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We calculate an analogue of the average phase factor of the staggered fermion determinant at imaginary
chemical potential. Our results from the lattice agree well with the analytical predictions in the micro-
scopic regime for both quenched and phase-quenched QCD. We demonstrate that the average phase factor
in the microscopic domain is dominated by the lowest-lying Dirac eigenvalues.
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I. INTRODUCTION

The numerical study of QCD at nonzero chemical po-
tential � is hobbled by the complex fermion determinant,
which precludes straightforward Monte Carlo calculations
based on a real measure. Novel approaches to the problem
by means of Taylor expansion [1–4], analytic continuation
[5–7], or reweighting [8,9] are consistent in measuring the
response to small chemical potential around the tempera-
ture of chiral restoration, but they disagree at higher values
of �. Moreover, there will be fundamental technical diffi-
culties at larger� and larger volumes, and at smaller quark
masses and lower temperatures: In all these regimes the
fluctuations in the phase of the fermion determinant will
become severe [10,11]. Understanding the behavior of the
phase of the determinant is thus of crucial importance for
the interpretation of lattice data at nonzero chemical po-
tential (see also Ref. [12]).

A common laboratory for studying features of the finite-
density theory is entered by making � imaginary [13,14].
Here the determinant is real and ordinary Monte Carlo
methods can be used. On the face of it, it appears that
this would be useless for studying the phase of the deter-
minant since the phase is strictly zero for all configura-
tions. It is perhaps startling, then, to note that one can
define and compute an analogue of the average phase
factor at imaginary � [15]. This offers an approach to
studying the strength of the sign problem occurring at
real chemical potential by means of simulations at imagi-
nary �. The advantages of this method are that one does
not have to deal with the sign problem in order to measure
its strength, and that one does not have to deal with
eigenvalues that have spread out into the complex plane.

The phase factor of the fermion determinant at real
chemical potential is given by

 e2i� �
det�D���0 �m�
det�D���0 �m�

�
�

det�D���0 �m�
det�D���0 �m�

: (1)

Here we have used the fact that when� is real, the complex
conjugate determinant is obtained by flipping its sign. The
average phase factor at real chemical potential is then

 he2i����i �

�
det�D���0 �m�
det�D���0 �m�

�
: (2)

As in Ref. [15], we define the average phase factor at
imaginary � by simply substituting i� for �

 he2i��i��i �

�
det�D� i��0 �m�
det�D� i��0 �m�

�
; (3)

where the parameter � is still real. Both determinants in
Eq. (3) are now real. We present in this note a numerical
study of the phase factor defined in this manner at imagi-
nary �. In particular we study the dependence on the
chemical potental, the quark mass, and the volume. We
work in the microscopic domain of QCD (also called the �
regime) [16,17], where the quark mass m and the chemical
potential are chosen to fulfill

 j�j2F2
� �

1����
V
p and m��

1����
V
p ; (4)

while the Euclidean volume V � L3=T (where T is the
temperature) is taken large

 V�4
QCD 	 1: (5)

Here � � h �  i is the chiral condensate and F� is the pion
decay constant.1 Formulas for the average phase factor
have recently been derived in this regime [15,18].

The values of � and F� on the lattices we use were
calculated from a two-point spectral correlation function in
Refs. [19,20]. Given these values, we can make parameter-
free comparisons of the numerical measurements of the
average phase factor with the analytical predictions. In all
cases we study the agreement is within the statistical
errors. This confirmation of the analytic predictions at
imaginary � gives support to the analytic results derived
for real � where direct lattice tests are harder to obtain.

1In fact we take j�j2F2
� 
 1=V � T=L3, which implies that

�=T � 1 when L is large. Thus the periodicity in the imaginary
chemical potential noted by Roberge and Weiss [13] will never
appear in the microscopic domain.
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Our results also show that the average phase factor in the
microscopic domain is dominated by the lowest-lying ei-
genvalues of the Dirac operator.

Below we will recall the theoretical predictions in the
microscopic domain and their analytic properties as func-
tions of the chemical potential. Then we will compare
these to the lattice data.

II. ANALYTICAL FORMULAS

Our numerical results are based on data obtained in a
quenched ensemble and in an ensemble with dynamical
fermions given an imaginary isospin chemical potential.
Here we present the microscopic formulas obtained for
these two cases.

Below we work with standard unimproved staggered
fermions at a coupling where the chiral symmetry breaking
pattern is identical to that of the continuum theory in the
sector of zero topological charge (see e.g. Ref. [21]). We
therefore present the analytical predictions in the trivial
topological sector.

