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Within the dispersive approach to the amplitude of the rare decay �0 ! e�e� the nontrivial dynamics
is contained only in the subtraction constant. We express this constant, in the leading order in �me=��2

perturbative series, in terms of the inverse moment of the pion transition form factor given in symmetric
kinematics. By using the CELLO and CLEO data on the pion transition form factor given in asymmetric
kinematics, the lower bound of the decay branching ratio is found. The restrictions following from QCD
allow us to make a quantitative prediction for the branching B��0 ! e�e�� � �6:2� 0:1� � 10�8 which is
3� below the recent KTeV measurement. We confirm our prediction by using the quark models and
phenomenological approaches based on the vector meson dominance. The decays �! l�l� are also
discussed.
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Experimental measurements of neutral pseudoscalar
meson decays into lepton pairs and the comparison with
theoretical predictions offer an interesting way to study
long-distance dynamics in the standard model. Recently,
the KTeV E799-II experiment at Fermilab has observed
�0 ! e�e� events using KL ! 3� decay as a source of
tagged neutral pions [1]. The branching ratio of the pion
decay into an electron-positron pair was determined to be
equal to

 

BKTeV��0 ! e�e�; xD > 0:95�

� �6:44� 0:25� 0:22� � 10�8; (1)

where xD � �me�e�=m�0
�2 is the Dalitz variable. By ex-

trapolating the full radiative tail beyond xD > 0:95 and
scaling the result back up by the overall radiative correc-
tion [2,3] to find the lowest-order rate for �0 ! e�e�, the
KTeV Collaboration obtained

 BKTeV
no�rad��

0 ! e�e�� � �7:49� 0:29� 0:25� � 10�8:

(2)

The rare decay �0 ! e�e� has been studied theoreti-
cally over the years, starting with the first prediction of the
rate by Drell [4]. Since no spinless current coupling of
quarks to leptons exists, the decay is described in the
lowest order of QED as a one-loop process via the two-
photon intermediate state, as shown in Fig. 1. A factor of
2�me=m��

2 corresponding to the approximate helicity con-
servation of the interaction and two orders of � suppress
the decay with respect to the �0 ! �� decay, leading to an
expected branching ratio of about 10�7. In the standard
model, contributions from the weak interaction to this
process are many orders of magnitude smaller and can be

neglected. The interaction of leptons and quarks with
leptoquarks is a possible mechanism for the pion decay
from physics beyond the standard model. The confronta-
tion of the theory and experiment will have some influence
on the problem of strong sector contribution to the muon
anomalous magnetic moment g� 2 [5,6].

To lowest order in QED, the normalized branching ratio
is given by
 

R��0 ! e�e�� �
B��0 ! e�e��

B��0 ! ���

� 2
�
�
�
me

m�

�
2
�e�m2

��jA�m2
��j

2; (3)

where �e�q2� �

�����������������
1� 4m2

e

q2

r
, B��0 ! ��� � 0:988 [7]. In

this article, we describe the process �0 ! e�e� by the
diagram shown in Fig. 1, where F��	�	 is the form factor of
the transition �0 ! �	�	 with off-shell photons. The re-
duced amplitude A can be written as

π0(q)
Fπ

e+ (p )

γ (k − q)

e− (p)

γ (k )

FIG. 1. Triangle diagram for �0 ! e�e� process with a pion
�0 ! �	�	 form factor in the vertex.
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 A �q2� �
2i

q2

Z d4k

�2

q2k2 � �qk�2

�k2 � i"���k� q�2 � i"���k� p�2 �m2
e � i"�

F��	�	 ��k
2;��k� q�2�; (4)

where q2 � m2
�, p2 � m2

e. We put the sign minus in the
arguments of the form factor explicitly to emphasize that
Eq. (4) is written in the Minkowski space. The form factor
is normalized as F��	�	 �0; 0� � 1 and falls down quite
rapidly in the Euclidean region of momenta to provide
the ultraviolet convergence of the integral. A number of
model calculations of the amplitude A�q2�was performed
[4,8–13] by employing different shapes of the form factor
F��	�	 . We discuss some of them below.

The aim of the present paper is to calculate the branch-
ing ratio B��0 ! e�e�� and estimate the uncertainties by
using the available experimental and theoretical informa-
tion on the pion transition form factor. In particular, the
important constraints follow from the results obtained by
the CELLO and CLEO collaborations and restrictions set
by QCD.

