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We show that hard-scattering factorization is violated in the production of high-pT hadrons in hadron-
hadron collisions, in the case that the hadrons are back-to-back, so that kT factorization is to be used. The
explicit counterexample that we construct is for the single-spin asymmetry with one beam transversely
polarized. The Sivers function needed here has particular sensitivity to the Wilson lines in the parton
densities. We use a greatly simplified model theory to make the breakdown of factorization easy to check
explicitly. But the counterexample implies that standard arguments for factorization fail not just for the
single-spin asymmetry but for the unpolarized cross section for back-to-back hadron production in QCD
in hadron-hadron collisions. This is unlike corresponding cases in e�e� annihilation, Drell-Yan, and
deeply inelastic scattering. Moreover, the result endangers factorization for more general hadroproduction
processes.
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I. INTRODUCTION

The great importance of hard-scattering factorization in
high-energy phenomenology hardly needs emphasis.
Essential to its application and predictiveness is the uni-
versality of parton densities (and fragmentation functions,
etc.) between different reactions. However, as can be seen
from [1–4], process-dependent Wilson lines appear to be
needed in the inclusive production of two high-transverse-
momentum particles in hadron-hadron collisions, i.e., in
the process

 H1 �H2 ! H3 �H4 � X: (1.1)

In this paper we will show that this situation definitively
leads to a breakdown of factorization.

The standard expectation is that the cross section is a
convolution of a hard-scattering coefficient d�̂, parton
densities, fragmentation functions, and a possible soft
function:

 E3E4
d�

d3p3d3p4

�
XZ

d�̂i�j!k�l�Xfi=1fj=2d3=kd4=l

� power-suppressed correction:

(1.2)

Here the sum and integral are over the flavors and momenta
of the partons of the hard scattering, fi=H denotes a parton
density, and dH=i a fragmentation function.

It is noteworthy that the classic published proofs for
factorization in hadron-hadron scattering [5,6] only con-

cerned the Drell-Yan process. There are a number of
difficult issues in the proof that are highly nontrivial to
extend to other reactions in hadron-hadron collisions, even
though Eq. (1.2) is a standard expectation.

We will examine the case that the produced hadrons are
almost back-to-back. Then the appropriate factorization
property is kT factorization, which entails [7] the use of
transverse-momentum dependent (TMD) parton densities
and fragmentation functions. However, the issues raised by
our counterexample to factorization are sufficiently gen-
eral that they create a need to examine very carefully the
arguments for factorization in hadroproduction of hadrons
even in situations where ordinary collinear factorization
with integrated densities is appropriate. In the case of kT
factorization with TMD densities, the factorization for-
mula needs the insertion of a soft factor S, not shown in
Eq. (1.2).

The problems concern gluon exchanges between differ-
ent kinds of collinear line, as in Fig. 7 below. To obtain
factorization, the gluon attachments must be converted to
Wilson lines in gauge-invariant definitions of the parton
densities and fragmentation functions. This relies [6] on
the use of Ward identities applied to approximations to the
amplitudes. But the approximations are only valid after
certain contour deformations on the loop momenta.

Bacchetta, Bomhof, Mulders, and Pijlman [1– 4] argued
that because of the complicated combination of initial- and
final-state interactions, the Wilson lines must be modified.
What is not so clear is the interpretation of their result. So
in the present paper we present an argument to make fully
explicit the failure of factorization.

Since the issue is one of factorization in general, and not
just specifically in QCD, we clarify the issue by examining
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a particular process in a model field theory. The process is a
transverse single-spin asymmetry of the kind controlled by
a Sivers function. This is a case where problems in the
contour deformation directly affect the value of the cross
section at the lowest possible order of perturbation theory.
Our model field theory is simple enough that the calcula-
tions and their interpretation as implying factorization
violation are unambiguous. But, as we will explain in the
final section, we expect the failure of factorization to be
more general: our particular process and model simply
make it very easy to see the failure.

II. CONSTRUCTION OF MODEL

Since proofs of factorization apply to quantum field
theories in general (if they are renormalizable), the con-
struction of a counterexample, to demonstrate and to
understand a failure of the normal methods of proof, is
conveniently done in a simple model theory.

