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We investigate the unpolarized virtual photon structure functions F�2 �x;Q
2; P2� and F�L�x;Q

2; P2� in
perturbative QCD for the kinematical region �2 � P2 � Q2, where �Q2 (� P2) is the mass squared of
the probe (target) photon and � is the QCD scale parameter. Using the framework of the operator product
expansion supplemented by the renormalization group method, we derive the definite predictions for the
moments of F�2 �x;Q

2; P2� up to the next-to-next-to-leading order (NNLO) (the order ��s) and for the
moments of F�L�x;Q

2; P2� up to the next-to-leading order (NLO) (the order ��s). The NNLO corrections
to the sum rule of F�2 �x;Q

2; P2� are negative and found to be 7%–10% of the sum of the LO and NLO
contributions, when P2 � 1 GeV2 and Q2 � 30� 100 GeV2 or P2 � 3 GeV2 and Q2 � 100 GeV2, and
the number of active quark flavors nf is three or four. The NLO corrections to F�L are also negative. The
moments are inverted numerically to obtain the predictions for F�2 �x;Q

2; P2� and F�L�x;Q
2; P2� as

functions of x.
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I. INTRODUCTION

The experiments at the CERN Large Hadron Collider
(LHC) will begin shortly and it is much anticipated that
signals for the new physics beyond the standard model
(SM) will be discovered [1]. Once these signals are ob-
served, they will be examined more closely in a proposed
e�e� collider machine called the International Linear
Collider (ILC) [2]. In analyzing these signals for the new
physics, the knowledge of the SM, especially of QCD, will
be more important than ever before. It is well known that,
in e�e� collision experiments, the cross section for the
two-photon processes e�e� ! e�e� � hadrons shown in
Fig. 1 dominates at high energies over other processes such
as the annihilation process e�e� ! �� ! hadrons. Here
we consider the two-photon processes in the double-tag
events, where both the outgoing e� and e� are detected. In
particular, we investigate the case in which one of the
virtual photons is very far off shell (large Q2 	 �q2),
while the other is close to the mass shell (small P2 	
�p2). This process can be viewed as a deep-inelastic
electron-photon scattering where the target is a photon
rather than a nucleon [3]. In the deep-inelastic scattering
off a photon target, we can study the photon structure
functions, which are the analogs of the nucleon structure
functions. The photon structure functions are defined in the
lowest order of the QED coupling constant � � e2=4�
and, in this paper, they are of order �.

The unpolarized (spin-averaged) photon structure func-
tions F�2 �x;Q

2� and F�L�x;Q
2� of the real photon (P2 � 0)

were first studied in the parton model (PM) [4] and then
investigated in perturbative QCD (pQCD). A pioneering
work was done by Witten [5] in which he derived the
leading order (LO) QCD contributions to F�2 and F�L. A
few years later the next-to-leading order (NLO) corrections
to F�2 were calculated [6]. These results were obtained in
the framework based on the operator product expansion
(OPE) [7] supplemented by the renormalization group
(RG) method. The same results were rederived by the
QCD improved PM powered by the parton evolution equa-
tions [8,9]. Recently, the lowest six even-integer Mellin
moments of the photon-parton splitting functions were
calculated to the next-to-next-to-leading order (NNLO)
and the parton distributions of the real photon and the
structure function F�2 were analyzed [10]. The same au-
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FIG. 1. Deep-inelastic scattering on a virtual photon in the
e�e� collider experiments.
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thors later gave the compact and accurate parametrization
of the photon-parton splitting functions up to the NNLO in
Ref. [11].

When polarized beams are used in e�e� collision ex-
periments, we can get information on the spin structure of
the photon. The QCD analysis of the polarized structure
function g�1 �x;Q

2� for the real photon target was performed
in the LO [12] and in the NLO [13,14]. For more informa-
tion on the theoretical and experimental investigation of
both unpolarized and polarized photon structure, see
Ref. [15].

A unique and interesting feature of the photon structure
functions is that, in contrast with the nucleon case, the
target mass squared �P2 is not fixed but can take various
values and that the structure functions show different be-
haviors depending on the values of P2. The photon has two
characters: The photon couples directly to quarks (point-
like nature) and, also, it behaves as vector bosons (hadronic
nature) [16]. Thus the structure function F�2 �x;Q

2� of the
real photon (P2 � 0) may be decomposed as

 F�2 �x;Q
2� � F�2 �x;Q

2�jpointlike � F
�
2 �x;Q

2�jhadronic: (1.1)

The first term, a pointlike piece, can be calculated, in
principle, in a perturbative method. On the other hand,
the second term, a hadronic piece, can only be computed
by some nonperturbative methods like lattice QCD, or
estimated, for example, by the vector meson dominance
model [16].

The moments of F�2 �x;Q
2�jpointlike and F�2 �x;Q

2�jhadronic

for even n may be written, respectively, as

 

Z 1

0
dxxn�2F�2 �x;Q

2�jpointlike � �
�

1

�s�Q
2�
an � bn

�O��s�Q
2��

�
; (1.2)

 

Z 1

0
dxxn�2F�2 �x;Q

2�jhadronic � �hn��s�Q
2��; (1.3)

where x is the Bjorken variable and �s�Q2� � g2�Q2�=4�
is the QCD running coupling constant. Since 1=�s�Q2�
behaves as ln�Q2=�2� at large Q2, where � is the QCD
scale parameter, the first term an=�s�Q

2� dominates over
the bn term and also over the hadronic term hn��s�Q

2��.
The definite prediction for the LO contributions an was
given in Ref. [5]. Meanwhile, the NLO corrections bn were
calculated only for n > 2 in Ref. [6]. For n > 2, the had-
ronic moments hn��s�Q2�� vanish in the large-Q2 limit and
the bn terms give finite contributions. However, at n � 2,
the hadronic energy-momentum tensor operator comes
into play. Because of the conservation of this operator, bn
shows a singularity at n � 2 and hn�2��s�Q

2�� does not
vanish at large Q2. Actually, hn��s�Q2�� also develops a
singularity at n � 2 which cancels out the one of bn, and
hn��s�Q2�� and bn in combination give a finite but pertur-
batively incalculable contribution at n � 2 [17]. The fact

that definite information on the NLO second moment is
missing prevents us from fully predicting the shape and
magnitude of the structure function of F�2 �x;Q

2� up to the
order O���.

It was then pointed out in Ref. [17] that the situation
changes significantly when we analyze the structure func-
tion of a virtual photon with P2 much larger than the QCD
parameter �2. More specifically, we consider the following
kinematical region,

 �2 � P2 � Q2: (1.4)

In this region, the hadronic component of the photon can
also be dealt with perturbatively and thus a definite pre-
diction of the whole structure function, its shape and
magnitude, may become possible. In fact, the virtual pho-
ton structure function F�2 �x;Q

2; P2� in the kinematical
region (1.4) was calculated in the LO (the order �=�s)
[18] and in the NLO (the order �) [17,19], and the longi-
tudinal structure function F�L�x;Q

2; P2� in the LO (the
order �) [17] without any unknown parameters. It is no-
table that the pathology of singularity, which appeared at
n � 2 in the term bn of Eq. (1.2) for the real photon target,
disappeared from the moments of F�2 �x;Q

2; P2�. The par-
ton contents of the virtual photon for the case (1.4) were
studied in Refs. [20–22].

In the same kinematical region (1.4), the polarized vir-
tual structure function g�1 �x;Q

2; P2� was investigated up to
the NLO in QCD in Ref. [23] and in the second paper of
[14]. Moreover, the polarized parton distributions inside
the virtual photon were analyzed in various factorization
schemes [24]. Quite recently the first moment of
g�1 �x;Q

2; P2� was calculated up to the NNLO [25].
In this paper we investigate the unpolarized virtual

photon structure functions F�2 �x;Q
2;P2� and F�L�x;Q

2;P2�
in the kinematical region (1.4) in QCD. Here we neglect all
the power corrections of the form �P2=Q2�k (k � 1; 2; . . . )
which may arise from target mass and higher-twist effects.
We present definite predictions for F�2 �x;Q

2; P2� up to the
NNLO (the order ��s) and for F�L�x;Q

2; P2� up to the
NLO (the order ��s). The recent calculations of the three-
loop anomalous dimensions for the quark and gluon op-
erators [26,27] and of the three-loop photon-quark and
photon-gluon splitting functions [11] have paved the way
for this investigation. Using the framework of the OPE
supplemented by the RG method, we give, in the next
section, an expression for the moments of F�2 �x;Q

2; P2�
up to the NNLO corrections. In Sec. III we enumerate
all the necessary QCD parameters to evaluate the NNLO
corrections. In Sec. IV the second moment of F�2 �x;Q

2; P2�
will be evaluated up to the NNLO. The numerical analysis
of F�2 �x;Q

2; P2� as a function of x will be given in Sec. V.
In Sec. VI the longitudinal virtual photon structure func-
tion F�L�x;Q

2; P2� will be analyzed up to the NLO. The
final section is devoted to the conclusions.
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II. THEORETICAL FRAMEWORK BASED ON THE
OPE AND THE NNLO CORRECTIONS TO

F�2 �x;Q
2; P2�

In this article we analyze the virtual photon structure
functions F�2 �x;Q

2; P2� and F�L�x;Q
2; P2� using the theo-

retical framework based on the OPE and RG method.
Unless otherwise stated, we will follow the notation of
Ref. [6]. Let us consider the forward virtual photon scat-
tering amplitude for ��q� � ��p� ! ��q� � ��p� illus-
trated in Fig. 2,
 

T�����p; q� � i
Z
d4xd4yd4zeiq
xeip
�y�z�

� h0jT�J��x�J��0�J��y�J��z��j0i; (2.1)

where J� is the electromagnetic current. Its absorptive part
is related to the structure tensor W�����p; q� for the target
photon with mass squared p2 � �P2 probed by the photon
with q2 � �Q2:

 W�����p; q� �
1

�
ImT�����p; q�: (2.2)

Taking a spin average for the target photon, we get

 W�
���p; q� �

1

2

X
�

	��
����p�W�����p; q�	�����p�

� �
1

2
g��W�����p; q�

�
1

2

Z
d4xeiq
xh��p�jJ��x�J��0�j��p�ispin av:

(2.3)

Now W�
���p; q� is expressed in terms of two independent

structure functions F�L�x;Q
2; P2� and F�2 �x;Q

2; P2�:
 

W�
���p; q� �

�
g�� �

q�q�
q2

�
1

x
F�L�x;Q

2; P2�

�

�
�g�� �

q�p� � p�q�

p 
 q
�

p�p�
�p 
 q�2

q2

�

�
1

x
F�2 �x;Q

2; P2�; (2.4)

where x � Q2=2p 
 q.

Applying OPE for the product of two electromagnetic
currents at short distance, we get
 

i
Z
d4xeiq
xT�J��x�J��0��

�

�
g�� �

q�q�
q2

� X
n�0

n�even

�
2

Q2

�
n
q�1

 
 
 q�n

X
i

CiL;nO
�1


�n
i

� ��g��g�
q2 � g��q�q
 � g�
q�q� � g��q�q



�
X
n�2

n�even

�
2

Q2

�
n
q�1

 
 
 q�n�2

X
i

Ci2;nO
�
�1


�n�2
i � 
 
 
 ;

(2.5)

where CiL;n and Ci2;n are the coefficient functions which
contribute to the structure functions F�L and F�2 , respec-
tively, and O�1


�n

i and O�
�1


�n�2
i are spin-n twist-2

operators (hereafter we often refer to O�1


�n
i as On

i ).
The sum on i runs over the possible twist-2 operators,
and 
 
 
 represents other terms with irrelevant coefficient
functions and operators. In fact, the relevant On

i are singlet
quark ( ), gluon (G), nonsinglet quark (NS), and photon
(�) operators as follows:
 

O�1


�n
 � in�1 � �f�1D�2 


D�ng1 � trace terms; (2.6a)

O�1


�n
G � 1

2i
n�2Gf�1

� D�2 


D�n�1G��ng � trace terms;

(2.6b)

O�1


�n
NS � in�1 � �f�1D�2 


D�ng

��Q2
ch�he

2i1� � trace terms; (2.6c)

O�1


�n
� � 1

2i
n�2Ff�1

� @�2 


@�n�1F��ng� trace terms;

(2.6d)

where fg means complete symmetrization over the Lorentz
indices �1 
 
 
�n andD� denotes the covariant derivative.
In quark operators On

 and On
NS given in Eqs. (2.6a) and

(2.6c), 1 is an nf � nf unit matrix, Q2
ch is the square of the

nf � nf quark-charge matrix, with nf being the number of
active quark (i.e., the massless quark) flavors, and he2i �

�
Pnf
i e

2
i �=nf is the average charge squared where ei is the

electromagnetic charge of the active quark with flavor i in
the unit of proton charge. It is noted that we have a relation
Tr�Q2

ch � he
2i1� � 0. The essential feature in the analysis

of the photon structure functions, in contrast to the case of
the nucleon counterparts, is the appearance of photon
operators On

� in addition to the familiar hadronic operators
On
 , On

G, and On
NS [5].

