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Axial current matrix elements and pentaquark decay widths in chiral soliton models
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Here I explain why in chiral soliton models the hadronic transition operator of the pentaquark decay

cannot be identified from the axial current.
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I. INTRODUCTION

Many computations of pentaquark widths in soliton
models fully rely on adopting the axial current as the
transition operator for the hadronic decay ®" — KN [1-
3]. These computations embody the SU(3) generalization
of the Goldberger-Treiman relation (GTR)' between the
nucleon axial charge (g,) and the pion-nucleon coupling
constant (g ,yy) to map the soliton model onto a Yukawa
interaction. These calculations have been criticized for
inconsistencies with the large N limit [5]. In that limit
the O has a nonzero mass gap to the nucleon and hence a
nonzero width. On the other hand, the Skyrme model KN
phase shifts are exactly known for No — o [6,7]. They do
not exhibit pronounced (narrow) resonances. More re-
cently a detailed analysis [8] showed that these phase shifts
indeed contain the pentaquark exchange contribution.
Most crucially the transition matrix element for @ —
NK was extracted and established that it does not equal
the axial current matrix element suggested by the general-
ized GTR. Thus any chiral soliton model calculation of the
O™ width that is based on identifying the transition matrix
element from the axial current must be strongly doubted.
Given that this identification is continuously employed in
soliton motivated studies [9—13] of pentaquark widths and
that the resultant claim for the existence of narrow exotic
baryons is airily adopted to this day [14], it occurs highly
necessary to be emphatic on the arguments of Ref. [8].

Throughout I will discard flavor symmetry breaking.
Though it is important for actual predictions to be reliable,
it hides the main issue. Also, I will focus on the Skyrme
model. Admittedly this model is insufficient in various
aspects. Here the crucial point is the treatment of collective
soliton excitations. This is completely independent of the
specific underlying effective meson theory. It is thus ad-
vantageous to consider the simplest model available.

II. DECAY WIDTHS FROM AXIAL CURRENT
MATRIX ELEMENTS

Models with explicit baryon (B) and meson (®) fields
commonly have trilinear Yukawa interactions (the fields
are multivalued in flavor space),

'In the context of the Skyrme soliton model, the GTR was first
formulated in Ref. [4].
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The derivative interaction reflects chiral symmetry and 75
the pseudoscalar nature of the considered meson. The
Yukawa coupling leads to the standard width
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where M is the matrix element resulting from Eq. (1). The
overbar denotes summing and averaging over spins. The
details of this matrix element depend on the spins of the
considered baryons. It suffices to keep in mind that M is
linear in both, the coupling g 45 and the momentum of the
final meson, pg. The latter property results from the pseu-
doscalar nature of ®. So we have I' géBB,Ifaq,P. The

Yukawa model reflects the GTR? between the Yukawa
coupling g,y and the axial charge of the nucleon, g,

Sn&ann = Mnga- 3)

This relation heavily relies on a partially conserved
axialvector-current (PCAC) hypothesis which expresses
the nonconservation of the axial current

O1 AL (x) = faml (), 4)

where a is the flavor index.

In soliton model in this situation is considerably differ-
ent. Only meson fields are fundamental while baryons
emerge as (topological) configurations thereof that solve
the (classical) field equations. To study meson baryon
interactions, asymptotic meson states are constructed
from small amplitude fluctuations about the soliton that
describes the baryon. An immediate puzzle arises. Since
the soliton is a stationary point, no term linear in the meson
fluctuations exists. Hence there is no obvious coupling
constant g,z and profound assumptions are necessary
to make use of Eq. (2). The profound assumption often
made in soliton models is to evaluate g5#' (the axial current
transition matrix element), use Eq. (3) to identify g4pp,
and substitute it into Eq. (2) to compute the decay width.

2Strictly speaking this relation is valid only at zero momentum
transfer and smoothness is assumed to extrapolate to the physical
point.
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This is an attempt to map the soliton model onto the
Yukawa model. Certainly, one must ask for the role of
the GTR in soliton models. Before doing so, we will out-
line the computations of g4, g,yv and its SU(3) relatives
from GTR.

Starting point is the hedgehog configuration Uy(¥) =
exp[ix - 7F(r)], that solves the classical field equations.
In the next step, collective coordinates A(r) € SU(3) are
introduced via

UG, 1) = AU (DAT(2). &)

Note that this configuration does not solve the stationary
conditions; eventually this gives rise to terms linear in the
meson fields. The A(7) are treated quantum mechanically to
generate states with good spin and flavor quantum num-
bers. Baryon wave functions W5(A) = (A|B) emerge in the
space of the collective coordinates. In the absence of flavor
symmetry breaking, these wave functions are classified
with respect to SU(3) flavor multiplets; spin 3 states in
the octet, anti—decuplet; spin % in the decuplet; etc. This
treatment is called the rigid rotator approach.