Our model resembles the one used by Brodsky, Hwang,
and Schmidt [8] in their discussion of single-spin asymme-
tries. It is defined as follows:

(i) The gauge group is Abelian. This simplifies the
graphs, and allows the next feature.

(ii) The gluon is massive. This avoids the discussion
being confused by actual infrared divergences in
the S matrix.

(iii) The initial-state particles correspond to Dirac fields
that are neutral under the gauge group. We will call
them hadrons. The fields need to be Dirac fields in
order to have the single transverse spin asymmetries
that we will examine. We will use two types of
hadrons.

(iv) Each ‘‘hadron field’’ Hi will have a coupling to a
Dirac field  i and a scalar field �i, which in [8]
would be called a diquark field:

 �i� �Hi i�
y
i �

� iHi�i�: (2.1)

The quark field  i has a coupling gi to the gauge
field, and the scalar field �i has the opposite
coupling.

(v) All the masses in the theory are comparable, to avoid
confusing the calculation with logarithmic depen-
dence on large ratios of masses.

In our analog of hadroproduction, Fig. 7, the two initial-
state hadrons are of the two different types, and we use this
to simplify our argument for nonfactorization. The lines in
the lower part of the graphs are chosen to be those of gauge
coupling g1, while the lines in the upper part of the graph
are those with coupling g2. But if the attachments of the
gluon to the upper lines were in some way to correspond to
a Wilson line in the parton density in the hadron in the
lower part of the graph, the charge would have to be g1.
Since g1 and g2 are arbitrary, there is no way to make a
correspondence between the graph and the Wilson line
formalism, provided that the contribution is nonzero, as

we will demonstrate. This will also insulate us against sign
errors and the like.

We will also choose the detected outgoing particles H3

and H4 to correspond to the scalar fields. The sole purpose
here is to simplify the Dirac algebra slightly, thereby
making the calculations more transparent and elementary.

One feature of our counterexample appears to be very
special to an Abelian gauge theory. This is that the two
couplings g1 and g2 need have no relation to each other:
there is a continuous infinity of representations of the
gauge group. In contrast, there is a single value of the
coupling g for all the fields in a non-Abelian theory. The
role of the ratio g2=g1 is now taken over by the represen-
tation matrices for the different fields in QCD (triplet,
antitriplet, octet), with the different couplings related by
factors of rational numbers. So in any particular example
there is a potential for a numerical coincidence between the
sizes of the numerical values of the graphs, which could
then appear to give consistency with factorization. A coun-
terexample to factorization would then be more compli-
cated, with a comparison of cases with different kinds of
partons (quarks, antiquarks, or gluons), cf. [1–4].

III. REVIEW OF SIDIS AND DY

We now review how [8] a transverse single-spin asym-
metry (SSA) arises in semi-inclusive deep-inelastic scat-
tering (SIDIS), at the level of one-gluon exchange, and
how it determines [9] the Wilson line that defines parton
densities. Then we review the differences that give facto-
rization with an exact sign reversal in the Sivers function
for the Drell-Yan process [9,10]. This will give us methods
of calculation that will give us a very elementary way to
obtain the SSA for the process (1.1).

A. SIDIS

With the electromagnetic part of the scattering factored
out, SIDIS is the process

 ���q� �H�p� ! H0�r� � X: (3.1)

We use light-front coordinates in which the incoming
momenta are

 p �
�
p�;

m2
H

2p�
; 0T

�
; q �

�
�xp�;

Q2

2xp�
; 0T

�
: (3.2)

The detected outgoing particle is defined by a longitudinal
momentum fraction z and a transverse momentum rT :

 r �
�
xp�

r2
T �m

2
�

zQ2 ;
zQ2

2xp�
; rT

�
: (3.3)

We will assume that Q is large and that the detected
transverse momentum rT is of order a hadronic mass scale
m.