The spin-averaged matrix elements of these operators
sandwiched by the photon state with momentum p are
expressed as
 

h��p�jO�1


�n
i j��p�ispin av � Ain��

2; P2�fp�1 
 
 
p�n

� trace termsg (2.7)

µν

τ ρ

qq

p p

FIG. 2. Forward scattering of a virtual photon with momentum
q and another virtual photon with momentum p. The Lorentz
indices are denoted by �, �, �, �.
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with i �  , G, NS, �, and � is the renormalization point.
Then the moment sum rules for F�2 and F�L are given as
follows [7]:

 Z 1

0
dxxn�2F�2 �x;Q

2;P2� �
X

i� ;G;NS;�

Ci2;n�Q
2=�2; �g��2�;��

�Ain��2;P2�; (2.8a)Z 1

0
dxxn�2F�L�x;Q

2;P2� �
X

i� ;G;NS;�

CiL;n�Q
2=�2; �g��2�;��

�Ain��2;P2�; (2.8b)

with �g��2� being the effective running QCD coupling
constant at �2. Recall that in this article the photon struc-
ture functions are defined to be of order �. Since the
coefficient functions C�2;n and C�L;n are O���, it is sufficient
to evaluate A�n at O�1�. Thus we have

 A�n ��2; P2� � 1: (2.9)

On the other hand, the matrix elements Ain (i �  ;G;NS)
for the hadronic operators start at O���. For�p2 � P2 �
�2, we can calculate Ain (i �  ;G;NS) perturbatively in
each power of g2. When �2 is chosen at P2, they are
expressed as

 Ain��
2; P2�j�2�P2 �

�
4�

~Ain� �g�P
2��; for i �  ;G; NS:

(2.10)

Let us first analyze the structure function F�2 �x;Q
2; P2�.

We will evaluate its moment sum rule up to the NNLO.
The Q2 dependence of the coefficient functions
Ci2;n�Q

2=�2; �g��2�; �� in (2.8a) is governed by the RG
equation. Putting �2 � �p2 � P2, its solution is given by

 

Ci2;n�Q
2=P2; �g�P2�; �� �

�
T exp

�Z �g�P2�

�g�Q2�
dg
�n�g; ��
��g�

��
ij

� Cj2;n�1; �g�Q2�; ��; (2.11)

with i; j �  ;G;NS, and �. Here ��g� is the beta function
and �n�g2; �� is the anomalous dimension matrix. To the
lowest order in �, this matrix has the following form:

 �n�g; �� �
�̂n�g� 0
Kn�g; �� 0

� �
; (2.12)

where �̂n�g
2� is the usual 3� 3 anomalous dimension

matrix in the hadronic sector,

 �̂ n�g� �
�n  �g� �nG �g� 0
�n G�g� �nGG�g� 0

0 0 �nNS�g�

0
B@

1
CA; (2.13)

and Kn�g; �� is the three-component row vector

 K n�g; �� � �Kn
 �g; ��; K

n
G�g; ��; K

n
NS�g; ���; (2.14)

which represents the mixing between the photon operator
and the remaining three hadronic operators. Then the
evolution factor in (2.11) is expressed as [6]

 T exp
�Z �g�P2�

�g�Q2�
dg
�n�g; ��
��g�

�
�

Mn 0
Xn 1

� �
; (2.15)

where

 Mn�Q
2=P2; �g�P2�� � T exp

�Z �g�P2�

�g�Q2�
dg
�̂n�g�
��g�

�
; (2.16)

 

X n�Q
2=P2; �g�P2�; ��

�
Z �g�P2�

�g�Q2�
dg
Kn�g; ��
��g�

T exp
�Z g

�g�Q2�
dg0

�̂n�g0�
��g0�

�
: (2.17)

Thus using (2.9), (2.10), (2.11), (2.15), (2.16), and (2.17),
we get

 Z 1

0
dxxn�2F�2 �x;Q

2; P2�

�
�

4�
~An� �g�P

2�� 
Mn�Q
2=P2; �g�P2�� 
 C2;n�1; �g�Q2��

�Xn�Q
2=P2; �g�P2�; �� 
 C2;n�1; �g�Q2��

� C�2;n�1; �g�Q2�; ��; (2.18)

with

 

~A n� �g� � � ~A
 
n � �g�; ~AGn � �g�; ~ANSn � �g��; (2.19)

and

 C 2;n�1; �g� �
C 2;n�1; �g�
CG2;n�1; �g�
CNS2;n�1; �g�

0
B@

1
CA: (2.20)

In order to evaluateMn�Q
2=P2; �g�P2�� in (2.16) up to the

NNLO, we first expand �̂n�g� in powers of g2 up to the
three-loop level as

 �̂ n�g� � �̂�0�n �g� � �̂
�1�
n �g� � �̂

�2�
n �g� � 
 
 


�
g2

16�2 �̂
�0�
n �

g4

�16�2�2
�̂�1�n �

g6

�16�2�3
�̂�2�n � 
 
 
 :

(2.21)

Then, putting �g1 � �g�P2� and �g2 � �g�Q2�, we find that
Mn�Q2=P2; �g�P2�� is expanded as
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Mn�Q2=P2; �g�P2���T exp
�Z �g1

�g2

dg
�̂n�g�
��g�

�

� exp
�Z �g1

�g2

dg
�̂�0�n �g�
��g�

�
�
Z �g1

�g2

dgexp
�Z �g1

g
dg0
�̂�0�n �g0�
��g0�

�
�̂�1�n �g�
��g�

exp
�Z g

�g2

dg00
�̂�0�n �g00�
��g00�

�

�
Z �g1

�g2

dgexp
�Z �g1

g
dg0
�̂�0�n �g0�
��g0�

�
�̂�2�n �g�
��g�

exp
�Z g

�g2

dg00
�̂�0�n �g00�
��g00�

�
�
Z �g1

�g2

dga exp
�Z �g1

ga
dg0
�̂�0�n �g0�
��g0�

�
�̂�1�n �ga�
��ga�

�
Z ga

�g2

dgbexp
�Z ga

gb
dg00

�̂�0�n �g00�
��g00�

�
�̂�1�n �gb�
��gb�

exp
�Z gb

�g2

dg000
�̂�0�n �g000�
��g000�

�
�


 : (2.22)

To evaluate the integrals, we make full use of the projection
operators obtained from the one-loop anomalous dimen-
sion matrix �̂�0�n in (2.21) [6]:

 �̂ �0�n �
X

i��;�;NS

�ni P
n
i ; (2.23)

where �ni �i � �;�; NS� and Pni are eigenvalues of �̂�0�n
and the corresponding projection operators, respectively.
The explicit forms of �ni and Pni are given in Appendix A.
Expanding ��g� in powers of g2 up to the three-loop level
as

 ��g� � �
g3

16�2 �0 �
g5

�16�2�2
�1 �

g7

�16�2�3
�2 � 
 
 
 ;

(2.24)

we perform integration in (2.22). The final form of
Mn�Q2=P2; �g�P2�� up to the NNLO is given in (A7) in
Appendix A.

Similarly, expanding Kn�g; �� in powers of g2 up to the
three-loop level as
 

Kn�g; �� � �
e2

16�2K
�0�
n �

e2g2

�16�2�2
K�1�n �

e2g4

�16�2�3
K�2�n

� 
 
 
 ; (2.25)

we can evaluate Xn�Q2=P2; �g�P2�; �� in (2.17) up to the
NNLO. The result is given in (A8) in Appendix A.

Finally, expansions are made for the photon matrix
elements of hadronic operators ~An� �g�P

2�� in (2.19) as
well as the coefficient functions C2;n�1; �g�Q2�� in (2.20)
and C�2;n�1; �g�Q2�; �� in (2.18) up to the two-loop level as
follows:

 

~A n� �g�P2�� � ~A�1�n �
�g2�P2�

16�2
~A�2�n � 
 
 
 ; (2.26)

 

C2;n�1; �g�Q2�� � C�0�2;n �
�g2�Q2�

16�2 C
�1�
2;n �

�g4�Q2�

�16�2�2
C�2�2;n

� 
 
 
 ; (2.27)

 C�2;n�1; �g�Q2�; �� �
e2

16�2 C
��1�
2;n �

e2 �g2�Q2�

�16�2�2
C��2�2;n � 
 
 
 :

(2.28)

Then putting (2.26), (2.27), (2.28), (A7), and (A8) into
(2.18), we obtain the expression for the moment sum rule
of F�2 �x;Q

2; P2� up to the NNLO (��s) corrections as
follows:

 Z 1

0
dxxn�2F�2 �x;Q

2;P2��
�

4�
1

2�0

�
4�

�s�Q2�

X
i

Ln
i

�
1�

�
�s�Q

2�

�s�P2�

�
dni�1

�
�
X
i

An
i

�
1�

�
�s�Q

2�

�s�P2�

�
dni
�

�
X
i

Bn
i

�
1�

�
�s�Q

2�

�s�P2�

�
dni�1

�
�Cn�

�s�Q
2�

4�

�X
i

Dn
i

�
1�

�
�s�Q

2�

�s�P2�

�
dni�1

�

�
X
i

Eni

�
1�

�
�s�Q

2�

�s�P
2�

�
dni
�
�
X
i

F n
i

�
1�

�
�s�Q

2�

�s�P
2�

�
dni�1

�
�Gn

�
�O��2

s�

�
; with i��;�;NS;

(2.29)

where dni �
�ni

2�0
. The coefficients Ln

i , An
i , Bn

i , Cn, Dn
i , Eni , F n

i , and Gn are given by

 L n
i � K

�0�
n PniC

�0�
2;n

1

dni � 1
; (2.30)

 A n
i � �K

�0�
n

X
j

Pnj �̂
�1�
n Pni

�nj � �
n
i � 2�0

C�0�2;n
1

dni
� K�0�n PniC

�0�
2;n
�1

�0

1� dni
dni

�K�1�n PniC
�0�
2;n

1

dni
� 2�0

~A�1�n PniC
�0�
2;n; (2.31)
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 B n
i � K

�0�
n

X
j

Pni �̂
�1�
n Pnj

�ni � �
n
j � 2�0

C�0�2;n

1

1� dni
� K�0�n PniC

�1�
2;n

1

1� dni
�K�0�n PniC

�0�
2;n

�1

�0

dni
1� dni

; (2.32)

 C n � 2�0�C
��1�
2;n �

~A�1�n 
 C
�0�
2;n�; (2.33)

 

Dn
i � �K

�0�
n PniC

�0�
2;n

�
�2

1

�2
0

�
�2

�0

1

1� dni

��
1�

dni
2

�
� K�0�n

X
j

Pnj �̂
�1�
n Pni

�nj � �
n
i � 2�0

C�0�2;n
�1

�0

1� dnj
1� dni

� K�0�n
X
j

Pnj �̂
�1�
n Pni

�nj � �
n
i � 4�0

C�0�2;n

�1

�0

�1� dni � d
n
j

1� dni

�
� K�0�n

X
j

Pnj �̂
�2�
n Pni

�nj � �
n
i � 4�0

C�0�2;n

1

1� dni

� K�0�n
X
j;k

Pnk�̂
�1�
n Pnj �̂

�1�
n Pni

��nj � �
n
i � 2�0���

n
k � �

n
i � 4�0�

C�0�2;n
1

1� dni
�K�1�n PniC

�0�
2;n
�1

�0
�K�1�n

X
j

Pnj �̂
�1�
n Pni

�nj � �
n
i � 2�0

C�0�2;n
1

1� dni

� K�2�n PniC
�0�
2;n

1

1� dni
� 2�0

~A�1�n
X
j

Pnj �̂
�1�
n Pni

�nj � �
n
i � 2�0

C�0�2;n � 2�0
~A�1�n P

n
iC
�0�
2;n

�1

�0
dni � 2�0

~A�2�n P
n
iC
�0�
2;n; (2.34)

 