First, we derive a suitable representation for the ampli-
tude in Eq. (4) which would help us to perform a straight-
forward analysis by using the available information on the
pion transition form factor. To do this, we employ the
dispersive approach to the calculation of the amplitude
developed in many papers (see, e.g. [12] and references
therein). The imaginary part of the amplitude in Eq. (4)

 

ImA�q2� �
�

2�e�q2�
ln�ye�q2��;

ye�q
2� �

1� �e�q2�

1� �e�q2�
;

(5)

comes from the contribution of real photons in the inter-
mediate state and is model independent since
F��	�	 �0; 0� � 1. Using jAj2 
 �ImA�2 and neglecting
radiative corrections one can get the well-known unitary
bound for the branching ratio in Eq. (3) [8]

 B��0 ! e�e�� 
 Bunitary��0 ! e�e�� � 4:69 � 10�8:

(6)

A once-subtracted dispersion relation for the amplitude
in Eq. (4) is written as [12]

 A �q2� �A�q2 � 0� �
q2

�

Z 1
0
ds

ImA�s�

s�s� q2�
: (7)

The second term in Eq. (7) takes into account strong q2

dependence of the amplitude around the point q2 � 0
occurring due to the branch cut coming from the two-
photon intermediate state. Integrating Eq. (7) one arrives
for q2 
 4m2

e at [14–16]

 

ReA�q2� �A�q2 � 0� �
1

�e�q2�

�
1

4
ln2�ye�q2�� �

�2

12

� Li2��ye�q
2��

�
; (8)

where Li2�z� � �
Rz

0�dt=t� ln�1� t� is the dilogarithm
function.1 For the pion in the leading order in �me=m��

2,
one gets

 ReA�m2
�� �A�q2 � 0� � ln2

�
me

m�

�
�
�2

12
: (9)

Thus, the nontrivial dynamics is only contained in the
subtraction constant A�q2 � 0�. We evaluate this quantity
in the following way [10]. We use the double Mellin
representation for the pion transition form factor reducing
the integral in Eq. (4) to the convolution of propagatorlike
expressions. Then we perform the loop integration by using
the standard Feynman � representation. Finally, we are
able to expand the integral over the ratios of the electron
and pion masses to the characteristic scale of the pion form
factor � / m� by closing the Mellin contours in the ap-
propriate manner and take the leading term of expansion.
We arrive at the following representation:

 A �q2 � 0� � 3 ln
�
me

�

�
� 	P���; (10)

where the constant 	P��� is defined by

 	P��� � �
5

4
�

3

2

Z 1
0
dt ln

�
t

�2

�@F��	�	 �t; t�
@t

� �
5

4
�

3

2

�Z �2

0
dt
F��	�	 �t; t� � 1

t

�
Z 1
�2
dt
F��	�	 �t; t�

t

�
; (11)

with F��	�	 �t; t� being the physical pion transition form
factor given in symmetric kinematics for spacelike photon
momenta t � Q2 � �q2 > 0. One has to note that the
logarithmic dependence on the scale � appearing in
Eq. (10) as a result of the decomposition of the integral
over the dimensional variable t into two parts is compen-
sated by the scale dependence of the low-energy constant

1For completeness we give explicit expressions for the ampli-
tude ~A�q2� �A�q2� �A�0� for different regions of q2:
Re ~A�q2�� 1

��q2�
�Li2��y�q

2����2

3 �
1
4ln2��y�q2���, Im ~A�q2��

0, for q2 
 0; and Re ~A�q2� � � 1
~��q2�

Cl2��2
�, Im ~A�q2� �

� �
~��q2�

arctg� ~��q2��, for 0 
 q2 
 4m2. Here ��q2� ��������������������������
1� 4m2=q2

p
, ~��q2� �

�������������������������
4m2=q2 � 1

p
, 
 � arctg�1= ~��q2��,

and Cl2�z� � �
Rz

0 dt lnj2 sin�t=2�j is the Clausen’s integral.
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	P��� displayed in Eq. (11). The obtained representation
defines the unknown subtraction constant in dispersion
formula, Eq. (7), via the pion transition form factor in a
simple and transparent way. It is consistent with the result
of the chiral perturbation theory [14–18] where 	P��� is
the unknown low-energy constant. The result of Eq. (10)
also agrees with the conclusions made in [12] where the
inequalities me � m� � � were exploited.