The lowest-order graph in Fig. 1 gives the following
contribution to the differential structure tensor:

JOHN COLLINS AND JIAN-WEI QIU PHYSICAL REVIEW D 75, 114014 (2007)

114014-2



 

dW��

dzd2rT
�
�2

4�

Z dk�dk�

�2��4
�
�
z�

k� � q�

q�

�

�
�2k�� q���2k�� q��

�k2�m2
��

2 �2��2���q� k�2�m2
��

����p� k�2�m2
 � �

1

2
Tr��6p�mH��1��5s6 �

� �6p� 6k�m �	: (3.4)

The internal partons are all collinear to the target, i.e., k�

p�, k�
m2=p�, kT
m, and to leading power in Q,
parton model kinematics apply, so that k�’xp� and z’1.
We will assume throughout that the spin vector s corre-
sponds to a transverse spin (in the �q; p� frame), and that it
is normalized so that its extremal value obeys s2��1.
Since there is only one initial-state hadron, we do not
bother with labels to indicate the kind of hadron (e.g., �1

or �2).
The above formula is simply related to a parton density:

 

dW��

dzd2rT
�
�p� � q�p � q=q2��p� � q�p � q=q2�

p � q

� ��z� 1�P�=H�x; rT�

� power-suppressed correction; (3.5)

where the parton density at lowest order is

 P0�x; kT� �
�2x�1� x�

16�3

�
1
2 Tr��6p�mH��1� �5s6 ��6p� 6k�m �	

�k2
T �m

2
��1� x� �m

2
 x�m

2
Hx�1� x�	

2 ;

(3.6)

as follows from the conventional operator definition.
There is in fact no polarization dependence in this order,

i.e., the Sivers function vanishes. At a simple calculational
level, this occurs for two reasons. One is that �5 gives a
nonzero contribution only when multiplied by at least four
regular Dirac matrices,

 tr�5a6 6b6c6d � 4i	
���a
b�c�d�; (3.7)

while in (3.6) there are at most three. This reason for a
vanishing SSA would no longer apply in a more compli-
cated model or with higher order graphs. The second
reason for the vanishing is that the trace (3.7) is imaginary,
while the rest of the graph is real, so that the contribution to
a cross section must be zero.

The lowest-order graphs for a nonzero SSA are the one-
gluon-exchange graphs in Fig. 2, which get an imaginary
part from an intermediate state that can go on shell; this
state is made by the lines with momenta q� k� l and p�
k� l. Standard power counting shows that the exchanged
gluon can only be collinear to the target or soft. The minus
momentum of the gluon is trapped in the region l� 

m2=p� by the other target-collinear lines. The on-shell
intermediate state corresponds to small angle elastic scat-
tering, and so to very small l�, of order p�m2=Q2. There
the only significant dependence on l� is in the upper parton
propagator. Multiplied by the neighboring gluon vertex this
gives

 

�g�2q� � 2k� � l��

�q� k� l�2 �m2
� � i	

’
�g���

�l� � other terms� i	
;

(3.8)

where the ‘‘other terms’’ are small or independent of l�,
and we have taken a leading-power approximation for the
momenta in the numerator. The contour of integration of l�

p

k

q

FIG. 1. Lowest-order graph for SIDIS in our model. The
initial-state particle is a color-singlet Dirac particle. The specta-
tor line is for a Dirac ‘‘quark’’ field, and the active parton is for a
scalar ‘‘diquark’’ field, as can be enforced by a condition on the
detected outgoing particle of momentum q� k. The arrows on
the internal lines indicate the flow of color charge, and the
vertical line cutting the graph denotes the final state.

p

k − l

q

l

q + k

p

k

q
q + k

(b)(a)

FIG. 2. Virtual one-gluon-exchange corrections to Fig. 1 that give a SSA.
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can therefore be deformed into the lower half-plane until l
is target collinear. In that case the ‘‘other terms’’ in (3.8)
are negligible, and the denominator can be replaced by its
eikonal approximation 1=��l� � i	�. This, together with a
leading-power approximation in the numerator, shows [9]
that the gluon exchange correction is equivalent to a con-
tribution to the parton density with a suitable Wilson line,
Fig. 3.