Eni � �K
�0�
n PniC

�1�
2;n
�1

�0

1� dni
dni

�K�0�n
X
j

Pnj �̂
�1�
n Pni

�nj � �
n
i � 2�0

C�1�2;n
1

dni
� K�1�n Pni C

�1�
2;n

1

dni
�K�0�n PniC

�0�
2;n
�2

1

�2
0

�1� dni �

� K�0�n
X
j

Pni �̂
�1�
n Pnj

�ni � �
n
j � 2�0

C�0�2;n

�1

�0

1� dni
dni

� K�0�n
X
j

Pnj �̂
�1�
n Pni

�nj � �
n
i � 2�0

C�0�2;n

�1

�0

� K�0�n
X
j;k

Pnj �̂
�1�
n Pni �̂

�1�
n Pnk

��ni � �
n
k � 2�0���

n
j � �

n
i � 2�0�

C�0�2;n
1

dni
� K�1�n PniC

�0�
2;n
�1

�0
� K�1�n

X
j

Pni �̂
�1�
n Pnj

�ni � �
n
j � 2�0

C�0�2;n
1

dni

� 2�0
~A�1�n

X
j

Pni �̂
�1�
n Pnj

�ni � �
n
j � 2�0

C�0�2;n � 2�0
~A�1�n P

n
iC
�0�
2;n

�1

�0
dni � 2�0

~A�1�n P
n
iC
�1�
2;n; (2.35)

 

F n
i � K

�0�
n PniC

�2�
2;n

1

1� dni
�K�0�n PniC

�1�
2;n
�1

�0

dni
1� dni

�K�0�n
X
j

Pni �̂
�1�
n Pnj

�ni � �
n
j � 2�0

C�1�2;n
1

1� dni

� K�0�n PniC
�0�
2;n

�
�2

1

�2
0

�
�2

�0

1

1� dni

�
dni
2
� K�0�n

X
j

Pni �̂
�1�
n Pnj

�ni � �
n
j � 2�0

C�0�2;n

�1

�0

dnj
1� dni

� K�0�n
X
j

Pni �̂
�1�
n Pnj

�ni � �
n
j � 4�0

C�0�2;n
�1

�0

1� dni � d
n
j

1� dni
�K�0�n

X
j

Pni �̂
�2�
n Pnj

�ni � �
n
j � 4�0

C�0�2;n
1

1� dni

� K�0�n
X
j;k

Pni �̂
�1�
n Pnj �̂

�1�
n Pnk

��nj � �
n
k � 2�0�

C�0�2;n

�
1

�ni � �
n
j � 2�0

�
1

�ni � �
n
k � 4�0

�
1

1� dni
; (2.36)

 G n � 2�0�C
��2�
2;n �

~A�1�n 
 C
�1�
2;n �

~A�2�n 
 C
�0�
2;n�; (2.37)

with i; j; k � �;�; NS. The LO term Ln
i was obtained by

Witten [5]. The NLO (�) corrections An
i , Bn

i , and Cn

without terms with ~A�1�n were first derived by Bardeen
and Buras [6] for the case of the real photon target (i.e.
P2 � 0). Later, authors in Ref. [17] analyzed the NLO (�)
corrections for the case of the virtual photon target (P2 �
�2) and the terms with ~A�1�n were added to An

i and Cn. The

coefficients Dn
i , Eni , F n

i , and Gn are the NNLO (��s)
corrections and they are new.

For n � 2, one of the eigenvalues, �n�2
� , in Eq. (2.23)

vanishes and we have dn�2
� � 0. This is due to the fact that

the corresponding operator is the hadronic energy-
momentum tensor and is, therefore, conserved with a null
anomalous dimension [6]. The coefficients An�2

� and En�2
�

have terms which are proportional to 1
dn�2
�

and thus diverge.

However, we see from (2.29) that these coefficients are

TAKAHIRO UEDA, KEN SASAKI, AND TSUNEO UEMATSU PHYSICAL REVIEW D 75, 114009 (2007)

114009-6



multiplied by a factor �1� ��s�Q2�=�s�P2��d
n�2
� 
 which

vanishes. In the end, the coefficients An�2
� and En�2

�

multiplied by this factor remain finite [17].

III. PARAMETERS IN THE MS SCHEME

All the quantities necessary to evaluate the NNLO (��s)
corrections to the moments of F�2 �x;Q

2; P2� have been
calculated and most of them are presented in the literature,
except for the two-loop photon matrix elements of had-
ronic operators ~A�2� n , ~A�2�Gn , and ~A�2�NSn . Also for the three-
loop anomalous dimensions K�2�;n , K�2�;nG , and K�2�;nNS , we
only have approximate expressions in the form of photon-
quark and photon-gluon splitting functions. In the follow-
ing we will enumerate all these necessary parameters. The
expressions are the ones calculated in the modified mini-
mal subtraction (MS) scheme [28].

A. Quark-charge factors and � function parameters

The following quark-charge factors are often used be-
low:

 � � he
2i �

Xnf
i�1

e2
i =nf; �NS � 1;

�� � 3nfhe
4i � 3

Xnf
i�1

e4
i :

(3.1)

The � function parameters �0, �1, and �2 [29] are given
by

 �0 �
11

3
CA �

2

3
nf; (3.2)

 �1 �
34

3
C2
A �

10

3
CAnf � 2CFnf; (3.3)

 

�2 �
2857

54
C3
A �

1415

54
C2
Anf �

205

18
CACFnf �

79

54
CAn2

f

� C2
Fnf �

11

9
CFn

2
f; (3.4)

with CA � 3 and CF �
4
3 in QCD.

B. Coefficient functions

As shown in (2.27) and (2.28), we need the hadronic
coefficient functions Ci2;n�1; �g�Q2�� with i �  ;G and NS,
and the photon coefficient function C�2;n�1; �g�Q2�; �� up to
the two-loop level. At tree level, we have

 C �0�2;n � � ; CG�0�2;n � 0;

CNS�0�2;n � �NS; C��0�2;n � 0:
(3.5)

The one-loop coefficient functions were calculated in the
minimal subtraction (MS) scheme in Refs. [28,30]. The
MS results are written as

 C �1�2;n � � �Bn ; CG�1�2;n � � �BnG;

CNS�1�2;n � �NS �BnNS; C��1�2;n � �� �Bn�;
(3.6)

where �Bn � �BnNS and �BnG are obtained, for example, from
the MS-scheme results for Bn � BnNS and BnG given in
Eqs. (4.10) and (4.11) of Ref. [6] by discarding the terms
proportional to ln�4�� �E�. �Bn� is related to �BnG by �Bn� �
�2=nf� �BnG.

The two-loop coefficient functions corresponding to the
hadronic operators were calculated in the MS scheme in
Refs. [31,32]. They were expressed in fractional momen-
tum space as functions x. The results in Mellin space as
functions of n are found, for example, in Ref. [33]:

 C �2�2;n � � fc
�2�;�ns
2;q �n� � c�2�;�ns

2;q �n� � c�2�;ps
2;q �n�g; (3.7)

 CG�2�2;n � � c
�2�
2;g�n�; (3.8)

 CNS�2�2;n � �NSfc
�2�;�ns
2;q �n� � c�2�;�ns

2;q �n�g; (3.9)

where c�2�;�ns
2;q �n�, c�2�;�ns

2;q �n�, c�2�;ps
2;q �n�, and c�2�2;g�n� are given

in Eqs. (197), (198), (201), and (202) in Appendix B of
Ref. [33], respectively, with N being replaced by n. The
two-loop photon coefficient function C��2�2;n is expressed as

 C��2�2;n � ��c
�2�
2;��n�; (3.10)

where c�2�2;��n� is obtained from c�2�2;g�n� in (3.8) by replacing
CA ! 0 and nf

2 ! 1 [10].

C. Anomalous dimensions

The one-loop anomalous dimensions for the hadronic
sector were calculated a long time ago [34,35]. The ex-
pressions of ��0�;n  � ��0�;nNS , ��0�;n G , ��0�;nG , and ��0�;nGG are
given, for example, in Eqs. (4.1), (4.2), (4.3), and (4.4) of
Ref. [6], respectively, with f being replaced by nf. As for

the one-loop anomalous dimension row vector K�0�n �

�K�0�;n ; K�0�;nG ; K�0�;nNS �, we have K�0�;nG � 0, and K�0�;n and

K�0�;nNS are given, respectively, in Eqs. (4.5) and (4.6) of
Ref. [6] with f being replaced by nf again.

The two-loop anomalous dimensions for the hadronic
sector were calculated in Ref. [30] and recalculated using a
different method and a different gauge in Ref. [36]. The
results by the two groups agreed with each other except in
the part of ��1�;nGG proportional to C2

G, but this discrepancy
was solved later [37]. They are given by

 ��1�;nNS � 2��1��ns �n�; (3.11)

 ��1�;n  � 2���1��ns �n� � �
�1�
ps �n��; (3.12)
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 ��1�;n G � 2��1�qg �n�; (3.13)

 ��1�;nG � 2��1�gq �n�; (3.14)

 ��1�;nGG � 2��1�gg �n�; (3.15)

where ��1��ns �n� is given in Eq. (3.5) of Ref. [26], and
��1�ps �n�, �

�1�
qg �n�, �

�1�
gq �n�, and ��1�gg �n� are given, respectively,

in Eqs. (3.6), (3.7), (3.8), and (3.9) of Ref. [27], with N
being replaced by n. The factor of 2 in (3.11), (3.12), (3.13),
(3.14), and (3.15) appears since, in Refs. [26,27], the
anomalous dimension � of the renormalized operator O
is defined as dO=d ln�2 � ��O instead of dO=d ln� �
��O.

The two-loop anomalous dimensions K�1�;n , K�1�;nNS , and

K�1�;nG can be obtained from ��1�;n G and ��1�;nGG by replacing
color factors with relevant charge factors [6]. Moreover we
need an additional procedure for K�1�;nG . They are given by

 K�1�;n � �3nfhe2iCFD G�n�; (3.16)

 K�1�;nNS � �3nf�he
4i � he2i2�CFD G�n�; (3.17)

 K�1�;nG � �3nfhe2iCF�DGG�n� � 8�; (3.18)

where D G�n� and DGG�n� are obtained from ��1�;n G and

��1�;nGG , respectively, by replacing CA ! 0 and CFnf ! 2.
The number 8 in (3.18) is due to the gluon self-energy
contribution to ��1�;nGG , which should be dropped for K�1�;nG
[38,39].

The three-loop anomalous dimensions for the hadronic
sector have been calculated recently in Refs. [26,27]. They
are expressed as

 ��2�;nNS � 2��2��ns �n�; (3.19)

 ��2�;n  � 2���2��ns �n� � �
�2�
ps �n��; (3.20)

 ��2�;n G � 2��2�qg �n�; (3.21)

 ��2�;nG � 2��2�gq �n�; (3.22)

 ��2�;nGG � 2��2�gg �n�; (3.23)

where ��2��ns �n� is given in Eq. (3.7) of Ref. [26], and
��2�ps �n�, �

�2�
qg �n�, �

�2�
gq �n�, and ��2�gg �n� are given, respectively,

in Eqs. (3.10), (3.11), (3.12), and (3.13) of Ref. [27], withN
being replaced by n.

Concerning the three-loop anomalous dimensions K�2�;n ,

K�2�;nNS , and K�2�;nG , the exact expressions have not appeared
in the literature yet. In fact, the lowest six even-integer

Mellin moments, n � 2; . . . ; 12, of these anomalous di-
mensions were calculated and given in Ref. [10]. Quite
recently, the authors of Ref. [10] have presented compact
parametrizations of the three-loop photon-nonsinglet quark
and photon-gluon splitting functions, P�2�ns��x� and P�2�g��x�,
instead of providing the exact analytic results [11]. It is
remarked there that their parametrizations deviate from the
lengthy full expressions by about 0.1% or less. They also
gave in Ref. [11] the analytic expression of the three-loop
photon-pure-singlet quark splitting function P�2�ps��x�. It is
true that we can infer the analytic expressions for some
parts of K�2�;n , K�2�;nNS , and K�2�;nG from the known three-loop

results of ��2�;n G and ��2�;nGG . For instance, the expressions of

K�2�;n and K�2�;nNS which have the color factor C2
F are ob-

tained from ��2�;n G by taking the terms which are propor-

tional to the color factor nfC2
F. Also, the terms of K�2�;nG

which have the color factors nfCF and C2
F are related to the

ones of ��2�;nGG with the color factors n2
fCF and nfC2

F,
respectively. But, at present, we do not have the exact
analytic expressions of K�2�;n , K�2�;nNS , and K�2�;nG as a whole.