A. Quenched theory

The average phase factor at real chemical potential in
the quenched theory is given by [15,18]
 

he2i����iNf�0 � 1� 4�̂2I0�m̂�K0�m̂� �
e�2�̂2

4�̂2 e��m̂
2=8�̂2�

�
Z 1
m̂
dxxe��x

2=8�̂2�K0

�
xm̂

4�̂2

�

� �I0�x�m̂I1�m̂� � xI1�x�I0�m̂�; (6)

where we have defined microscopic variables via

 m̂ � m�V and �̂ � �F�
����
V
p

: (7)

The formula (6) cannot be continued to imaginary �
because of the essential singularity of the last term at � �
0. The nonanalyticity has its origin in the inverse determi-
nant of the non-Hermitian Dirac operator in Eq. (2)—it is
due to the eigenvalues with real part larger than the quark
mass [15,22]. For purely imaginary � the eigenvalues
remain on the imaginary axis and are thus always inside
the quark mass. The nonanalytic term, therefore, is not
expected to appear at imaginary �. Indeed, a direct calcu-
lation at imaginary � gives [15]

 he2i��i��iNf�0 � 1� 4�̂2I0�m̂�K0�m̂�: (8)

As expected the analytic continuation of this result from
imaginary values of the chemical potential back to real
values gives just the first two terms in Eq. (6). For real �
the eigenvalue density outside the quark mass is highly
suppressed if � & m�=2. Consequently the first two terms
in Eq. (6) are dominant when � & m�=2 (see Fig. 1). The
measurement of the average phase factor at imaginary

values of � is therefore indicative of the strength of the
sign problem for real � & m�=2.

B. Two dynamical flavors with isospin chemical
potential

In this theory, also known as the phase-quenched theory,
there are two flavors of fermion with opposite values of
chemical potential ��. The average phase of the single-
flavor determinant is given (for real �) by

 he2i����i1�1� �
h det�D���0�m�
det�D���0�m��

j det�D���0 �m�j
2i

hj det�D���0 �m�j
2i

;

(9)

where the averages on the right-hand side are quenched
averages. This simplifies to

 he2i����i1�1� �
hdet�D���0 �m�2i

hj det�D���0 �m�j2i
�
ZNf�2

Z1�1�
;

a ratio of partition functions in ensembles with dynamical
fermions. These can be evaluated exactly in the micro-
scopic regime [17,23] to obtain

 he2i����i1�1� �
I2

0�m̂� � I
2
1�m̂�

2e2�̂2 R1
0 dtte

�2�̂2t2I2
0�m̂t�

(10)

for real �, with scaling variables as defined in Eq. (7) (note
that the numerator, which is ZNf�2, does not depend on�).
In this case the average phase factor is analytic at � � 0,
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FIG. 1 (color online). The quenched average phase factor as a
function of �2�=m��

2 for m̂ � 3. The average phase factor from
�2 < 0, Eq. (8), gives the solid line when continued via i�! �.
This line agrees with the direct result for real �, Eq. (6), when
� & m�=2. For larger values of � the essential singularity in
Eq. (6) at � � 0 becomes important and the analytic continu-
ation fails to reproduce the true result. The same occurs in
unquenched QCD.
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because the inverse determinant in the numerator of Eq. (9)
has been canceled. The average phase factor therefore is

 he2i��i��i1�1� �
I2

0�m̂� � I
2
1�m̂�

2e�2�̂2 R1
0 dtte

2�̂2t2I2
0�m̂t�

(11)

for imaginary chemical potential i�.

III. NUMERICAL DATA

In the lattice theory, we work with standard, unimproved
staggered fermions and introduce the chemical potential
using the Hasenfratz-Karsch prescription [24]. As in the
continuum, each operatorD� i��0 is anti-Hermitian, and
anticommutes with �5. Each operator’s eigenvalues there-
fore come in pairs of opposite sign on the imaginary axis.
For each gauge field configuration we measure the two sets
of eigenvalues defined by

 �D�A� � i��0 
�j�
� � i��j��  

�j�
� ; (12)

 �D�A� � i��0 
�j�
� � i��j��  

�j�
� : (13)

Thus det�D� i��0 �m� �
Q
j�i�

�j�
� �m�. Combining

positive with negative �’s, the average phase factor is given
by

 he2i��i��i �

�Y1
j�1

��j�2� �m2

��j�2� �m2

�
� h���i (14)

 �

�Y1
j�1

��j�2� �m2

��j�2� �m2

�
� h���i; (15)

where the products run over positive �’s only. The equality
of h���i and h���i follows from charge conjugation
symmetry, which exchanges �� with �� and is true in
both the quenched and the phase-quenched theory (but not
in the unquenched theory). With finite statistics, the two
estimators ��� and ��� give distinct measurements of
the average phase.

A. Quenched theory

Our quenched eigenvalue data are a combination of data
used in Ref. [19] with new data. We simulated the SU(3)
gauge theory with the plaquette action at � � 5:7 on
lattices with 84 and 124 sites. For each gauge configuration
we calculated the smallest 24 pairs of positive eigenvalues
��j�� .