Let us perform the k� and k� integrals by the on-shell
conditions on the final state, and let us perform the l�

integration by contour integration. Then the necessary
imaginary part comes simply from the imaginary part of
(3.8) and thus from the replacement

 

�g�2q� � 2k� � l��

�q� k� l�2 �m2
� � i	

� ig������l��: (3.9)

This gives rise to an SSA with the aid of the trace
 

1

2
Tr��6p�mH��5s6 �6p� 6k�6 l�m ��

��6p� 6k�m �	

’ 2i	jks
jlkp��mH�1� x� �m 	 (3.10)

where the approximation, good to leading power, arises
from the neglect of the small components of l with respect
to the transverse components. The two-dimensional 	 ten-
sor obeys 	12 � 1. Since the denominator in the integrand
is not azimuthally symmetric in lT , the integral over l gives
a nonzero result for the SSA from the whole graph.

The two graphs in Fig. 2 are related by Hermitian
conjugation and so they give equal contributions to the
SSA.

B. Drell-Yan

The Drell-Yan (DY) process,

 HA�s� �HB ! ���q� � X; (3.11)

is treated quite similarly. We examine the cross section
differential in qT , and investigate a possible SSA, with HA
having a transverse spin vector s.

In our model the lowest-order graph is Fig. 4. It is readily
shown to be the (convolution) product of two transverse-

momentum-dependent parton densities, and, just like the
SIDIS process, it has no SSA at this order. Note that to have
the process occur at the order shown within our model, the
initial-state hadrons HA and HB must be antiparticles of
each other.

The imaginary part in the amplitude needed to get an
SSA with respect to the transverse spin s of the lower
hadron HA arises from graphs such as those in Fig. 5.
Graphs (a) and (b) work just like those in Fig. 2 for
SIDIS, except that the gluon couples to the incoming scalar
antiparton instead an outgoing scalar parton, with the
necessary reversal in sign of the coupling. Thus Eq. (3.8)
is replaced by

 

g�2k�B � l
��

�kB � l�2 �m2
� � i	

’
g���

l� � other terms� i	
; (3.12)

which gives an imaginary part exactly opposite to that for
SIDIS. The relative sign of the l� term and the i	 is now
that for an initial-state interaction, so that the Wilson line in
the operator definition of the parton density is now past-
pointing instead of future-pointing [9]. As shown in [9], an
exact reversal of sign of the Sivers function between SIDIS
and DY follows from the time-reversal symmetry of QCD.

No contribution to the SSA is given by graphs, like
Fig. 5(c), in which both ends gluons couple the active
partons, or where the gluon couples the upper spectator
quark to the lower active parton. In our model this is trivial:
there are too few Dirac matrices on the lower line to give
spin dependence. In a more general case, the annihilating
partons could be Dirac fields, and then the lack of spin
dependence arises because of the eikonalization of those
parton lines on the lower side of the graph that would
contribute to the imaginary part.

But spectator interaction graphs, (d) and (e), do indi-
vidually contribute to the SSA. The imaginary part arises
from putting all four spectator lines on shell. Provided the
gluon momentum is routed the same way in both graphs
before integration, e.g., to the left as shown, the two con-
tributions are equal, but exactly opposite in sign. The
cancellation is exactly one of those needed to prove facto-

p

k − l l

FIG. 3. Virtual one-gluon-exchange correction to parton den-
sity. The upper double line is the Wilson line, and the graph
shown, together with its Hermitian conjugate gives the first
contribution to the Sivers function.

pA

pB

q

kB

kA

FIG. 4. Lowest-order graph for the Drell-Yan process.
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rization [6], and involves a sum over all allowed cuts of a
particular graph.

However, the two graphs have final states with particles
of different momenta. This accounts for the difference
compared with the noncancellation of the graphs in
Fig. 2 for SIDIS, where there is also a sum over cuts. For
the SIDIS graphs there is a requirement on the transverse
momentum of the struck parton. In contrast, the cancella-
tion between the two spectator-spectator graphs in the DY
process occurs because our cross section is the fully in-
clusive DY cross section; no requirement was placed on the
final state in the target fragmentation regions. (As is well
known from the case of diffractive hard scattering, both
theoretically [11,12] and experimentally [13,14], factori-
zation fails when target-relative restrictions are imposed.)