Under these circumstances we are reconciled to the use
of approximate expressions for K�2�;n , K�2�;nNS , and K�2�;nG .
They are obtained by taking the Mellin moments of the
parametrizations for P�2�ns��x� and P�2�g��x�, and of the exact
result for P�2�ps��x�, which are presented in Ref. [11]. Then
we have

 K�2�;nNS � K�2�;nNS approx 	 �3nf�he4i � he2i2�2Eapprox
ns� �n�;

(3.24)

 K�2�;n � K�2�;n approx 	 �3nfhe
2i2fEapprox

ns� �n� � Eps��n�g;

(3.25)

 K�2�;nG � K�2�;nG approx 	 �3nfhe2i2Eapprox
G� �n�; (3.26)

where the explicit expressions of Eapprox
ns� �n�, Eps��n�, and

Eapprox
G� �n� are given in Appendix B. Again the appearance

of the factor of 2 in (3.24), (3.25), and (3.26) is due to the
difference in definition of the anomalous dimensions. As
mentioned earlier, the lowest six even-integer Mellin mo-
ments, n � 2; . . . ; 12, ofK�2�;nNS ,K�2�;n , andK�2�;nG were given

in Ref. [10]. When we write K�2�;nNS and K�2�;nG as

 K�2�;nNS 	 �3nf�he4i � he2i2�2Ens��n�; (3.27)

 K�2�;nG 	 �3nfhe
2i2EG��n�; (3.28)

then we get the exact results of Ens��n� andEG��n� for even
n � 2; . . . ; 12. We give in Table I the results of Ens��n�,
Eapprox

ns� �n�, EG��n�, and Eapprox
G� �n� in numerical form for the

lowest six even-integer values of n. We see the deviations
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of Eapprox
ns� �n� from Ens��n� and Eapprox

G� �n� from EG��n� are
both far less than 0.1% for these values of n.

D. Photon matrix elements

The two-loop operator matrix elements have been calcu-
lated up to the finite terms by Matiounine, Smith, and van
Neerven (MSvN) [40]. Using their results and changing
color-group factors, we obtain the photon matrix elements
of hadronic operators up to the two-loop level.

First we clear up a subtle issue which appears in the
calculation of the photon matrix elements of the hadronic
operators. The one-loop gluon coefficient function �BnG in
(3.6) was calculated by two groups, BBDM and FRS (we
have taken initials of the authors of Refs. [28,30], respec-
tively). Both groups evaluated one-loop diagrams contrib-
uting to the forward virtual photon-gluon scattering as well
as those contributing to the matrix element of the quark
operator between gluon states, and they took a difference
between the two to obtain �BnG. But actually BBDM calcu-
lated the gluon spin-averaged contributions, i.e., multiply-
ing g�� and contracting pairs of Lorentz indices � and �,
whereas FRS picked up the parts which are proportional to
g��. Thus the BBDM results on the contributions to the
forward virtual photon-gluon scattering and the gluon ma-
trix element of the quark operator are different from those
by FRS, but the difference between the two contributions,
i.e., �BnG, is the same, as it should be.

We have defined the photon structure functions F�2 and
F�L in (2.3) and (2.4), taking a spin average of the target
photon for the structure tensor W�����p; q�. We, therefore,
adopt the BBDM result rather than that of FRS and convert
it to the photon case. Then, for the photon matrix elements
of the hadronic operators at one-loop level, we get

 

~A �1� n � 3nfhe2iH�1�q �n�; ~A�1�Gn � 0;

~A�1�NSn � 3nf�he4i � he2i2�H�1�q �n�;
(3.29)

where
 

H�1�q �n� � 4
�
�

1

n
�

1

n2 �
4

�n� 1�2
�

4

�n� 2�2

�

�
1

n
�

2

n� 1
�

2

n� 2

�
S1�n�

�
; (3.30)

with S1�n� �
Pn
j�1

1
j . Actually, H�1�q �n� is related to the

BBDM result on the one-loop gluon matrix element of
the quark operator A�2� nG given in Eq. (6.2) of Ref. [28] as
A�2� nG �

�s
4�

nf
2 H

�1�
q �n�.

MSvN have presented in Appendix A of Ref. [40] full
expressions for the two-loop corrected operator matrix
elements which are unrenormalized and include external
self-energy corrections. The expressions are given in par-
ton momentum fraction space, i.e., in z space. Taking the
moments, the unrenormalized matrix elements of the
(flavor-singlet) quark operators between gluon states are
written as [see Eq. (2.18) of Ref. [40]]
 

Âqg;��

�
n;
�p2

�2 ;
1

	

�
� ÂPHYS

qg �n�T�1��� � ÂEOM
qg �n�T

�2�
��

� ÂNGI
qg �n�T

�3�
�� ; (3.31)

where

 Â k
qg�n� �

Z 1

0
dzzn�1Âkqg

�
z;
�p2

�2 ;
1

	

�
;

k � PHYS; EOM and NGI;

(3.32)

and the expressions of ÂPHYS
qg �z;�p

2

�2 ; 1
	�, Â

EOM
qg �z;

�p2

�2 ; 1
	�,

and ÂNGI
qg �z;

�p2

�2 ; 1
	� are given in Eqs. (A7), (A8), and (A9)

of Ref. [40], respectively. Refer to Ref. [40] for the expla-
nation of the ‘‘PHYS,’’ ‘‘EOM,’’ and ‘‘NGI’’ parts. The
tensors T�i����i � 1; 2; 3� are given by [see Eqs. (2.19)–(2.21)
of Ref. [40] and note that we have changed the Lorentz
indices of gluon fields from �� to ��]

 T�1��� �
�
g�� �

p��� � ��p�
� 
 p

�
����p2

�� 
 p�2

�
�� 
 p�n;

(3.33)

 T�2��� �
�p�p�
p2 �

p��� ���p�
� 
 p

�
����p

2

�� 
 p�2

�
�� 
 p�n;

(3.34)

 T�3��� �
�
�
p��� ���p�

2� 
 p
�

����p2

�� 
 p�2

�
�� 
 p�n; (3.35)

where �� is a lightlike vector (�2�0). The renormaliza-

tion of Âqg;���n;
�p2

�2 ;1	� proceeds as follows: First the cou-

TABLE I. Numerical values of Ens��n�, E
approx
ns� �n�, EG��n�, and Eapprox

G� �n� for the lowest six even-integer values of n. The values for
Ens��n� [EG��n�] are found in Eq. (3.1) [Eq. (3.3)] or obtained by evaluating Eqs. (A.1)–(A.6) [Eqs. (A.7)–(A.12)] of Ref. [10]. The
values of Eapprox

ns� �n� and Eapprox
G� �n� are obtained from the expressions given in (B2) and (B3) in Appendix B, respectively.

Ens��n� Eapprox
ns� �n� EG��n� Eapprox

G� �n�

n � 2 �86:9753� 1:470 51nf �86:9844� 1:471 04nf 31:4197� 5:157 75nf 31:4155� 5:158 03nf
n � 4 �102:831� 1:477 37nf �102:848� 1:477 87nf 23:9427� 1:108 86nf 23:9419� 1:108 88nf
n � 6 �109:278� 1:656 53nf �109:299� 1:656 99nf 15:6517� 0:695 953nf 15:6507� 0:695 944nf
n � 8 �111:167� 1:695 50nf �111:192� 1:695 92nf 10:9661� 0:498 196nf 10:9651� 0:498 178nf
n � 10 �111:035� 1:670 61nf �111:062� 1:670 99nf 8:160 31� 0:379 060nf 8:159 53� 0:379 038nf
n � 12 �109:943� 1:619 08nf �109:972� 1:619 43nf 6:348 29� 0:300 274nf 6:347 77� 0:300 250nf
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pling constant and gauge constant renormalizations are
performed. Then the remaining ultraviolet divergences
are removed by multiplication of the operator renormal-
ization constants. We get the finite expression at�2��p2

as
 

Aqg;���n�j�2��p2 �

�
�s
4�

a�1�qg�n� �
�
�s
4�

�
2
a�2�qg�n�

�
T�1���

�

�
�s
4�

b�1�qg�n� �
�
�s
4�

�
2
b�2�qg�n�

�
T�2���

�

�
�s
4�

�
2
a�2�qA�n�T

�3�
�� : (3.36)

The expressions of a�i�qg�n� and b�i�qg�n��i � 1; 2� are given in

Appendix C, while a�2�qA�n� is made up of the terms propor-
tional to CA

nf
2 and is, therefore, irrelevant to the photon

matrix element of the quark operator. Now multiplying g��

and contracting pairs of indices � and �, we get
 

1

2
g��

1

�� 
 p�n
Aqg;���n�j�2��p2

�
�s
4�

�
a�1�qg�n� �

1

2
b�1�qg�n�

�

�

�
�s
4�

�
2
�
a�2�qg�n� �

1

2
b�2�qg�n� �

1

2
a�2�qA�n�

�
: (3.37)

We can see from the expressions of a�1�qg�n� and b�1�qg�n� in
(C2) and (C3), respectively, that the FRS result for the one-
loop gluon matrix element of the quark operator corre-
sponds to a�1�qg�n�, while the BBDM result corresponds to
the combination fa�1�qg�n� � 1

2 b
�1�
qg�n�g. Indeed we find that

H�1�q �n� in (3.30) is written as nf
2 H

�1�
q �n� � fa

�1�
qg�n� �

1
2b
�1�
qg�n�g.
The two-loop photon matrix elements of the quark op-

erators are derived from the combination fa�2�qg�n� �
1
2b
�2�
qg�n� � 1

2a
�2�
qA�n�g in (3.37) with the following replace-

ments: CA!0, �nf2 �
2!0, and CF

nf
2 !�CF�charge factor
.

The terms proportional to �nf2 �
2 in a�2�qg�n� and b�2�qg�n� come

from the external gluon self-energy corrections and should
be discarded for the photon case. Thus we obtain

 

~A �2� n � 3nfhe
2iH�2�q �n�;

~A�2�NSn � 3nf�he4i � he2i2�H�2�q �n�;
(3.38)

where

 H�2�q �n� � CF

��
1

n
�

2

n� 1
�

2

n� 2

��
�

4

3
S1�n�3 � 4S2�n�S1�n� �

64

3
S3�n� � 16S2;1�n� � 48
3

�
� S1�n�2

�
6

n
�

8

n� 1

�
16

n� 2
�

16

n2 �
40

�n� 1�2
�

32

�n� 2�2

�
� S1�n�

�
4

n
�

80

n� 1
�

56

n� 2
�

16

n2 �
48

�n� 1�2
�

64

�n� 2�2
�

32

n3

�
176

�n� 1�3
�

128

�n� 2�3

�
� S2�n�

�
6

n
�

8

n� 1
�

16

n2 �
40

�n� 1�2
�

32

�n� 2�2

�
�

38

n
�

70

n� 1
�

56

n� 2
�

56

n2

�
198

�n� 1�2
�

144

�n� 2�2
�

22

n3 �
40

�n� 1�3
�

128

�n� 2�3
�

20

n4 �
88

�n� 1�4

�
:

(3.39)

Similarly the renormalized matrix elements of the gluon
operators between gluon states at �2 � �p2 are written as
[the unrenormalized version is given in Eq. (2.33) of
Ref. [40]]

 Agg;���n�j�2��p2 �

�
�s
4�

a�1�gg�n� �
�
�s
4�

�
2
a�2�gg�n�

�
T�1���

�

�
�s
4�

b�1�gg�n� �
�
�s
4�

�
2
b�2�gg�n�

�
T�2���

�

�
�s
4�

a�1�gA�n� �
�
�s
4�

�
2
a�2�gA�n�

�
T�3��� :

(3.40)

The one-loop results a�1�gg�n�, b
�1�
gg�n�, and a�1�gA�n� are all

proportional to the color factor CA and thus they are
irrelevant to the photon matrix elements. Also, the two-

loop result a�2�gA�n� is made up of the terms proportional to

C2
A or CA

nf
2 and is irrelevant. The expressions of a�2�gg�n� and

b�2�gg�n� are given by (C6) and (C7), respectively, in
Appendix C. Then, we take the combination fa�2�gg�n� �
1
2b
�2�
gg�n�g and make replacements, CA ! 0, �nf2 �

2 ! 0, and
CF

nf
2 ! �CF � charge factor
. Furthermore, we realize

that the last two terms in parentheses of (C6) have also
resulted from the external gluon self-energy corrections
and are thus irrelevant for the photon case. In the end, we
obtain for the photon matrix elements of the gluon opera-
tors