In the rigid rotator approach the axial current operator
has the model independent from

Af= S AP@Du+ Y AR DdrapDaaRp

k=123 k=123
a,p=4,...7
+ > AR@DsR, (©)
k=123

up to omitted flavor symmetry breaking. The structure of
the coefficient functions is Af.,'(")()'c’) = Ag’”)(r)B,»k +
A (r)%,%;. The A(,'Z)(r) are radial functions through the
profile function F(r). The D, =1 tr(A,AA,AT) and the
R, are the adjoint representation of the SU(3) collective
coordinates and the intrinsic SU(3) generators, respec-
tively. It is legitimate to use isospin invariance and com-
pute g4 as the nucleon matrix element <2A§>. Then Eq. (3)
implies [1,2]
o =L 6o +361 + L] i

8mM o0 1
G, =— 3f77N ﬁ drrz[A(lm)(r) + §A(2 )(r)}.
The relative coefficients stem from the nucleon matrix
elements of the collective coordinate operators in Eq. (6).
They are readily obtained from SU(3) Clebsch-Gordan
coefficients, e.g. {(p1|Dslp 1) = —7/30. Generalizing
the above result for g vy to flavor SU(3) yields coupling
constants

GIO = G() + %Gl and Gm =

(N

Gyo— G, —1G, (8

that (under the GTR assumption), respectively, measure the
coupling of baryons from the decuplet (A) and the anti—
decuplet (@) to those in the octet (nucleon, hyperons).
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These coupling constants enter the matrix element M and
predict widths for hadronic baryon decays via Eq. (2):
I'(A — N7) = Gl p,I° and T(®F — NK) = G2 | pxl’.
The omitted constants of proportionality are merely kine-
matical factors [15]. Model calculations [16—18] indicate
that G, and G, are comparable. That is, significant can-
cellations cause Gy to be rather small. This has been the
main argument for claiming a ®* width of the order of
only a few MeV, or even less. The cancellations between
Gy and G, persist when the number (N) of color degrees
of freedom is sent to infinity [19]. This completes the way
of thinking about pentaquark decay widths put forward in
Refs. [1,2] and frequently adopted later on [3]. A couple of
issues doubt this approach already before we test it against
incontrovertible results from the phase shift analysis:

(i) The classical field equations affect only the first part
a,-AE? = O(m2%) while the last term (A?) vanishes
or is at least small because it essentially is the axial
singlet matrix element. On the other hand, al-Aﬁ,‘} is
not part of any equation of motion. Hence the axial
current computed solely from the classical profile
functions violates PCAC [20]. As a consequence, the
use of GTR in SU(3) soliton models is questionable
because a major entry is not met.

(ii)) The above derivation only involves the classical
soliton and there is no reference to asymptotic meson
states. In two flavor soliton models, the GTR arises
from the long range behavior of the soliton profile [4]
and has been identified from one-pion exchange
contribution to the nucleon-nucleon interaction.
However, this process does not require asymptotic
pion states. Also, that argument strongly relies on
pions being massless. For m > 0, g4 cannot be read
off from the long-range behavior and thus not be
related to g, yn-

It is thus not surprising that SU(3) Skyrme model calcu-
lations severely fail to reproduce GTR when g,y is
identified from the long-range behavior of the soliton
[16]. Evidently, it is not possible to directly map soliton
models onto the Yukawa model.

II1. ROTATION-VIBRATION COUPLING AND KN
SCATTERING

In principle, it must be possible to extract ® * properties
from kaon-nucleon scattering data. After all, that is the
process in which resonances are to be observed. This
process can be studied within a given soliton model with-
out reference to the Yukawa model. The corresponding
phase shifts have been computed in the Skyrme model
[6,7] within the so-called adiabatic approximation, which
neglects the dynamical properties of the collective modes.
This model treatment is exact to first nontrivial order in the
large-N- expansion. A typical Skyrme model result is
shown as fotal phase shift in Fig. 1. Since this is exact to
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FIG. 1 (color online).
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Skyrme model results for momentum-dependent phase shifts in the ® " channel. The > total phase shift” is the

result in adiabatic approximation, the ‘““background phase shift”” describes scattering in the space orthogonal to the soliton’s rigid
rotation. and the ‘“‘resonance phase shift” is their difference, compared to the Yukawa-exchange contribution (10) and (11) in the right

panel. The pictures are adopted from Ref. [29].