IV. HADROPRODUCTION OF HADRONS

We now have the tools to make an extremely streamlined
construction of a counterexample to factorization for the
process of hadroproduction of high-transverse-momentum
hadrons, H1 �H2 ! H3 �H4 � X. We again use an SSA

because nonfactorization occurs with one gluon exchanged
beyond the lowest order in which the reaction occurs at all.
We choose H1 to be the polarized hadron, and we choose
the hadrons H1 and H2 to be of the two different flavors in
our model. We also choose the detected final-state particles
H3 andH4 to correspond to the two flavors of scalar parton.
The high-transverse-momentum particles H3 and H4 are
chosen to be almost back-to-back azimuthally (relative to
the collision axis), so that transverse-momentum-
dependent parton densities and fragmentation functions
are needed for describing a factorized cross section.

The single lowest-order graph for the process is shown
in Fig. 6. Its hard scattering is just the gluon-exchange
subgraph. The cross section is the convolution of the hard
scattering with a transverse-momentum-dependent parton
density in each hadron. The fragmentation functions in this
order are trivial delta functions. Although the longitudinal
momenta of the incoming partons for the hard scattering
are determined from the kinematics of H3 and H4, only a
sum of their transverse momenta is determined. Hence a
convolution over the transverse-momentum densities is
needed. As before, there is no SSA at this order.

pA , s

pB

kB + l

kA − l

pA , s

pB

)b()a(

pA, s

pB

pA − kA + l

l

pA − kA

pB − kB − l pB − kB pB − kB − l

pA − kA + l

)e()d()c(

FIG. 5. Virtual one-gluon-exchange corrections to Fig. 4 relevant for a SSA when the lower hadron has transverse spin s. Graph (a)
and its Hermitian conjugate (b) have imaginary parts (at the amplitude level) that give a nonzero SSA. Gluon exchange between the
active partons, graph (c) and its not-shown conjugate, gives an imaginary part in the vertex correction that does not give a SSA.
Spectator-spectator gluon exchange graphs, (d) and (e), do contribute individually to the SSA, but the two contributions cancel (at
leading power).
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The graphs giving the lowest-order SSA are shown in
Fig. 7. They have an extra gluon exchanged between the
spectator line in the polarized hadron and one of the active
partons. As with the DY process, a sum over cuts of graphs
with a spectator-spectator interaction cancels, while ex-
changes purely between active partons give no SSA. An
exchange purely between the spectator (p1 � k1) and the
active parton line (k1) in the polarized hadron has no
relevant intermediate on-shell state and therefore does
not contribute to the SSA.

So only the three graphs shown in Fig. 7 contribute to the
SSA, together with their conjugate graphs. Exactly as in
our discussion of SIDIS and DY, the graphs are the same to
the leading power except for eikonal factors from the
parton lines connecting the upper end of the gluon to the
hard scattering. The appropriate replacements for these

lines are

 

�g2�2k
�
4 � l

��

�k4 � l�
2 �m2

�2 � i	
� ig2������l��; (4.1)

 

�g2�2k
�
2 � l

��

�k2 � l�
2 �m2

�2 � i	
� ig2��

�
���l

��; (4.2)

 

�g1�2k
�
3 � l

��

�k3 � l�2 �m2
�1 � i	

� ig1��
�
���l

��; (4.3)

for a total of i��g1 � 2g2���l
��.

The g1 term corresponds to a gluon coupling to a future-
pointing Wilson line in the operator definition of the parton
density, the same as for SIDIS. However, it is impossible
for the contribution proportional to g2 to be represented in
terms of a Wilson line connecting the two parton fields for
the distribution of partons of type �1 in the hadron H1.
This is simply because the coupling for any such Wilson
line has to correspond to the color charge of the parton, i.e.,
g1, and not g2. The full Wilson line, or some general-
ization, is needed because exchanges of multiple gluons
also contribute. The quantity we are looking at is definitely
associated with the hadron H1 rather than being in some
kind of exotic soft factor, since the attachment of the lower
end of the gluon line to the spectator parton is necessary for
the nonzero SSA; the triviality of this observation is a
special feature of our particular model.

