI. For mx 	 my 	 m̂, mz 	 ms, the number of nondegenerate staggered states in
the dominant continuum irreps of the listed excited �-hyperons. The quark-model assignment
for the ��1810� is very tentative [24].

Operator Excited spin- 1
2 and spin- 3

2 �-hyperons created/mixed
��1405� ��1520� ��1600� ��1670� ��1690� ��1800� ��1810� ��?� ��1890�
JP 	 1

2
� 3

2
� 1

2
� 1

2
� 3

2
� 1

2
� 1

2
� 3

2
� 3

2
�

�1; 8��1 4 1 4 4 1 4 4 1 1
�1; 80��1 — 1 — — 1 — — 1 1
�1; 16��1 1 5 1 1 5 1 1 5 5
�0; 8��1 4 3 4 4 3 4 4 3 3
�0; 80��1 — 3 — — 3 — — 3 3
�0; 16��1 3 7 3 3 7 3 3 7 7

TABLE XXV. For mx 	 my 	 mz 	 m̂, the number of nondegenerate staggered states in the
dominant continuum irreps of the listed excited �’s and �u’s.

Operator Excited �’s and �u’s created/mixed
��1600� ��1620� ��1700� ��1905� ��1950� �u�?� �u�?�
JP 	 3

2
� 1

2
� 3

2
� 5

2
� 7

2
� 1

2
� 3

2
�

�10S; 8� 2 1 2 2 3 1 —
�10S; 80� 2 — 2 3 3 — —
�10S; 16� 3 2 3 5 7 — 1
�8M; 8� 1 3 1 1 4 3 1
�8M; 80� 1 — 1 4 4 — 1
�8M; 16� 4 1 4 5 6 1 4
�1A; 8� — 1 — — 1 1 2
�1A; 80� — — — 1 1 — 2
�1A; 16� 1 — 1 1 1 2 3

TABLE XXIV. For mx 	 my 	 mz 	 m̂, the number of nondegenerate staggered states in the
dominant continuum irreps of the listed excited nucleons.

Operator Excited nucleons created/mixed
N�1440� N�1520� N�1535� N�1650� N�1675� N�1680� N�1700� N�1710� N�1720�
JP 	 1

2
� 3

2
� 1

2
� 1

2
� 5

2
� 5

2
� 3

2
� 1

2
� 3

2
�

�10S; 8� 3 1 3 3 1 1 1 3 1
�10S; 80� — 1 — — 4 4 1 — 1
�10S; 16� 1 4 1 1 5 5 4 1 4
�8M; 8� 5 3 5 5 3 3 3 5 3
�8M; 80� — 3 — — 8 8 3 — 3
�8M; 16� 3 8 3 3 11 11 8 3 8
�1A; 8� 3 1 3 3 1 1 1 3 1
�1A; 80� — 1 — — 4 4 1 — 1
�1A; 16� 1 4 1 1 5 5 4 1 4
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TABLE XXX. For mx 	 my 	 m̂, mz 	 ms, the number of nondegenerate staggered states in
the dominant continuum irreps of the listed excited �-hyperons. The quark-model assignments
are very tentative. The expected number of distinct continuum states for each JP is the same as
for the �-hyperons listed in Table XXVIII, in accord with �$ � under m̂$ ms.

Operator Excited �-hyperons created/mixed
��?� ��?� ��?� ��?� ��1820� ��?� ��?� ��?� ��2030�

JP 	 1
2
� 1

2
� 1

2
� 1

2
� 3

2
� 3

2
� 3

2
� 5

2
� 5

2
�

�12 ; 8��2 4 4 4 4 3 3 3 3 3
�12 ; 8

0��2 — — — — 3 3 3 7 7
�12 ; 16��2 3 3 3 3 7 7 7 10 10

TABLE XXIX. For mx 	 my 	 m̂, mz 	 ms, the number of nondegenerate staggered states in
the dominant continuum irreps of the listed excited ��- and �-hyperons.

Operator Excited ��-hyperons and spin- 5
2 �-hyperons created/mixed

���?� ���?� ���?� ���?� ���2030� ��1820� ��1830�
JP 	 1

2
� 3

2
� 3

2
� 5

2
� 7

2
� 5

2
� 5

2
�

�1; 8��1 4 3 3 3 7 1 1
�1; 80��1 — 3 3 7 7 5 5
�1; 16��1 3 7 7 10 13 6 6
�0; 8��1 4 1 1 1 5 3 3
�0; 80��1 — 1 1 5 5 7 7
�0; 16��1 1 5 5 6 7 10 10

TABLE XXVIII. For mx 	 my 	 m̂, mz 	 ms, the number of nondegenerate staggered states
in the dominant continuum irreps of the listed excited �-hyperons.

Operator Excited �-hyperons created/mixed
��1620� ��1660� ��1670� ��1750� ��1775� ��?� ��1880� ��1915� ��?�
JP 	 1

2
� 1

2
� 3

2
� 1

2
� 5

2
� 3

2
� 1

2
� 5

2
� 3

2
�

�1; 8��1 4 4 3 4 3 3 4 3 3
�1; 80��1 — — 3 — 7 3 — 7 3
�1; 16��1 3 3 7 3 10 7 3 10 7
�0; 8��1 4 4 1 4 1 1 4 1 1
�0; 80��1 — — 1 — 5 1 — 5 1
�0; 16��1 1 1 5 1 6 5 1 6 5

TABLE XXVII. For mx 	 my 	 m̂, mz 	 ms, the number of nondegenerate staggered states
in the dominant continuum irreps of the listed excited �s-hyperons. Note that the expected
number of distinct continuum states for each JP is the same as for the �-hyperons listed in
Table XXVI, in accord with the observation that �$ �s under m̂$ ms. Continuum energy
levels with the same JP mix in the continuum limit.

Operator Excited spin- 1
2 and spin- 3

2 �s-hyperons created/mixed
�s�?� �s�?� �s�?� �s�?� �s�?� �s�?� �s�?� �s�?� �s�?�
JP 	 1

2
� 3

2
� 1

2
� 1

2
� 3

2
� 1

2
� 1

2
� 3

2
� 3

2
�

�12 ; 8��2 4 1 4 4 1 4 4 1 1
�12 ; 8

0��2 — 1 — — 1 — — 1 1
�12 ; 16��2 1 5 1 1 5 1 1 5 5
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are therefore reassured that contamination from excited
states will not be problematic when extracting the masses
of the ground state nucleon and decuplet.

Second, all the states of a given parity created by a given
operator mix for nonzero lattice spacing. For example, the
spectrum of operators in the �10S; 16� includes not only the
nucleons of Table XXIV, but also the �’s and spin-3

2
� �u

overlapped in accord with Table XXV. The state corre-
sponding to the N�1440� mixes with those corresponding

to, e.g., theN�1680�, theN�1710�, and theN�1720�, but not
with the �u.

Finally, Tables XXIV, XXV, XXVI, XXVII, XXVIII,
XXIX, XXX, XXXI, XXXII, and XXXIII allow us to
consider how best to extract the spectrum of excited states.
Calculating the excited spectrum, an already formidable
task [25], promises to be more so when using staggered
valence quarks.
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