 

~A �2�Gn � 3nfhe
2iH�2�G �n�; (3.41)

where
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H�2�G �n� � CF

�
�S1�n�

2 � S2�n��
�

16

3�n� 1�
�

4

n
�

4

n� 1
�

16

3�n� 2�
�

8

n2 �
8

�n� 1�2

�
� S1�n�

�
�

32

9�n� 1�
�

32

n
�

32

n� 1

�
32

9�n� 2�
�

32

n2 �
8

�n� 1�2
�

64

3�n� 2�2
�

32

n3 �
48

�n� 1�3

�
� S�2�n�

�
32

3�n� 1�
�

32

n
�

32

n� 1
�

32

3�n� 2�

�

�
872

27�n� 1�
�

80

n
�

16

n� 1
�

856

27�n� 2�
�

40

n2 �
104

�n� 1�2
�

64

9�n� 2�2
�

44

n3 �
28

�n� 1�3
�

128

3�n� 2�3
�

40

n4

�
88

�n� 1�4

�
: (3.42)

With all these necessary parameters at hand, we are now
ready to analyze the moments of F�2 �x;Q

2; P2� up to the
NNLO. First we evaluate the coefficients Ln

i , An
i , Bn

i , Cn,
Dn

i , Eni , F n
i , and Gn with i � �;�; NS, the expressions of

which are given in Eqs. (2.30), (2.31), (2.32), (2.33), (2.34),
(2.35), (2.36), and (2.37), for n � 2; 4; . . . ; 12 in the cases
of nf � 3 and nf � 4. The results are listed in Table II (for
nf � 3) and Table III (for nf � 4). In Table 1 of Ref. [17],
the numerical values of the seven NLO coefficients, An

i ,
Bn
i , and Cn with i � �;�; NS for n � 2; 4; . . . ; 20 in the

case of nf � 4, were already given. Our results for An
i ,

Bn
i , and Cn in Table III are consistent with those in

Ref. [17] except for the values of An
� and An

�. The
discrepancy in the values of An

� and An
� arises from

the term �8 in the parentheses of Eq. (3.18). See the
discussion below Eq. (3.18). The numerical calculation of
the NNLO coefficients Dn

�, Dn
�, and Dn

NS for n �
2; 4; . . . ; 12 in Tables II and III was performed by using
the ‘‘exact’’ values of the three-loop anomalous dimen-
sions, K�2�;nNS , K�2�;n , and K�2�;nG , for n � 2; . . . ; 12 given in
Ref. [10] and also by using the approximate expressions
K�2�;nNS approx, K�2�;n approx, and K�2�;nG approx defined in Eqs. (3.24),
(3.25), and (3.26) (in parentheses). The coefficients An

�

and En� cannot be evaluated at n � 2 since they become

singular there. More details concerning this singularity will
be discussed in the next section.

The coefficients Dn
� and Dn

NS in Table II take extremely
large values at n � 6. The values of Dn�6

� and Dn�6
NS in

Table III are also large. This is due to the fact that Dn
� and

Dn
NS have terms with the factors 1

1�dn�
and 1

1�dnNS
, respec-

tively, and that dn� and dnNS happen to be very close to 1 at
n � 6. Actually, we obtain dn�6

� � 0:995 846 and dn�6
NS �

1:000 35 for nf � 3 (Table II), and dn�6
� � 1:074 27 and

dn�6
NS � 1:080 38 for nf � 4 (Table III). But we see from

(2.29) that Dn
� and Dn

NS are multiplied, respectively, by
the factors �1� ��s�Q

2�

�s�P2�
�d

n
��1
 and �1� ��s�Q

2�

�s�P2�
�d

n
NS�1
 which

become very small when dn� and dnNS are close to 1. Thus
the contributions of the parts with Dn�6

� and Dn�6
NS to the

6th moment of F�2 �x;Q
2; P2� do not stand out from the

others.

IV. SUM RULE OF F�2 �x;Q
2; P2�

The sum rule of the structure function F�2 ,

 

Z 1

0
dxF�2 �x;Q

2; P2�; (4.1)

can be studied by taking the n! 2 limit of Eq. (2.29). At
n � 2 one of the eigenvalues of �̂n�2�g�, the anomalous

TABLE II. Numerical values of Ln
i , An

i , Bn
i , Dn

i , Eni , F n
i �i � �;�; NS�, and Cn and Gn for n � 2; 4; . . . ; 12 in the case of nf � 3.

The calculation of Dn
�, Dn

�, and Dn
NS was performed by using the exact values of K�2�;nNS , K�2�;n , and K�2�;nG given in Ref. [10] and also

by using the approximate expressions K�2�;nNS approx, K�2�;n approx, and K�2�;nG approx defined in Eqs. (3.24), (3.25), and (3.26) (in parentheses).

n Ln
� Ln

� Ln
NS An

� An
� An

NS Bn
� Bn

� Bn
NS Cn

2 0.4690 0.4267 0.4248 �2:8403 
 
 
 �5:5940 1.7481 �1:8535 0.8290 �9:3333
4 0.004 336 0.3639 0.1836 �0:5543 �2:6267 �1:3299 0.073 53 3.3149 1.4607 �10:7467
6 0.000 5428 0.2324 0.1164 0.061 33 �1:8806 �0:9403 0.016 52 2.9783 1.5349 �9:1088
8 0.000 149 3 0.1689 0.084 51 0.009 544 �1:6566 �0:8277 0.006 245 2.9612 1.4906 �7:7504
10 0.000 058 03 0.1318 0.065 91 0.002 817 �1:5336 �0:7664 0.002 993 2.8263 1.4169 �6:7116
12 0.000 027 48 0.1075 0.053 75 0.001 087 �1:4425 �0:7210 0.001 652 2.6744 1.3390 �5:9074

n Dn
� Dn

� Dn
NS En� En� EnNS F n

� F n
� F n

NS Gn

2 60.5098 (60.5014) 32.9286 (32.9251) 63.1965 (63.1909) �10:5867 
 
 
 �10:9168 6.9729�13:7973 3.7817 �251:3619
4 7.9871 (7.9873) 25.9791 (25.9222) 11.6147 (11.5840) �9:3990 �23:9288 �10:5807 1.3106 48.8620 20.6599 �204:5836
6 0.018 77 (0.018 77) �4007:0415��4011:3304� 24 025.6303 (24 050.8845) 1.8667 �24:0991 �12:4017 0.4596 56.4575 29.3881 �176:9466
8 0.032 22 (0.032 21) 165.7976 (165.9277) 82.2116 (82.2758) 0.3993 �29:0367 �14:5993 0.2217 67.5380 34.0579 �157:4181
10 �0:001 732 �0:001 738� � 109.3285 (109.4090) 54.5447 (54.5847) 0.1453 �32:8877 �16:4753 0.1249 73.0111 36.6197 �142:6108
12 �0:018 25 �0:018 26� � 86.8381 (86.9019) 43.3780 (43.4098) 0.06532 �35:8891 �17:9598 0.07764 75.9024 38.0024 �130:8717
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dimension matrix in the hadronic sector given in (2.13),
vanishes, due to the conservation of the energy-momentum
tensor. Thus we have a zero eigenvalue, �n�2

� � 0, for the
one-loop anomalous dimension matrix �̂�0�n�2 and, there-
fore, we get dn�2

� � �n�2
�

2�0
� 0. Among the coefficients

which appeared in (2.29), two of them, namely, An
� and

En�, would develop singularities at n � 2, since those co-
efficients have terms with the factor 1

dn�
. However, as we

see from (2.29), both An
� and En� are multiplied by a factor

�1� ��s�Q
2�

�s�P2�
�d

n
�
which also vanishes at n � 2. Provided that

we regard the expression 1
	 �1� x

	� as its limiting value for
	! 0, � ln x, then the An

� and En� parts of (2.29) give
finite contributions as

 lim
n!2

An
�

�
1�

�
�s�Q

2�

�s�P
2�

�
dn�
�
� � �An�2

� ln
�s�Q

2�

�s�P
2�
; (4.2)

 lim
n!2

En�

�
1�

�
�s�Q

2�

�s�P2�

�
dn�
�
� � �En�2

� ln
�s�Q

2�

�s�P2�
; (4.3)

where

 

�An�2
� �

�
�K�0�n

X
j

Pnj �̂
�1�
n Pn�

�nj � 2�0
C�0�2;n �K

�0�
n Pn�C

�0�
2;n
�1

�0

�K�1�n Pn�C
�0�
2;n

�
n�2

; (4.4)

 

�En�2
� �

�
�K�0�n Pn�C

�1�
2;n
�1

�0
�K�0�n

X
j

Pnj �̂
�1�
n Pn�

�nj � 2�0
C�1�2;n

�K�1�n Pn�C
�1�
2;n � K

�0�
n

X
j

Pn��̂
�1�
n Pnj

��nj � 2�0
C�0�2;n

�1

�0

�K�0�n
X
j;k

Pnj �̂
�1�
n Pn��̂

�1�
n Pnk

���nk � 2�0���
n
j � 2�0�

C�0�2;n

�K�1�n
X
j

Pn��̂
�1�
n Pnj

��nj � 2�0
C�0�2;n

�
n�2

: (4.5)

The coefficient functions, anomalous dimensions, and pho-
ton matrix elements at n � 2 are given in Appendix D.
Using these values we obtain �An�2

� � �1:3274�
��2:2857� and �En�2

� � 5:7664 �18:553� for nf � 3 �4�.
The numerical values of Ln�2

i , An�2
i , Bn�2

i , Dn�2
i ,

En�2
i , F n�2

i �i � �;�; NS�, and Cn�2 and Gn�2, except
for An�2

� and En�2
� , were already given in Table II (for

nf � 3) and Table III (for nf � 4).
Let us express the sum rule in the following form:

 Z 1

0
dxF�2 �x;Q

2; P2� �
�

4�
1

2�0

�
4�

�s�Q2�
cLO � cNLO

�
�s�Q

2�

4�
cNNLO �O��2

s�

�
; (4.6)

where the first, second, and third terms in the curly brack-
ets correspond to the LO, NLO, and NNLO contributions,
respectively. The coefficients cLO, cNLO, and cNNLO depend
on the number of the active quark flavors nf, and also on
�s�Q

2� and �s�P2�. For the QCD running coupling con-
stant �s�Q2�, we use the following formula which takes
into account the � function parameters up to the three-loop
level [41],

TABLE III. Numerical values of Ln
i , An

i , Bn
i , Dn

i , Eni , F n
i �i � �;�; NS�, and Cn and Gn for n � 2; 4; . . . ; 12 in the case of nf � 4.

The calculation of Dn
�, Dn

�, and Dn
NS was performed by using the exact values of K�2�;nNS , K�2�;n , and K�2�;nG given in Ref. [10] and also

by using the approximate expressions K�2�;nNS approx, K�2�;n approx, and K�2�;nG approx defined in Eqs. (3.24), (3.25), and (3.26) (in parentheses).

n Ln
� Ln

� Ln
NS An

� An
� An

NS Bn
� Bn

� Bn
NS Cn

2 0.8078 1.0582 0.6231 2.7608 
 
 
 �6:0944 3.8774 �8:5894 1.3076 �16:3237
4 0.009 356 0.7327 0.2661 5.1244 �3:7321 �1:3858 0.1688 0.4820 2.1599 �18:7956
6 0.001 235 0.4656 0.1679 0.095 29 �2:9038 �1:0480 0.039 09 6.0485 2.2395 �15:9311
8 0.000 346 5 0.3374 0.1215 0.019 53 �2:7046 �0:9735 0.014 95 5.9573 2.1613 �13:5552
10 0.000 136 2 0.2627 0.09461 0.006 354 �2:5904 �0:9322 0.007 216 5.6671 2.0468 �11:7384
12 0.000 064 97 0.2140 0.07704 0.002 598 �2:4906 �0:8963 0.003 999 5.3501 1.9293 �10:3319

n Dn
� Dn

� Dn
NS En� En� EnNS F n

� F n
� F n

NS Gn

2 �84:4549 �84:4748� � 64.6182 (64.6102) 63.5804 (63.5722) 13.2519 
 
 
 �12:7900 7.0067�68:4928 0.8275 �439:6247
4 �17:3048 �17:3044� � �140:7574 �140:9078� ��64:7231 �64:7847� � 92.4633 �2:4550 �11:2489 2.6666�28:0786 24.5807 �357:8108
6 0.4163 (0.4163) 894.6070 (895.0955) 301.7867 (301.9492) 3.0154 �37:7241 �13:9828 1.0159 99.2476 37.1197 �309:4744
8 �0:047 47 �0:047 49� � 326.5791 (326.7480) 116.7791 (116.8392) 0.8428 �47:7463 �17:3117 0.5046 121.0094 43.9510 �275:3197
10 �0:2306 �0:2306� � 228.9242 (229.0460) 82.2373 (82.2809) 0.3366 �55:8735 �20:1683 0.2888 132.4677 47.7946 �249:4221
12 �0:7548 �0:7548� � 183.5002 (183.6024) 65.9952 (66.0319) 0.1600 �62:2711 �22:4456 0.1813 139.2236 49.9533 �228:8909
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�s�Q
2�

4�
�

1

�0L
�

1

��0L�2
�1

�0
lnL�

1

��0L�3

�
�1

�0

�
2

�

��
lnL�

1

2

�
2
�
�0�2
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�
1
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�
; (4.7)

where L � ln�Q2=�2�, and �0, �1, and �2 are given in
Eqs. (3.2), (3.3), and (3.4). Taking � � 0:2 GeV, we get,
for example, �s�Q2 � 100 GeV2� � 0:1461 �0:1595� and
�s�Q

2�3 GeV2��0:2487�0:2717� for the case nf�3�4�.
We list in Table IV the numerical values of the

coefficients cLO, cNLO, and cNNLO for the cases nf � 3
and 4. We have studied three cases: �Q2; P2� �
�30 GeV2; 1 GeV2�, �100 GeV2; 1 GeV2�, and
�100 GeV2; 3 GeV2�. We already know that cNLO takes
negative values [17]. We find that the coefficient cNNLO

also takes negative values which are rather large in magni-
tude compared with those of cLO and cNLO. Also listed in
Table IV are the NLO (��s) and NNLO (��2

s) corrections
relative to LO (�) and the ratios of the NNLO to the sum of
the LO and NLO contributions for the sum rule of
F�2 �x;Q

2; P2�. We see that the NNLO corrections give
negative contributions to the sum rule. In fact, we will
see in the next section that the NNLO corrections reduce
F�2 �x;Q

2; P2� at larger x. For the kinematical region of Q2

and P2 which we have studied, the NNLO corrections are
found to be rather large. When P2 � 1 GeV2 and Q2 �
30� 100 GeV2 or P2 � 3 GeV2 and Q2 � 100 GeV2,
and nf is 3 or 4, the NNLO corrections are 7%–10% of
the sum of the LO and NLO contributions.

V. NUMERICAL ANALYSIS OF F�2 �x;Q
2; P2�

We now perform the inverse Mellin transform of (2.29)
to obtain F�2 as a function of x. The nth moment is denoted
as

 M�
2 �n;Q

2; P2� �
Z 1

0
dxxn�1 F

�
2 �x;Q

2; P2�

x
: (5.1)

Then by inverting the moments (5.1) we get

 

F�2 �x;Q
2; P2�

x
�

1

2�i

Z C�i1

C�i1
dnx�nM�

2 �n;Q
2; P2�; (5.2)

where the integration contour runs to the right of all
singularities of M�

2 �n;Q
2; P2� in the complex n plane. In

order to have better convergence of the numerical integra-
tion, we change the contour from the vertical line connect-
ing C� i1 with C� i1 (C is an appropriate positive
constant), introducing a small positive constant ", to

 n � C� "jyj � iy; �1< y<1: (5.3)

Hence we have

 

F�2 �x;Q
2; P2�

x
�

1

�

Z 1
0
�RefM�

2 �z;Q
2; P2�e�z ln�x�g

� " ImfM�
2 �z;Q

2; P2�e�z ln�x�g
dy;

(5.4)

where z � C� "y� iy.
As we see from Eqs. (2.29), (2.30), (2.31), (2.32), (2.33),

(2.34), (2.35), (2.36), and (2.37), the nth moment
M�

2 �n;Q
2; P2� is written in terms of coefficient functions,

anomalous dimensions, and photon matrix elements, which
in turn are expressed by the rational functions of integer n
and also by the various harmonic sums [42]. Thus we need
to make an analytic continuation of these harmonic sums
from integer n to complex n. There are several proposals
for this continuation [43,44]. The method we adopted here
is to use the asymptotic expansions of the harmonic sums
and their translation relations. The details are explained in
Appendix E.

In Fig. 3 we plot the virtual photon structure function
F�2 �x;Q

2; P2� predicted by pQCD for the case of nf � 4,
Q2 � 30 GeV2, and P2 � 1 GeV2 with the QCD scale
parameter � � 0:2 GeV. The vertical axis corresponds to

 F�2 �x;Q
2; P2�=

3�
�
nfhe4i ln

Q2

P2 : (5.5)

Here we show four curves: the LO, NLO, and NNLO QCD
results and the box (tree) diagram contribution including
nonleading corrections. The box contribution is expressed
by [17]

TABLE IV. The numerical values of the coefficients cLO, cNLO, and cNNLO in Eq. (4.6), and the NLO and NNLO corrections relative
to LO for the sum rule of F�2 �x;Q

2; P2� in several cases of Q2 and P2. The ratios of the NNLO to the sum of the LO and NLO
contributions are also listed. For the QCD running coupling constant �s, we have used the formula given in Eq. (4.7) with � �
0:2 GeV.

Q2�GeV2� P2�GeV2� cLO cNLO cNNLO LO NLO NNLO NNLO=�LO� NLO�

nf � 3 30 1 0.7631 �11:66 �331:2 1 �0:2063 �0:0791 �0:0997
100 1 0.8613 �12:21 �355:3 1 �0:1649 �0:0558 �0:0668
100 3 0.6690 �11:22 �313:8 1 �0:1949 �0:0634 �0:0787

nf � 4 30 1 1.429 �18:90 �525:7 1 �0:1950 �0:0800 �0:0993
100 1 1.614 �19:59 �551:4 1 �0:1541 �0:0551 �0:0651
100 3 1.257 �18:38 �507:5 1 �0:1855 �0:0650 �0:0798
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F��box�
2 �x;Q2; P2� �

3�
�
nfhe

4i

�
x�x2 � �1� x�2
 ln

Q2

P2

� 2x�1� 3x� 3x2

� �1� 2x� 2x2� lnx

�
; (5.6)

where power corrections P2=Q2 and quark mass effects are
ignored. It is noted that, in these analyses, even for the LO
and NLO QCD curves, we have used the QCD running
coupling constant �s�Q2� which is valid up to the three-
loop level and is governed by the formula (4.7), and we
have put � � 0:2 GeV.

The LO and NLO QCD results with the same values of
nf, Q2, and P2, as well as the box contribution, were
already given in Fig. 6 of Ref. [17]. But in Ref. [17] the
formula for �s�Q2�which is valid in the one-loop level was
used to obtain the LO curve, while the two-loop-level
formula for �s�Q2� was applied for the NLO graph, and
the QCD scale parameter � was set to be 0.1 GeV in both
cases. The LO result in Fig. 3 has a similar shape as the
corresponding one in Ref. [17] but is different in magni-
tude; the former is slightly larger than the latter for almost
the whole x region. This is due to the fact that the one-loop-
level formula for �s�Q2� was used for the LO curve in
Ref. [17], while we applied the three-loop-level formula
even for the LO result. On the other hand, the NLO curve in
Fig. 3 is similar to the corresponding one in Ref. [17] in
shape and magnitude.

Now we observe in Fig. 3 that there exist notable NNLO
QCD corrections at larger x. The corrections are negative
and the NNLO curve comes below the NLO one in the
region 0:3 & x < 1. This is expected from the n � 2 mo-

ment analysis in Sec. IV. From Table IV we see that the
ratio of the NNLO to the sum of the LO and NLO con-
tributions for the sum rule of F�2 �x;Q

2; P2� is �0:099 for
the case of nf � 4, Q2 � 30 GeV2, and P2 � 1 GeV2. At
the lower x region, 0:05 & x & 0:3, the NNLO corrections
to the NLO results are found to be negligibly small.

We have also studied the QCD corrections to
F�2 �x;Q

2; P2� with different Q2 and P2 but with nf � 4.
In Fig. 4 we plot the case for Q2 � 100 GeV2 and P2 �
1 GeV2. Another case for Q2 � 100 GeV2 and P2 �
3 GeV2 is shown in Fig. 5. We have not seen any sizable
change for the normalized structure function (5.5) for these
different values of Q2 and P2. In both cases the NNLO
corrections reduce F�2 �x;Q

2; P2� at larger x. We have ex-
amined the nf � 3 case as well. It is observed that the
normalized structure function (5.5) is insensitive to the
number of active flavors.
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FIG. 4. Virtual photon structure function F�2 �x;Q
2; P2� for

Q2 � 100 GeV2 and P2 � 1 GeV2 with nf � 4 and � �
0:2 GeV.
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FIG. 3. Virtual photon structure function F�2 �x;Q
2; P2� in units

of �3�nfhe4i=�� ln�Q2=P2� for Q2 � 30 GeV2 and P2 �

1 GeV2 with nf � 4 and the QCD scale parameter � �
0:2 GeV. We plot the box (tree) diagram contribution including
nonleading corrections (short-dashed line), the QCD LO (dash-
dotted line), the NLO (long-dashed line), and the NNLO (solid
line) results.
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FIG. 5. Virtual photon structure function F�2 �x;Q
2; P2� for

Q2 � 100 GeV2 and P2 � 3 GeV2 with nf � 4 and � �
0:2 GeV.
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Finally we should note that the spin-averaged structure
function directly accessible in the experiment is not F�2 but
rather the so-called effective structure function F�eff ’
F�2 � �3=2�F�L as discussed in Refs. [15,21,45].

VI. LONGITUDINAL STRUCTURE FUNCTION
F�L�x;Q

2; P2�

We have considered the structure function F�2 so far.
Regarding another structure function F�L, its LO contribu-
tion, which is of order �, was calculated in QCD for the
real photon (P2 � 0) target in Refs. [5,6]. The analysis was
extended to the case of the virtual photon (�2 � P2 �
Q2) target [17]. We will now derive a formula for the
moment sum rule of F�L�x;Q

2; P2� up to the NLO
(O���s�) corrections. Comparing Eq. (2.8b) with (2.8a)
and examining the form of (2.11), we see that the formula
for F�L�x;Q

2; P2� is obtained from (2.18) only by replacing
C2;n�1; �g�Q2�� and C�2;n�1; �g�Q2�; �� with CL;n�1; �g�Q2��

and C�L;n�1; �g�Q2�; ��, respectively. An expansion is made
for CL;n�1; �g�Q2�� and C�L;n�1; �g�Q2�; �� up to the two-loop
level as
 

CL;n�1; �g�Q2�� � C�0�L;n �
�g2�Q2�

16�2 C
�1�
L;n �

�g4�Q2�

�16�2�2
C�2�L;n

� 
 
 
 ; (6.1)

 C�L;n�1; �g�Q2�; �� �
e2

16�2 C
��1�
L;n �

e2 �g2�Q2�

�16�2�2
C��2�L;n � 
 
 
 :

(6.2)

Here we note that there is no contribution of the tree
diagrams to the longitudinal coefficient functions and
thus we have C�0�L;n � 0.