The contribution to the SSA is therefore nonuniversal
and does not correspond to a parton density. That is,
factorization is broken.

Of course, the fact that the contribution is obtained from
an eikonalized line indicates that it can be obtained from
some kind of representation in terms of Wilson line opera-
tors. But the matrix element is for some more complicated
and nonuniversal object [1–4] that cannot be treated as a
parton density. It is allied to the objects used by Balitsky

p2

p1, s

k4 − l

p1 − k1 + l

p2

p1, s p1 − k1 + l

k2 + l

p2

p1, s
p1 − k1 + l

k3 − l

)c()b()a(

FIG. 7 (color online). One-gluon exchange in model for hadroproduction of hadrons of high transverse momentum. The specification
of the process is as in Fig. 6. Only graphs that contribute to the SSA are shown. Hermitian conjugates of these graphs also contribute,
with an equal value.

p2

k2

p1

k1

k4

k3

FIG. 6 (color online). Lowest-order graph in model for hadro-
production of hadrons of high transverse momentum. The initial-
state particles are color-singlet Dirac particles. The spectator
lines are for Dirac quark fields of charges g1 and g2, and the
active partons are for scalar diquark fields. The exchanged gluon
line is thickened to denote the hard scattering.

JOHN COLLINS AND JIAN-WEI QIU PHYSICAL REVIEW D 75, 114014 (2007)

114014-6



[15] to discuss scattering at high energy and small angles.
The eikonalization indicates that substantial simplifica-
tions are possible. But that situation would go well beyond
normal factorization.

V. DISCUSSION

We should first emphasize that there is a large overlap
between the present paper and the work in Refs. [1– 4].
What is not so clear from the earlier work is whether
factorization in any standard sense continues to hold in
the process (1.1). For example, in [1], we read ‘‘We have
assumed factorization to hold in this treatment of TMD
effects although it is, at the present, certainly not clear
whether such a factorization holds for hadron-hadron scat-
tering processes with explicitly TMD correlators.’’

Our primary result is to show by a counterexample that
hard-scattering kT factorization with universal parton den-
sities fails for the production of high pT hadrons in hadron-
hadron collisions, when a pair of measured hadrons is close
to back-to-back azimuthally. The overall issue is that in a
gauge theory arbitrary exchanges of gauge fields between
different collinear groups (‘‘jets’’) can occur without any
power suppression. To obtain factorization it is necessary
to show that the sum over these exchanges can be absorbed
into the definitions of the parton densities and fragmenta-
tion functions, assisted by certain cancellations. A full
proof will be quite general, applying to a general gauge
theory and to many reactions. So one particular counter-
example is sufficient to show that such a proof does not
exist; we can then choose the counterexample for maxi-
mum clarity and simplicity.

Even for those cases where factorization does hold, the
need to make suitable definitions of the parton densities,
etc., so as to absorb the effects of the gluon exchanges
indicates that the parton densities, etc., can always be
regarded as effective densities [16]. The primary practical
issue is whether they are universal, i.e., the same for all
reactions. In a certain sense, the well-known scale depen-
dence of the densities is a kind of nonuniversality: different
parton densities are needed when the scale of the hard
scattering is given a large increment. But there is an
evolution equation for the scale dependence, and this ap-
plies to an individual parton density. No details or specifi-
cation of the hard scattering is needed to treat the evolution
equation, either to derive it or to apply it. We should
therefore refer in this case to ‘‘modified universality,’’ not
to nonuniversality. Similarly the reversal of the sign of the
Sivers function between SIDIS and DY processes is a case
of modified universality.

At the upper end of the exchanged gluon in our counter-
example, the interactions can be treated in the eikonal
approximation. This is very similar to other discussions
of partons passing through the gluon field of another
hadron. A selection of relevant papers is [15,17–19].
Much of that work concerns the small x region, diffractive

scattering, etc., whereas our counterexample applies in the
fully conventional region where normal parton-model con-
cepts are generally considered as fully applicable, i.e.,
parton fractional momenta are moderate and the scale of
the hard scattering is comparable to the center-of-mass
energy rather than being much less.