O(N?), any treatment (that might include subleading
pieces) of collective degrees of freedom in the Skyrme
model must reproduce this phase shift in the limit No —
0. This concerns the full momentum dependence and not
only an attempt to match a single parameter [10].

From Fig. 1 the immediate question arises whether or
not the pentaquark channel resonates as No — oo. If at all,
this concerns the collective modes, Eq. (5). As a first
response to this question, one may constrain the small
amplitude fluctuation to be orthogonal to the collective
modes. The phase shift computed from these restricted
fluctuations is shown as the background phase shift in
Fig. 1. Its difference to the total phase shift defines the
resonance phase shift. Obviously the latter resonates,
though it is definitely not narrow. Of course, the challenge
is to verify that this resonance phase shift arises from the
exchange of the collective excitation ®*. Then collective
modes must be treated dynamically within the scattering
problem. This was done in Ref. [8] by considering vibra-
tions (7)) about the rotating hedgehog, (The interested
reader should consult that paper for quantitative results,
particularly for the realistic case No = 3 and mg #+ m.).
The configuration (5) does not solve the stationary con-
ditions; this will now give rise to terms linear in 7 that
couple to the collective coordinates and their time deriva-
tive. The constraints that ensure 7 to be orthogonal to the
collective modes yield additional linear terms. After quan-
tization, the linear terms contain only a single collective
coordinate operator

Xak = Z dkaBDaaRﬁ‘ (9)
o, B=4,..7

This operator also occurs in the axial current operator,
Eq. (6). In the limit No — oo, the Schrodinger equation
for 7 has a very simple solution [8]: | ) = |9) — |z){7|z),
where (X|n) is the wave function in the adiabatic approxi-
mation and (X|z) is the (properly normalized) wave func-
tion that represents the collective modes. Since (¥|z) is
determined by the soliton configuration, it is localized in
space. Thus (X|n) and (¥|7}) behave identically in the
asymptotic regime and 7 indeed reproduces the total phase
shift of Fig. 1 as N0 — 0. To extract the information about

the collective excitations that is contained in 1, it is fruitful
to introduce fluctuations 7% which are the solution to the
Schrodinger equation with X — 0, i.e. without coupling to
the collective coordinates. The so-generated equation of
motion is that from the adiabatic approximation aug-
mented by the constraints. Hence the 7 phase shift is the
background phase shift in Fig. 1. In the full 7 problem, the
effect of nonzero X is to add the resonance phase shift
Sy (k) to the 7 phase shift with

I'(wg)/2

we — w; + Alwy)
Here wg is the excitation energy of the pentaquark as
computed in the rigid rotator approach while A denotes
the energy shift. Numerically, A turns out to be negligibly
small. This shows that the rigid rotator approach reliably
predicts the pentaquark mass (in a model) [21]. The width
function

tan(8y(k)) = (10)

I(w)) = 2k X5 (71,1212 (1D

describes the (Yukawa) exchange contribution of a penta-
quark to kaon-nucleon scattering. Here, the explicit ex-
pressions for the normalization factor w, and the radial
function A are of minor importance. For N- # 3, the low-
lying SU(3) representations are no longer octet, decuplet,
anti—decuplet, etc.. This induces N dependences for ¥,
the energy eigenvalues such as wg, and the matrix element

Xp = \/;:i<®+ 11X43 + iXs3/n 1) turns into a function of
N¢. It is normalized such that limy __Xe = 1.

IV. COMPARISON AND CRITIQUE

The right panel of Fig. 1 shows the Yukawa-exchange
phase shift as numerically computed from Eq. (11) for
Nc— oo. Obviously and most importantly it exactly
matches the resonance phase shift. Unambiguously I'(w;,)
is the correct width function in this model (at least for
N — ). It is evidently very different from the width
function computed via GTR from the axial current. Most
remarkably I'(w;) contains only a single collective coor-
dinate operator. Thus there cannot be any cancellation that
would yield a small width.
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There is a self-explanatory and rigorous reason for the
appearance of only a single collective coordinate structure
in the transition operator. To make contact with the adia-
batic approximation (that is exact as N — ), the equa-
tions of motion for the fluctuations are solved in the body-
fixed frame, wherein the fluctuations rotate along with the
soliton, Eq. (5). In these equations the collective coordi-
nates can only show up via the angular velocities, (), =
—itr[A,A(1)AT(£)]. Upon quantization, the (), are replaced
by the generators R,. Without the D, available, there is
only one possible kaon P-wave coupling which is
Hermitian and behaves properly under SU(3):
> XdiapmaRp. Subsequently matrix elements for the
lab-frame fluctuations &, = D,,m, are required. This
leads to X as the only allowed operator. Since this argu-
ment is irrespective of the considered chiral soliton model,
the emergence of only a single collective coordinate op-
erator for the hadronic transition @ — KN is common to
all chiral soliton models.