The moments of F�L�x;Q
2; P2� are then given as follows

[see Eqs. (2.29), (2.30), (2.31), (2.32), (2.33), (2.34), (2.35),
(2.36), and (2.37) for comparison]:

 Z 1

0
dxxn�2F�L�x;Q

2; P2� �
�

4�
1

2�0

�X
i

Bn
�L�;i

�
1�

�
�s�Q2�

�s�P2�

�
dni�1

�
� Cn

�L� �
�s�Q2�

4�

�X
i

En
�L�;i

�
1�

�
�s�Q2�

�s�P2�

�
dni
�

�
X
i

F n
�L�;i

�
1�

�
�s�Q2�

�s�P2�

�
dni�1

�
�Gn

�L�� �O��2
s�

�
; with i � �;�; NS; (6.3)

where the coefficients Bn
�L�;i, C

n
�L�, E

n
�L�;i, F

n
�L�;i, and Gn

�L� are

 B n
�L�;i � K

�0�
n PniC

�1�
L;n

1

1� dni
; (6.4)

 C n
�L� � 2�0C

��1�
L;n ; (6.5)

 E n
�L�;i � �K

�0�
n Pni C

�1�
L;n
�1

�0

1� dni
dni

� K�0�n
X
j

Pnj �̂
�1�
n Pni

�nj � �
n
i � 2�0

C�1�L;n
1

dni

� K�1�n Pni C
�1�
L;n

1

dni
� 2�0

~A�1�n PniC
�1�
L;n; (6.6)

 

F n
�L�;i � K

�0�
n PniC

�2�
L;n

1

1� dni
�K�0�n PniC

�1�
L;n
�1

�0

dni
1� dni

�K�0�n
X
j

Pni �̂
�1�
n Pnj

�ni � �
n
j � 2�0

C�1�L;n
1

1� dni
; (6.7)

 G n
�L� � 2�0�C

��2�
L;n �

~A�1�n 
 C
�1�
L;n�; (6.8)

with i; j � �;�; NS. The coefficients Bn
�L�;i and Cn�L� rep-

resent the LO terms [5,6,17], while the terms with En�L�;i,
F n
�L�;i, and Gn

�L� are the NLO (��s) corrections and they are
new. It is noted that, among these coefficients, En

�L�;�

becomes singular at n � 2 since it has terms with the factor
1
dn�

and dn� vanishes as n! 2. But again, as in the case of
the moments of F�2 �x;Q

2; P2�, this coefficient is multiplied
by a factor �1� ��s�Q2�=�s�P

2��d
n
�
, and thus the product

remains finite at n � 2.
The one-loop longitudinal coefficient functions are well

known [28,46,47]. They are written as

 C �1�L;n � � B
n
 ;L; CG�1�L;n � � B

n
G;L;

CNS�1�L;n � �NSBnNS;L; C��1�L;n � ��Bn�;L;
(6.9)

where Bn ;L � BnNS;L, BnG;L, and Bn�;L are given, for ex-
ample, in Eqs. (6.2)–(6.4) of Ref. [6]. The two-loop longi-
tudinal coefficient functions corresponding to the hadronic
operators were calculated in the MS scheme in
Refs. [31,32].1 The results in Mellin space as functions
of n are found, for example, in Ref. [33]:

 C �2�L;n � � fc
�2�;ns
L;q �n� � c

�2�;ps
L;q �n�g; (6.10)

 CG�2�L;n � � c
�2�
L;g�n�; (6.11)

1The earlier calculations [48–51] were found to be partly
incorrect. For quark coefficient functions c�2�;ns

L;q and c�2�;ps
L;q in

Eq. (6.10), there is a complete agreement between Ref. [51]
and Refs. [31,32,52], while for gluon coefficient c�2�L;g in
Eq. (6.11) the result of Ref. [49] was corrected in Ref. [53].
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 CNS�2�L;n � �NSc
�2�;ns
L;q �n�; (6.12)

where c�2�;ns
L;q �n�, c�2�;ps

L;q �n�, and c�2�L;g�n� are given in
Eqs. (203), (204), and (205) in Appendix B of Ref. [33],
respectively, with N being replaced by n. The two-loop
photon longitudinal coefficient function C��2�L;n is expressed
as

 C��2�L;n � ��c
�2�
L;��n�; (6.13)

and c�2�L;��n� is obtained from c�2�L;g�n� in (6.11) by replacing
CA ! 0 and nf

2 ! 1.
Inverting the moments (6.3), we plot in Fig. 6 the lon-

gitudinal virtual photon structure function F�L�x;Q
2; P2�

predicted by pQCD for the case of nf � 4, Q2 �

30 GeV2, and P2 � 1 GeV2 with the QCD scale parameter
� � 0:2 GeV. The vertical axis is in units of
F�L�x;Q

2; P2�= 3�
� nfhe

4i. Here we show three curves: the
LO and NLO QCD results and the box (tree) diagram
contribution, which is expressed by

 F��box�
L �x;Q2; P2� �

3�
�
nfhe4if4x2�1� x�g: (6.14)

The LO result in Fig. 6 is consistent with the corresponding
one in Fig. 5 of Ref. [17], although the formulas used for
�s�Q2� differ in detail. We see from Fig. 6 that the NLO
QCD corrections are negative and the NLO curve comes
below the LO one in the region 0:2 & x < 1.

The QCD corrections to F�L�x;Q
2; P2� for different val-

ues of Q2, P2, and nf are also studied. The case for Q2 �

100 GeV2 and P2 � 1 GeV2 with nf � 4 is shown in
Fig. 7. The LO curve has hardly changed from the one
for Q2 � 30 GeV2 and P2 � 1 GeV2. The NLO correc-

tions get smaller. The LO and NLO QCD curves for Q2 �
100 GeV2 and P2 � 3 GeV2 with nf � 4 appear to be
almost the same as those in the case of Q2 � 30 GeV2

andP2 � 1. The cases for nf � 3 are examined as well and
we find that the normalized function
F�L�x;Q

2; P2�= 3�
� nfhe

4i is insensitive to the number of
active flavors.

VII. CONCLUSIONS

We have investigated the unpolarized virtual photon
structure functions F�2 �x;Q

2; P2� and F�L�x;Q
2; P2� for

the kinematical region �2 � P2 � Q2 in QCD. In the
framework of the OPE supplemented by the RG method,
we gave the definite predictions for the moments of
F�2 �x;Q

2; P2� up to the NNLO (the order ��s) and for
the moments of F�L�x;Q

2; P2� up to the NLO (the order
��s). In the course of our evaluation, we utilized the
recently calculated results of the three-loop anomalous
dimensions for the quark and gluon operators. Also we
derived the photon matrix elements of hadronic operators
up to the two-loop level.

The sum rule of F�2 �x;Q
2; P2�, i.e., the second moment,

was numerically examined. The NNLO corrections are
found to be 7%–10% of the sum of the LO and NLO
contributions, when P2 � 1 GeV2 and Q2 � 30�
100 GeV2 or P2 � 3 GeV2 and Q2 � 100 GeV2, and nf
is 3 or 4.

The inverse Mellin transform of the moments was per-
formed to express the structure functions F�2 �x;Q

2; P2� and
F�L�x;Q

2; P2� as functions of x. We found that there exist
sizable NNLO contributions for F�2 at larger x. The cor-
rections are negative and the NNLO curve comes below the
NLO one in the region 0:3 & x < 1. At the lower x region,
0:05 & x & 0:3, the NNLO corrections to the NLO results
are found to be negligibly small. Concerning F�L, the NLO
corrections reduce the magnitude in the region 0:2 &x<1.
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FIG. 6. Longitudinal photon structure function F�L�x;Q
2; P2�

in units of �3�nfhe4i=�� for Q2 � 30 GeV2 and P2 � 1 GeV2

with nf � 4 and the QCD scale parameter � � 0:2 GeV. We
plot the box (tree) diagram contribution (short-dashed line), the
QCD LO (dash-dotted line), and the NLO (long-dashed line)
results.
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FIG. 7. Longitudinal photon structure function F�L�x;Q
2; P2�

for Q2 � 100 GeV2 and P2 � 1 GeV2 with nf � 4 and � �
0:2 GeV.
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The comparison of the present NNLO theoretical pre-
diction for the virtual photon structure functions with the
existing experimental data will be discussed elsewhere.
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APPENDIX A: EVALUATION OF Mn�Q
2=P2; �g�P2��

AND Xn�Q2=P2; �g�P2�; ��

In order to evaluate the integrals for Mn�Q2=P2; �g�P2��
given in (2.22), we employ the same method that was used
by Bardeen and Buras in Ref. [6] and make full use of the
projection operators obtained from the one-loop anoma-
lous dimension matrix �̂0

n:

 �̂ �0�n �
X

i��;�;NS

�ni P
n
i ; (A1)

where �ni �i � �;�; NS� are eigenvalues of �̂0
n and are

expressed as

 �n� �
1
2f�
�0�;n
  � �

�0�;n
GG � ���

�0�;n
  � �

�0�;n
GG �

2

� 4��0�;n G ��0�;nG 

1=2g; (A2)

 �nNS � ��0�;nNS ; (A3)

and Pni are the corresponding projection operators,

 Pn� �
1

�n� � �
n
�

��0�;n  � �
n
� ��0�;nG 0

��0�;n G ��0�;nGG � �
n
� 0

0 0 0

0
B@

1
CA; (A4)

 PnNS �
0 0 0
0 0 0
0 0 1

0
@

1
A: (A5)

With an expansion of ��g� up to the three-loop level in
(2.24), we get its inverse as follows:
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�
: (A6)

Then, using (A1) and (A6), we perform integration in
(2.22).

The result is
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where �g2
1 � �g2�P2� and �g2

2 � �g2�Q2�. The first term is the leading, and the second and third terms are the next-to-leading
terms. The rest are the next-to-next-to-leading terms.

Once we get the above expression forMn�Q2=P2; �g�P2�� expanded up to the NNLO, we use an expansion ofKn�g; �� in
(2.25) up to the three-loop level and we can evaluate Xn�Q2=P2; �g�P2�; �� in (2.17) up to the NNLO. The result is
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where �g2
1 � �g2�P2� and �g2

2 � �g2�Q2�. The first term is the
leading, and the second through fourth terms are the next-
to-leading terms. The rest are the next-to-next-to-leading
terms.

APPENDIX B: Eapprox
ns� �n�, Eapprox

G� �n�, AND Eps��n�

We give the explicit expressions of Eapprox
ns� �n�, Eapprox

G� �n�,
and Eps��n� which have appeared in (3.24), (3.25), and

(3.26). They are obtained by taking the Mellin moments
of the parametrizations for P�2�ns��x� and P�2�g��x� and of the
exact result forP�2�ps��x�, which are presented in Eqs. (6)–(8)
of Ref. [11]. Using a single harmonic sum Sm�n� defined by

 Sm�n� �
Xn
j�1

1

jm
; (B1)

they are expressed as
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Note that Eps��n� is an exact result.
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APPENDIX C: MELLIN MOMENTS a�i�qg�n� AND b�i�qg�n�WITH i � 1; 2 AND a�2�gg�n� AND b�2�gg�n�

The expressions of a�i�qg�n� and b�i�qg�n� with i � 1 and 2 are obtained by taking the moments of the functions a�i�qg�z� and
b�i�qg�z� as
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where a�i�qg�z� and b�i�qg�z� are extracted from the 	-independent terms of ÂPHYS
qg �z;�p

2

�2 ; 1
	� given in Eq. (A7) and of

ÂEOM
qg �z;

�p2
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	� in Eq. (A8) of Ref. [40], respectively. See also Eqs. (2.27) and (2.28) of Ref. [40].

The one-loop results are
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The two-loop results are
 

a�2�qg�n� � CF
nf
2

��
1

n
�

2

n� 1
�

2

n� 2

��
�

4

3
S1�n�3 � 4S2�n�S1�n� �

64

3
S3�n� � 16S2;1�n� � 48
3

�

� S1�n�
2

�
6

n
�

24

n� 1
�

32

n� 2
�

16

n2 �
40

�n� 1�2
�

32

�n� 2�2

�
� S1�n�

�
12

n
�

8

n� 1
�

40

n� 2
�

16

n2 �
128

�n� 1�2

�
128

�n� 2�2
�

32

n3 �
176

�n� 1�3
�

128

�n� 2�3

�
� S2�n�

�
6

n
�

8

n� 1
�

16

n� 2
�

16

n2 �
40

�n� 1�2
�

32

�n� 2�2

�
�

14

n

�
38

n� 1
�

48

n� 2
�

64

n2 �
126

�n� 1�2
�

80

�n� 2�2
�

22

n3 �
88

�n� 1�3
�

128

�n� 2�3
�

20

n4 �
88

�n� 1�4

�

� terms proportional to CA
nf
2

or
�nf

2

�
2
; (C4)

 

b�2�qg�n� � 16CF
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where S2;1�n� �
Pn
j�1

1
j2 S1�j�. The terms proportional to �nf2 �

2 in a�2�qg�n� and b�2�qg�n� come from the external gluon self-
energy corrections and should be discarded for the photon case.