On the smaller lattice, we chose two values of the
chemical potential: a� � 0:01 and a� � 0:1. In
Ref. [19] we determined F� and �, giving the scaled
values �̂ � 0:159 and �̂ � 1:59, respectively; also
�V=a � 1039, which permits converting the lattice
masses am into scaled masses m̂. With these values we

can make a parameter-free comparison between the ana-
lytical prediction (8) and the measurement of the (trun-
cated) average phase factor. The result for a� � 0:01,
based on data from Ref. [19], is shown in Fig. 2. The
agreement is well within the statistical error bars.

The value a� � 0:01 was chosen in Ref. [19] to ensure
that the scaling variable �̂ was roughly 1=10, since this
facilitates the determination of F�. At such small values of
� the shift of the eigenvalues due to the imaginary chemi-
cal potential is small compared to the average level spac-
ing.2 This was our motivation in running a new quenched
simulation in order to calculate eigenvalues with the larger
value a� � 0:1. The result is shown in Fig. 3; again the
agreement with Eq. (8) is good. Note that in this case
�L � 0:8 which is pushing the limit of the microscopic
domain.

Since m is not a dynamical parameter of the quenched
simulation, the data points for different values of m are
highly correlated, and the variation among them is system-
atic, not statistical. In effect, m determines which eigen-
values contribute the most to the average phase in Eqs. (14)
and (15). Whenm is small, all eigenvalues contribute to the
phase; the smallest eigenvalues cause large fluctuations,
while the large eigenvalues show but little dependence on
� and thus contribute little to the ratio. When m is large it
eliminates the effect of small eigenvalues on the phase.
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FIG. 2 (color online). The average phase factor calculated via
Eq. (14) (circles) and via Eq. (15) (crosses) from the lowest 24
positive eigenvalues of the staggered Dirac operator on an 84

lattice, for fixed chemical potential a� � 0:01 as a function of
the scaled quark mass; 4000 configurations. The full line is the
analytical microscopic prediction using the parameters deter-
mined in Ref. [19].

2For a real � of this order the width of the strip of eigenvalues
in the complex plane is much smaller than the average level
spacing along the imaginary axis [23,25,26].
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Therefore as m approaches the largest of the calculated
eigenvalues there is a systematic deviation from the ana-
lytic curve. We illustrate this by cutting the number of
calculated eigenvalues to 10. Figure 4 shows the deviation
from the analytic curve asm�V approaches ��10��V 
 30.

For the larger lattice, with 124 sites, we use data from
Ref. [19] with a� � 0:002. In Ref. [19] we determined
that �̂ � �F�

����
V
p
� 0:159 and �V=a � 5259. Again we

can compare the analytical prediction (8) to the measure-
ment of the truncated average phase factor without free
parameters, as shown in Fig. 5. The agreement is clear,
although statistically weaker than for the smaller lattice.

B. Two dynamical flavors

For the two-flavor theory with imaginary isospin chemi-
cal potential we use eigenvalue data calculated in the long
runs of Ref. [20], which should be consulted for numerical
details. The lattice theory is based on the plaquette action
and unimproved staggered fermions, simulated at � � 4:2
with volume 64. We have data for two masses, am � 0:002
and 0.005, and the imaginary chemical potential coupled to
isospin is a� � 0:0055. A determination [20] of aF� gives
�̂ � 0:1338.

For the smaller quark mass, am � 0:002, we calculated
[20] that m̂ � m�V � 3:318. From the lowest 24 eigen-
values we measure

 h���i1�1� � 1:0092� 0:0020; (16)

 h���i1�1� � 1:0082� 0:0020: (17)

The analytical prediction for the average phase factor (11)
is

 he2i��i��i1�1� � 1:0094; (18)

in agreement with the numerical averages.
For the larger quark mass (ma � 0:005) we have

m�V � 8:295. From the lowest 24 eigenvalues we com-
pute

 h���i1�1� � 1:0036� 0:0030 (19)

 h���i1�1� � 1:0032� 0:0030: (20)

The analytical formula (11) gives

 he2i��i��i1�1� � 1:0041: (21)

Here also we see satisfactory agreement with theory,
although the deviation from unity is not really significant.
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FIG. 4 (color online). Same eigenvalue data as in Fig. 2, but
retaining only 10 eigenvalues. As the quark mass approaches the
largest retained eigenvalue (��10��V 
 30) we observe that the
error band drops below the analytic curve (thin line).
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FIG. 5 (color online). As in Fig. 2, but for the 124 lattice; 2000
configurations.
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FIG. 3 (color online). As in Fig. 2 but with a� � 0:1; 6068
configurations.
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IV. CONCLUSIONS

We have computed an analogue of the complex phase
factor of the fermion determinant at imaginary values of
the chemical potential. The results have been used as a
parameter-free test of the predictions from the microscopic
domain of QCD. In the quenched as well as in the dynami-
cal cases studied the numerical and analytical results are in
agreement. Furthermore, we have demonstrated that the
phase factor in the microscopic domain is dominated by the
low-lying Dirac eigenvalues.

We hope that this first numerical study of the phase
factor at imaginary chemical potential will encourage
studies also outside the microscopic domain.
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