The detailed analysis [8] of I'(w,) reveals a few more
discrepancies to the axial current approach. The |pg|?
behavior is seen only in the energy regime slightly above
threshold; at larger energies it levels off. Though the
correct width function definitely does not contain a G
type piece, it seems plausible to identify the G contribu-
tion with I'(w;) in the plane wave approximation in the
Dx — 0 limit because it contains the same collective co-
ordinate operator. However, the actual computation shows
that the integrands of the spatial integrals differ by a factor
cos(F/2).

When symmetry breaking is included, the A channel
must be incorporated to reproduce the correct total phase
shift when N — o0. Also, an additional collective coor-
dinate operator ¥, = > o p=4...7%%apDaaDgp emerges. In
the large-N limit it behaves similarly to the G type piece,
but in general no relation can be made.

V. ANOTE ON A

Many approaches describe the width of the A resonance
via Yukawa interaction in pion-nucleon scattering thereby
generalizing the GTR. This stimulates to discuss the con-
sequences of the above results for the soliton model de-
scription of the A width.

The treatment that consistently describes the ® width is
characterized by essentially two features. First, the space
of fluctuations is parted into a piece that contains collective
modes and its orthogonal subspace. Only the latter contains
to scattering meson states. For pion-nucleon scattering this
partition is not as problematic as for three flavor processes
because the Wess-Zumino term can be ignored. Then terms
that are subleading in the 1/N expansion and quadratic in
the fluctuations emerge that couple these two subspaces.
They are thus linear in the small amplitude fluctuations that
describe asymptotic pion fields. Second, the collective
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modes are integrated out similar to the Lee model approach
[22]. This induces a separable potential for the fluctuations
in the orthogonal subspace. Treated in an R-matrix formal-
ism, this potential yields the resonance phase shift. As is
deduced from the pentaquark problem, the R-matrix ele-
ments must be evaluated from fluctuation wave functions
that are distorted by the classical soliton; the plain wave
approximation is inconsistent with the partitioning of the
fluctuation space. So far this agenda has not been fully
carried out for the A resonance. The study of chapter 10 in
Ref. [23] seems to come closest. Even though those results
for the pion-nucleon scattering amplitude in the A channel
agree reasonably well with data, it should be stressed that
they are obtained in the plain wave approximation, just
criticized. Interestingly enough, this approach does not
generate a mNN vertex [24,25], regardless of the plain
wave approximation. Stated otherwise, the scenario that
potentially describes the A resonance well, or at least
consistently in a given soliton model, does not alter the
pion-nucleon coupling constant that is basic to GTR,
Eq. (3). So, as in the pentaquark channel, the soliton model
computation of the A width does not proceed by general-
izing the GTR.? This is no contradiction to fundamental
concepts of hadron physics because sandwiching the
PCAC relation (4) between states other than the nucleon
(and its octet partners) is impossible without assumptions
about the nature of these states. For example, regarding
g-ny and gy with equal rigor implies that the A would
be an asymptotic state, yet it is a resonance. We note,
however, that the GTR is indeed reproduced in the soliton
model description of the nucleon-nucleon potential [4,27].

VI. CONCLUSIONS

Here I have argued that pentaquark widths may not be
computed from axial current matrix elements in chiral
soliton models. The model prediction for the kaon-nucleon
phase shift is known in limit N — oo and the axial current
approach evidently fails to reproduce it. Though this fact
has been known for some time, this short discussion
seemed necessary because this erroneous identification
keeps on being applied. In chiral soliton models penta-
quark widths (probably neither those of other baryon reso-
nances) should not be estimated by mapping onto the
Yukawa model via the GTR. Since the so-computed pen-
taquarks widths are not reliable predictions, the nonobser-
vation of such a narrow resonance (which seems more or
less certain by now [28]) should not be used against the
chiral soliton picture for baryons. The statement that chiral
soliton models predict a very narrow pentaquark baryon in
the § = +1 channel essentially is a myth.

The study of Ref. [26] finds agreement between the Skyrme
and isobar model 7 matrices in the P-wave channels at low
energies, Yet, this agreement cannot be attributed to individual
nucleon or A Yukawa couplings.
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