Similarly, the expressions of a�2�gg�n� and b�2�gg�n� are obtained by taking the moments of the functions a�2�gg�z� and b�2�gg�z�
which are extracted from the 	-independent terms of ÂPHYS

gg �z;�p
2

�2 ; 1
	� given in Eq. (A12) and of ÂEOM

gg �z;
�p2

�2 ; 1
	� in

Eq. (A13) of Ref. [40], respectively. See also Eqs. (2.34) and (2.35) of Ref. [40].2

The two-loop results for a�2�gg�n� and b�2�gg�n� are

2Two terms, ��0�ggb
	;�1�
gg and ��0�gqb

	;�1�
qg , are missing in the 	-independent terms of Eq. (2.35) of Ref. [40]. They both are needed in order

to extract b�2�gg �z� correctly.
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32

3�n� 2�

�

�
680

27�n� 1�
�

48

n
�

16

n� 1
�

184

27�n� 2�
�

56

n2 �
56

�n� 1�2
�

256

9�n� 2�2
�

44

n3 �
76

�n� 1�3
�

128

3�n� 2�3
�

40

n4

�
88

�n� 1�4
�

55

3
� 16
3

�
� terms proportional to C2

A or CA
nf
2

or
�nf

2

�
2
; (C6)

 

b�2�gg�n� � CF
nf
2

�
S1�n�

�
32

3�n� 1�
�

32

n
�

64

3�n� 2�
�

32

�n� 1�2

�
�

128

9�n� 1�
�

64

n
�

448

9�n� 2�
�

32

n2 �
96

�n� 1�2

�
128

3�n� 2�2
�

96

�n� 1�3

�
� terms proportional to C2

A or CA
nf
2
: (C7)

The terms proportional to �nf2 �
2 in a�2�gg�n� again come from

the external gluon self-energy corrections and should be
discarded for the photon case. Furthermore, the contribu-
tion of the last two terms in the curly brackets of (C6),
more explicitly, CF

nf
2 ��

55
3 � 16
3�, also results from the

external gluon self-energy corrections and is thus
irrelevant.

APPENDIX D: VALUES AT n � 2

1. Coefficient functions

With � � he2i, �NS � 1, and �� � 3nfhe
4i, we have

the following:
(i) At tree level

 C �0�2;n�2 � � ; CG�0�2;n�2 � 0;

CNS�0�2;n�2 � �NS; C��0�2;n�2 � 0:
(D1)

(ii) At one-loop level

 C �1�2;n�2 � � CF�
1
3�; CG�1�2;n�2 � � nf��

1
2�;

CNS�1�2;n�2 � �NSCF�
1
3�; C��1�2;n�2 � ����1�:

(D2)

(iii) At two-loop level

 C �2�2;n�2 � � 

�
CACF

�
3677

135
�

128

5

3

�
� CFnf

�
�

457

81

�
� C2

F

�
�

4189

810
�

96

5

3

��
;

CG�2�2;n�2 � � 

�
CFnf

�
�

4799

810
�

16

5

3

�
� CAnf

�
115

324
� 2
3

��
;

CNS�2�2;n�2 � �NS

�
CACF

�
3677

135
�

128

5

3

�
� CFnf��4� � C2

F

�
�

4189

810
�

96

5

3

��
; C��2�2;n�2 � ��CF

�
�

4799

405
�

32

5

3

�
:

(D3)

2. Anomalous dimensions

(i) At one-loop level

 ��0�;n�2
NS � ��0�;n�2

  � CF

�
16

3

�
; ��0�;n�2

 G � nf

�
�

4

3

�
; ��0�;n�2

G � CF

�
�

16

3

�
; ��0�;n�2

GG � nf

�
4

3

�
; (D4)

and

 K�0�;n�2
 � 3nfhe

2i�83�; K�0�;n�2
G � 0; K�0�;n�2

NS � 3nf�he
4i � he2i2��83�: (D5)

(ii) At two-loop level
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 ��1�;n�2
NS � CACF

�
752

27

�
� CFnf

�
�

128

27

�
� C2

F

�
�

224

27

�
;

��1�;n�2
  � CACF

�
752

27

�
� CFnf

�
�

208

27

�
� C2

F

�
�

224

27

�
;

��1�;n�2
 G � CAnf

�
�

70

27

�
� CFnf

�
�

148

27

�
;

��1�;n�2
G � CACF

�
�

752

27

�
� CFnf

�
208

27

�
� C2

F

�
224

27

�
;

��1�;n�2
GG � CAnf

�
70

27

�
� CFnf

�
148

27

�
;

(D6)

and

 K�1�;n�2
NS � 3nf�he

4i � he2i2�CF

�
296

27

�
; K�1�;n�2

 � 3nfhe
2iCF

�
296

27

�
; K�1�;n�2

G � 3nfhe
2iCF

�
�

80

27

�
: (D7)

(iii) At three-loop level, we get from [26,27]
 

��2�;n�2
NS �CACFnf

�
�

6256

243
�

128

3

3

�
�CFC2

A

�
41840

243
�

128

3

3

�
�CFn2

f

�
�

448

243

�
�C2

FCA

�
�

17056

243
�128
3

�

�C2
Fnf

�
�

6824

243
�

128

3

3

�
�C3

F

�
�

1120

243
�

256

3

3

�
;

��2�;n�2
  �CACFnf

�
�

44

9
�

256

3

3

�
�CFC2

A

�
41840

243
�

128

3

3

�
�CFn2

f

�
�

568

81

�
�C2

FCA

�
�

17056

243
�128
3

�

�C2
Fnf

�
�

14188

243
�

256

3

3

�
�C3

F

�
�

1120

243
�

256

3

3

�
;

��2�;n�2
 G �CACFnf

�
278

9
�

208

3

3

�
�CAn

2
f

�
2116

243

�
�C2

Anf

�
�

3589

81
�48
3

�
�CFn

2
f

�
�

346

243

�

�C2
Fnf

�
�

4310

243
�

64

3

3

�
;

��2�;n�2
G �CACFnf

�
44

9
�

256

3

3

�
�CAC

2
F

�
17056

243
�128
3

�
�C2

ACF

�
�

41840

243
�

128

3

3

�
�CFn

2
f

�
568

81

�

�C2
Fnf

�
14188

243
�

256

3

3

�
�C3

F

�
1120

243
�

256

3

3

�
;

��2�;n�2
GG �CACFnf

�
�

278

9
�

208

3

3

�
�CAn2

f

�
�

2116

243

�
�C2

Anf

�
3589

81
�48
3

�
�CFn2

f

�
346

243

�
�C2

Fnf

�
4310

243
�

64

3

3

�
;

(D8)

and from [10]

 K�2�;n�2
NS � �3nf�he

4i � he2i2�

�
CFnf

�
536

243

�
� CFCA

�
�

6044

243
�

64

3

3

�
� C2

F

�
�

8620

243
�

128

3

3

��
;

K�2�;n�2
 � �3nfhe

2i

�
CFnf

�
�

692

243

�
� CFCA

�
�

6044

243
�

64

3

3

�
� C2

F

�
�

8620

243
�

128

3

3

��
;

K�2�;n�2
G � �3nfhe

2ifCFnf

�
1880

243

�
� CFCA

�
�

1138

243
�

64

3

3

�
� C2

F

�
9592

243
�

128

3

3

��
:

(D9)

Note that a relation ��i�;n�2
  ��i�;n�2

GG � ��i�;n�2
 G ��i�;n�2

G � 0 indeed holds for i � 0, 1, 2.
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3. Photon matrix elements of quark and gluon
operators

(i) At one-loop level

 

~A �1� n�2 � 3nfhe2i�29�;
~A�1�Gn�2 � 0;

~A�1�NSn�2 � 3nf�he4i � he2i2��29�:
(D10)

(ii) At two-loop level

 

~A �2� n�2 � 3nfhe2iCF

�
616

81
� 16
3

�
;

~A�2�Gn�2 � 3nfhe2iCF

�
383

81

�
;

~A�2�NSn�2 � 3nf�he
4i � he2i2�CF

�
616

81
� 16
3

�
:

(D11)

APPENDIX E: ANALYTIC CONTINUATION OF
THE HARMONIC SUMS

The moments of F�2 �x;Q
2; P2� given in (2.29) are ex-

pressed by the rational functions of integer n and the
various harmonic sums. The single harmonic sums are
defined by

 Sk�n� �
Xn
j�1

�sgn�k�
j

jjkj
; (E1)

where k � �1;�2; . . . , and the higher harmonic sums are
defined recursively as

 Sk;m1;...;mp
�n� �

Xn
j�1

�sgn�k�
j

jjkj
Sm1;...;mp

�j�; (E2)

where indices k and m1; . . . ; mp take nonzero integers. In
order to invert the moments so that we get F�2 as a function
of x, we need to make an analytic continuation of these
harmonic sums from integer n to complex n. Since the
moment sum rules of the s-u-crossing-even structure func-
tion F�2 are defined for even integer n, the continuation
should be performed from even n. Thus whenever a factor
��1�n appears, it should be replaced by ��1�. The method
we adopted here for the analytic continuation is to use the
asymptotic expansions of the harmonic sums and their
translation relations. Choosing the following two harmonic

sums,

 S1�n� �
Xn
j�1

1

j
; (E3)

 S1;1;�2;1�n� �
Xn
i�1

1

i

Xi
j�1

1

j

Xj
k�1

��1�k

k2

Xk
l�1

1

l
; (E4)

as examples, we explain how we get approximate analytic
formulas for these sums.

The asymptotic expansion of S1�n� for large n is well
known:

 S1�n� � ln�n� � �E �
1

2n
�

1

12n2 �
1

120n4 � 
 
 
 : (E5)

The right-hand side has a simple analytic property. On the
other hand, S1�n� satisfies the following translation rela-
tion:

 S1�n� � S1�n� 1� �
1

n� 1
: (E6)

This relation is valid not only for integer n, but also for
complex n. Therefore, our algorithm to evaluate S1�n� at
arbitrary complex n is as follows: (i) If jnj � n0, where n0

is some positive integer at which the asymptotic expansion
(E5) holds at a desired accuracy, then we use the expansion
(E5) to evaluate S1�n�. (ii) For jnj< n0, we apply the
translation relation (E6) and shift the argument n! n�
1 repeatedly, until the shifted new ~n satisfies the condition
j~nj � n0 so that the asymptotic expansion (E5) for S1�~n�
may be used with a desired accuracy. Then S1�n� is eval-
uated by the formula

 S1�n� � S1�~n� �
X~n�n
i�1

1

n� i
; (E7)

where the expansion (E5) is used for S1�~n�.
In the case of a more complicated higher harmonic sum

S1;1;�2;1�n� with even integer n, its asymptotic expansion
for large n is given by

 

Seven
1;1;�2;1�n� � c0;2ln2�n� � c0;1 ln�n� � c0;0 �

c1;1 ln�n�
n

�
c1;0

n
�
c2;1 ln�n�

n2 �
c2;0

n2 � 
 
 
 ; (E8)

where
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c0;2 � c1;1 � �
5

16

�3� � �0:375 642 78 
 
 
 ; c0;1 � �

5

8
�E
�3� �

3

40

2�2� � �0:636 589 40 
 
 
 ;

c0;0 � �
3

40
�E
2�2� �

5

16
�2
E
�3� � ln�2�Li4

�
1

2

�
�

7

16
ln2�2�
�3� �

1

6
ln3�2�
�2� �

1

30
ln5�2� �

1

8

�2�
�3� �

1

8

�5�

� Li5

�
1

2

�
� �0:899 307 22 
 
 
 ;

c1;0 � �
5

16
�E
�3� �

3

80

2�2� �

5

16

�3� � 0:057 348 080 
 
 
 ; c2;1 �

5

96

�3� � 0:062 607 130 
 
 
 ;

c2;0 �
5

96
�E
�3� �

1

160

2�2� �

15

64

�3� � �0:228 682 96 
 
 
 :

(E9)

Also Seven
1;1;�2;1�n� satisfies the following translation relation:

 

Seven
1;1;�2;1�n� � Seven

1;1;�2;1�n� 2� �
�

1

n� 1
�

1

n� 2

�

� Seven
1;�2;1�n� 2� �

1

�n� 1��n� 2�

� Seven
�2;1�n� 2�: (E10)

Note that the right-hand side of (E10) is written in terms of
the same harmonic sum Seven

1;1;�2;1 and lower harmonic sums
Seven

1;�2;1 and Seven
�2;1 but with a larger argument n� 2. When

jnj � n0, the asymptotic expansion (E8) is used to evaluate

Seven
1;1;�2;1�n�. For jnj< n0, we apply (E10) and shift the

argument n! n� 2 repeatedly, until the shifted new ~n
satisfies the condition j~nj � n0 so that the asymptotic
expansion (E8) of Seven

1;1;�2;1�~n� can be used with a desired
accuracy. The lower harmonic sums Seven

1;�2;1�n� and Seven
�2;1�n�

are evaluated in a similar fashion.
In practice, we take n0 � 16 for all harmonic sums.

Then the asymptotic expansion formula for each harmonic
sum is derived so as to ensure double precision accuracy
(15 significant figures) at n � n0. For example, S1�n� and
Seven

1;1;�2;1�n� are expanded up to the terms with 1=n10 and
1=n18, respectively.
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