In order to estimate the integral in Eq. (11), one needs to
define the pion transition form factor in symmetric kine-
matics for spacelike photon momenta. Since it is not
known from the first principles, we will adapt the available
experimental data to perform such estimates. Let us first
use the fact that F��	�	 �t; t�<F��	�	 �t; 0� for t > 0 in
order to obtain the lower bound of the integral in
Eq. (11). For this purpose, we take the experimental results
from the CELLO [19] and CLEO [20] Collaborations for
the pion transition form factor in asymmetric kinematics
for spacelike photon momentum which is well parame-
trized by the monopole form
 

FCLEO
��	�	 �t; 0� �

1

1� t=sCLEO
0

;

sCLEO
0 � �776� 22 MeV�2:

(12)

Note that sCLEO
0 � m2

�, as predicted by simple vector me-
son dominance models (VMD) [8,9,12], and is not far from
the asymptotic prediction of operator product expansion
(OPE) QCD [21]: sOPE

0 � 8�2f2
� � �821 MeV�2. For this

type of form factor one finds from Eqs. (10) and (11) that

 A �q2 � 0�>�
3

2
ln
�
sCLEO

0

m2
e

�
�

5

4
� �23:2� 0:1: (13)

Thus, for the branching ratio we are able to establish the
important lower bound which considerably improves the
unitary bound given by Eq. (6)
 

B��0 ! e�e��>BCLEO��0 ! e�e��

� �5:84� 0:02� � 10�8: (14)

Now let us proceed further in this manner and assume
that the monopole form is also a good parametrization for
the form factor in symmetric kinematics

 F��	�	 �t; t� �
1

1� t=s1
: (15)

The scale s1 can be fixed from the relation for the slopes of
the form factors in symmetric and asymmetric kinematics
at low t [22],

 �
@F��	�	 �t; t�

@t

��������t�0
� �2

@F��	�	 �t; 0�

@t

��������t�0
; (16)

that gives s1 � s0=2. Note that similar reduction of the
scale is predicted also by OPE QCD from the large mo-
mentum behavior of the form factors: sOPE

1 � sOPE
0 =3 [21].

Thus, the estimate for the amplitude in the limit q2 ! 0
can be obtained from Eq. (13) by shifting the lower bound
by a positive number which belongs to the interval
�3 ln�2�=2; 3 ln�3�=2�. One finds

 A �q2 � 0� � �
3

2
ln
�
s1

m2
e

�
�

5

4
� �21:9� 0:3; (17)

that corresponds to the value 	P�m�� � 0:1� 0:3 of the
low-energy constant 	P taken at the scale � � m�. Using
the obtained prediction for the subtraction constant, one
can evaluate the branching ratio

 B��0 ! e�e�� � �6:23� 0:09� � 10�8: (18)

This is 3 standard deviations lower than the KTeV result
given by Eq. (2). One can convert the experimental data to
obtain the restriction on the scale parameter s1 in Eq. (17).
Then for the amplitude at q2 � 0 estimated from the
experimental data for BKTeV

no-rad��
0 ! e�e�� one finds

 A KTeV�q2 � 0� � �18:6� 0:9: (19)

Since the amplitude in Eq. (17) depends logarithmically on
the scale parameter s1, one needs to reduce the value of s1

by a factor of larger than 4. However, it obviously contra-
dicts the experimental data for the slope parameters dis-
cussed above.

Let us compare our estimates with the results obtained in
other approaches. We start with the QCD sum rule ap-
proach [23]. There, the pion form factor of the transition
process �	�	 ! �0 was found in the form

 FQCDsr
��	�	 �t; t� � 2

Z sQCDsr
0

0
ds
Z 1

0
dx

x�1� x�t2

�x�1� x�s� t�3
� v:c:;

(20)

where v.c. are small corrections from the vacuum conden-
sates and sQCDsr

0 is the so-called dual interval parameter
taken as sQCDsr

0 � sOPE
0 � 0:7 GeV2 in the original work

[23]. By using the relation for the form factor slopes in
Eq. (16) and the expression for the radii given by

 hr2iQCDsr
�0�	�	

� �6
@F��	�	 �t; t�

@t

��������t�0
�

12

sQCDsr
0

; (21)

one can identify the duality parameter with the CLEO
parameter

 sQCDsr
0 � sCLEO

0 : (22)

Then by using Eq. (11) one finds

 A QCDsr�q2 � 0� � �
3

2
ln
�
sCLEO

0

m2
e

�
�

1

4
� �21:7� 0:1;

(23)

that corresponds to the rescaling sQCDsr
1 � �sQCDsr

0 =e� and is
well suited to the interval in Eq. (17). The corresponding
branching ratio is shown in Table I.
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Next we consider the parametrization of the pion form
factor motivated by the generalized VMD [24]:

 FgVMD
��	�	 �s; t� �

4�2f2
�

3

�
�s� t�st� h2st� h5�s� t� �M

4
VM

4
V1h7

�M2
V � s��M

2
V � t��M

2
V1� s��M

2
V1� t�

(24)

with the parameters MV � 769 MeV, MV1 � 1465 MeV,
h2 � �10 GeV2, h5 � 6:93 GeV4, h7 � 3=�4�2f2

��. This
parametrization satisfies the above mentioned constraints
on the pion transition form factor. At zero virtualities, the
form factor is normalized by the axial anomaly. The rela-
tion in Eq. (16) is valid, which yields for the radius

 hr2i
gVMD
���	 � �6

@F�t; 0�
@t

��������t�0

� 6
�

1

M2
V

�
1

M2
V1

�
h5

M2
VM

2
V1

3

4�2f2
�

�
� 0:39 fm2; (25)

which is close to PDG average hr2iPDG
���	 � 0:407�

0:051 fm2 [7]. Note also that numerically the second and
third terms in Eq. (25) almost cancel each other. The form
factor FgVMD

��	�	 �s; t� has also correct OPE QCD motivated
behavior at large virtualities [21]

 FOPE
��	�	 �t; 0�jt!1 �

4�2f2
�

3

h5

M2
VM

2
V1

1

t
; (26)

 FOPE
��	�	 �t; t�jt!1 �

8�2f2
�

3

1

t
: (27)

The constant h5 was fixed in [24] from a fit of CLEO data
[20]; the constant h2 defining the next-to-leading order
power correction to the form factor at large twas estimated
in [25] using the results of QCD sum rules [26]. In the
asymptotic OPE QCD limit, one has h5=�M2

VM
2
V1� ! 6.

For the generalized VMD form factor we estimate the
subtraction constant

 

AgVMD�q2 � 0� � �3 ln
�
MV

me

�
�

1

4
�

3r

�r� 1�2
�

3

2

3r� 1

�r� 1�3
lnr

�
4�2f2

�

M2
V�r� 1�3

�
h2

2M2
V

��r� 1� lnr� 2�r� 1�� �
�
1�

h5

M2
V1M

2
V

�
�r2 � 1� 2r lnr�

�
� �21:94; (28)

where r � �MV1=MV�
2. It agrees well with our prediction

given by Eq. (17).
Let us now consider the amplitude �0 ! e�e� in the

context of the constituent quark models. Within this model,
the pion form factor is given by the quark-loop (triangle)
diagram. Taking the constituent quark mass in the loop to
be momentum independent, the result for the form factor in
symmetric kinematics is given by [27]
 

FQM
��	�	 �t; t� �

2M2
q

�q�t�t
ln
��q�t� � 1

�q�t� � 1

�
;

�q�t� �

��������������������
1� 4

M2
q

t

s
:

(29)

Substituting it into Eq. (11), one can get

 A QM�q2 � 0� � 3 ln
�
me

Mq

�
�

17

4
; (30)

in accordance with [12]. For the constituent quark mass in
the interval Mq � 300� 50 MeV one finds

 A QM�q2 � 0� � ��23:4� 0:5�; (31)

which is in agreement with the above estimates but contra-
dicts the experimental result. In order to fit the KTeV value
in Eq. (19), one needs to take the quark mass Mq <
100 MeV, which is an unacceptable region for the con-
stituent quark mass.

By using the results for the pion transition form factor
[28] obtained in the nonlocal quark model based on the
instanton picture of QCD vacuum [29], one finds numeri-
cally from Eq. (10) that

 A 	QM�q
2 � 0� � ��22:1� 0:5�; (32)

which is consistent with Eq. (17). Within the instanton
model, the quark mass is momentum dependent and for
simplicity is taken in the Gaussian form

TABLE I. Values of the quantity A�q2 � 0� and the branching ratio B��0 ! e�e�� obtained in our approach [see, Eq. (17)] and
compared with various phenomenological models and the KTeV experimental result.

CLEO� OPE QCDsr gVMD QM [12] N	QM NQM [10] Experiment [1]

�A�q2 � 0� 21:9� 0:3 21:7� 0:1 21.9 23:4� 0:5 22:1� 0:5 24.5 18:6� 0:9
B��0 ! e�e�� � 108 6:23� 0:09 6:21� 0:05 6.2 5:8� 0:2 6:1� 0:2 5.38 7:49� 0:38
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 M�k� � Mq exp��k2=�2
	QM�; (33)

with Mq � 300� 50 MeV and �	QM � 1 GeV fixed by
fitting the pion decay constant f�.