Of course, interesting simplifications do occur, so that
useful quantitative estimates can surely be obtained for the
nonfactorizing effects. However the methods are rather
different than those for conventional factorization.
References [15,17–19] indicate that the effects of the
eikonalized interactions are substantial, so that the numeri-
cal effects of nonfactorization should be significant; in the
present paper we did not estimate the numerical size of the
nonfactorization.

The gluon exchanges in our counterexample are clearly
tied to the target hadron at their lower end. But the coupling
at the upper end concerns some parton other than the one
coming out of the lower hadron. The noncanceling terms
are sufficiently tied to the color flow at the hard interaction
that they are not universal in any normal sense. This is the
clearest indication of nonuniversality.

The reader should not be misled by specific features of
our counterexample into supposing that the failure of
factorization is correspondingly restricted. These features
include: the use of an SSA, the particular features of the
model, and the particular order of perturbation theory. The
use of the SSA is simply a way of getting the maximal
conceptual sensitivity to problems in constructing a proof
of factorization. For an unpolarized cross section, we
would need an extra gluon to be exchanged in order for
the nonfactorization issues to arise, from graphs such as
those in Fig. 8. Evidently, to demonstrate nonfactorization
explicitly in this case, the number of graphs would be
larger than in our example, and the explicit calculations
would be much more lengthy. Standard power-counting
arguments show that the contribution of this and related
graphs is of leading power. It is very important to deter-

FIG. 8 (color online). The exchange of two extra gluons, as in
this graph, will tend to give nonfactorization in unpolarized cross
sections.
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mine whether or not the sum of the potentially nonfacto-
rizing contributions actually does or does not cancel in the
unpolarized cross section.

Similarly, the choice of quantum numbers of the parton
fields, of the Abelian gauge group, and of the quantum
numbers for the detected particles was simply to provide
maximum transparency and simplicity to the counter-
example.

The fact that nonfactorization can only occur with at
least two extra gluons in an unpolarized cross section
might suggest that the nonfactorization is at high order in
the strong coupling and therefore substantially suppressed.
However the region of interest is at low virtuality for the
gluons, so that the appropriate coupling is for a low mo-
mentum scale, where QCD is a strongly coupled theory.

Even so, the number of extra gluons needed implies that
the effects of nonfactorization will only appear in quite
high order in conventional perturbative QCD calculations.
Normally one performs calculations with on-shell massless
quarks and gluons, and extracts collinear divergences that
are grouped with parton densities and fragmentation func-
tions; any remaining divergences cancel between graphs.
Nonfactorization in the hadronic cross section corresponds
to uncanceled divergences in quark-gluon calculations.
The lowest order in which the mechanisms we have dis-
cussed could possible give an uncanceled divergence in
unpolarized partonic cross sections is next-to-next-to-next-
to-leading-order (NNNLO), as in Fig. 9. The region for the
uncanceled divergence is where the lower gluon is col-
linear to the lower incoming quark, and two of the ex-
changed gluons are soft. This graph is at least one order
beyond all standard perturbative QCD calculations.

Because our calculations directly concern cross sections
that use transverse-momentum-dependent parton densities,
a certain amount of care is needed in interpreting the
results. The natural direction for the Wilson lines is light-
like, as from Eq. (3.8). However lightlike Wilson lines give
divergences in transverse-momentum-dependent densities

[7]. These are due to rapidity divergences [20] in integrals
over gluon momentum; they cancel [7] in conventional
parton densities only because of an integral over all trans-
verse momentum in integrated parton densities. The solu-
tion adopted by Collins, Soper, and Sterman [7] (CSS) was
to define parton densities without Wilson lines but in a
nonlightlike axial gauge. The gauge-fixing vector introdu-
ces a cutoff on gluon rapidity, and then an evolution
equation with respect to the cutoff was derived. The non-
perturbative functions involved in this CSS evolution equa-
tion have been measured (e.g., [21]) in fits to DY cross
sections, and would be an essential ingredient in testing
nonfactorization.

However, there are some unsatisfactory features of the
use of axial gauges, which are made particularly evident in
polarized cross sections. This includes complications con-
cerning gauge links at infinity [22], when a Wilson line
formalism is used. A much better definition is to use a
nonlightlike Wilson line. This again obeys an equation of
the CSS form. It is also possible to use a subtractive
formalism [20,23] with lightlike Wilson lines but with
generalized renormalization factors involving vacuum ex-
pectation values of Wilson lines, which also implement a
rapidity cutoff, and lead to a CSS equation.

To test the predicted nonfactorization, we simply need
predictions of high-pT hadrons in hadron-hadron colli-
sions, made on the basis of fits to parton densities in DIS
and DY and to fragmentation functions in e�e� and SIDIS
[24]. Probing the SSA would be particularly interesting,
and such measurements are underway at Relativistic
Heavy Ion Collider (RHIC) [25,26]. The same physics is
probed in the transverse shape of jets, and would be worth
investigating.

Our counterexample applies in a kinematic region where
the normal intuitive ideas of the parton model appear quite
appropriate, even with a generalization to kT factorization.
Therefore it forces us to question under what conditions
factorization is actually valid and to what extent it has
actually been demonstrated. It cannot be assumed that
naive extensions of apparently established results are ap-
plicable beyond the cases to which the actual proofs ex-
plicitly apply.

For hadron-hadron collisions, factorization has been
proved [5,6] for the Drell-Yan process integrated over
transverse momentum or at large transverse momentum
(of order Q). These proofs apply in the presence of gluon
exchanges of the kind that we discuss in the present paper.
But these papers do not go beyond this, to the production
of hadrons. Because factorization is important to all
aspects of hadron-collider phenomenology, it is critical
to solve this problem for the hadroproduction of high-pT
hadrons. Given our counterexample to kT factorization, a
proof of factorization can only succeed in a situation
where conventional collinear factorization is appropriate.
For dihadron production this is when the hadron pair has
itself large transverse momentum or when the pair’s out-of-

FIG. 9. In a conventional perturbative QCD calculation for an
unpolarized partonic cross section, nonfactorization by the
mechanisms discussed in this paper would first appear in graphs
of this order.
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plane transverse momentum is integrated over a wide
range.

In fact, Nayak, Qiu, and Sterman [27] have recently
given strong arguments that collinear factorization does
indeed hold in such situations. The graphs examined are
similar to ours. They apply Ward identities to prove an
eikonalization generalizing our specific calculations. Then
they observe that a unitarity cancellation occurs of a kind
endemic in factorization proofs [6,28]. This concerns
graphs that are related by different placements of the
final-state cut. In our model, one example is given by
Figs. 2(a) and 2(b), and another is Fig. 7(a) and its con-
jugate. Such cancellations fail in our examples, because the
final states of the related graphs have different transverse
momentum, and the cross section is not sufficiently inclu-
sive in transverse momentum.

Mechanisms that cause kT factorization to fail in back-
to-back hadron production also tend to cause resummation
methods to fail. They will also tend to break factorization
or cause large perturbative corrections when detailed dis-
tributions of final-state hadrons are examined. Since many
such cases are implicit in the analysis of complicated
multijet cross sections, and of jet shapes and the like,
encountered in searches for new physics, further under-
standing is essential as are quantitative estimates of the

effects. They can have a particularly important effect in the
extrapolation to the LHC of quantitatively measured dis-
tributions at the Tevatron, for example, as embodied in
Monte Carlo event generators. The methods of [15,17,18]
will be important. Probably some of these effects have
already been modeled in some approximation and in at
least some Monte Carlo event generators, for example, by
the soft color interaction model [29].

Troublesome though it may be for phenomenology,
breaking of factorization should be viewed not as some
kind of failure, but as an opportunity. Examination of the
distribution of high-transverse-momentum hadrons in
hadron-hadron collisions will lead to interesting nontrivial
phenomena.
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