A similar result was obtained in [10] in the nonlocal
quark model (NQM) [30,31] (see, Table I). This model is
based on the assumption that the quark propagator is
described by the entire function without any singularities
in the momentum space. Such an assumption guarantees
the quark confinement in a sense that eliminates the thresh-
old cuts corresponding to free quark production. A unified
and uniformly accurate description of broad range of
physical observables is obtained within the framework of
this model; see, e.g. [31].

One has to note that the nonlocal quark model with
momentum-dependent mass has an important advantage
as compared to the mass-independent (local) quark model.
The first model has correct large momentum behavior
given by Eq. (27), while the latter has an extra log�t�
term in the asymptotic, as follows from Eq. (29). For this
reason, the local model is not suitable for fitting the CLEO
data on the pion transition form factor.

The �! l�l� decay can be analyzed in a similar man-
ner. As in the pion case, the CLEO Collaboration has
parametrized the data for the � meson in the monopole
form [20]:

 

FCLEO
��	�	 �t; 0� �

1

1� t=sCLEO
0�

;

sCLEO
0� � �774� 29 MeV�2;

(34)

which is very close to the relevant pion parameter. Then,
following the pion case (with evident substitutions), one
finds the bounds for the q2 ! 0 limit of the amplitude �!
���� as

 A ��q2 � 0�>�
3

2
ln
�sCLEO

0�

m2
�

�
�

5

4
� ��7:2� 0:1�;

(35)

and for �! e�e� one gets again Eq. (13). The obtained
estimates allow one to find the bounds for the branching
ratios

 

B��! �����< �6:23� 0:12� � 10�6;

B��! e�e��> �4:33� 0:02� � 10�9:
(36)

Note that for the decay �! ���� we get the upper limit
for the branching. This is because the real part of the
amplitude for this process taken at the physical point q2 �

m2
� for the parameter sCLEO

0� remains negative and a positive
shift due to the change of the scale s0� ! s1� reduces the
absolute value of the real part of the amplitude
jReA�m2

��j. At the same time, considering the decays of
�0 and � into an electron-positron pair, the evolution to
physical point (8) makes the real part of the amplitude to be
positive for the parameter sCLEO

0 and the absolute value of
the real part of the amplitude increases in changing the
scales of the meson form factors. The predictions for the
decays �! l�l� obtained by reducing the scale sCLEO

0� !

s1� for the case of the �-meson transition form factor are
given in Table II.

In conclusion, we have derived in the leading order in
�me=��2 the representation for the amplitude of the rare
�0 ! e�e� process in the limit q2 ! 0. It is given in terms
of the inverse moment of the transition pion form factor in
symmetric kinematics for spacelike photon momenta. By
using data of the CELLO and CLEO Collaborations on the
pion-photon transition form factor in the obtained repre-
sentation, we found the new lower bound for the decay
branching ratio which essentially improves the well-known
unitary bound. Further constraints follow from the results
of OPE QCD correlating the pion transition form factor in
different kinematics as the change of characteristic scales.
These considerations allow us to reconstruct the full decay
amplitude and make predictions for the decay branching. A
similar procedure is also applied to the decays �! l�l�.
We compared our predictions with the results obtained in
various phenomenological approaches and found that all of
them are in agreement with our results. However, the
obtained prediction for the branching ratio �0 ! e�e� is
3� below the recent KTeV measurement.

We are grateful to A. B. Arbuzov, M. V. Chizhov,
J. Gasser, S. B. Gerasimov, N. I. Kochelev, E. A. Kuraev,
S. V. Mikhailov, O. V. Teryaev, and Z. K. Silagadze for
helpful discussions on the subject of this work. We also
acknowledge partial support from the Heisenberg-Landau
program and (A. E. D.) the Scientific School Grant
No. 4476.2006.2.

TABLE II. Values of the branchings B�P! l�l�� obtained in our approach and compared with the available experimental results.

B Unitary bound CLEO bound CLEO� OPE Experiment

B��0 ! e�e�� � 108 
 4:69 
 5:85� 0:03 6:23� 0:09 7:49� 0:38 [1]
B��! ����� � 106 
 4:36 
 6:23� 0:12 5:11� 0:20 5:8� 0:8 [7,32]
B��! e�e�� � 109 
 1:78 
 4:33� 0:02 4:60� 0:06 . . .
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