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A new economical way to understand neutrino mixings in the seesaw framework is proposed. We argue
that its origin can be understood within the seesaw framework by a hidden condition on the mass matrix of
heavy right-handed neutrinos under the transformation of the Abelian finite group Z3 on the flavor basis.
Ignoring CP phases, we show that it can lead to the generic form of the effective light neutrino mass
matrix from which the Harrison-Perkins-Scott mixing matrix appears naturally, as well as an experimen-
tally allowed nonzero sin�13. Two examples are given to illustrate that the mass matrix based on our
proposal is in good agreement with the current experimental data.

DOI: 10.1103/PhysRevD.75.113003 PACS numbers: 14.60.Pq, 11.30.Hv

The observed neutrino oscillations have long been con-
sidered to be the first convincing evidence of new physics
beyond the standard model (SM). Although an enormous
amount of effort has been made, there are still many
unsolved problems in neutrino physics. Besides the small-
ness of neutrino masses, another outstanding problem is
the origin of the observed neutrino mixings. As it is natural
to expect that symmetries can explain neutrino mixings,
introducing one or more new symmetries becomes the
most common approach to resolve this problem. In par-
ticular, discrete symmetries including S3 (e.g. [1]), S4 (e.g.
[2], or [3], as a recent work), and A4 (e.g. [4]) etc. have
been discussed extensively in the literature (for more re-
lated works, please see recent reviews [5,6] and references
therein). In this approach, the mechanism generating neu-
trino masses usually does not interfere with the mechanism
giving rise to neutrino mixings. In particular, in the seesaw
framework, MR, the mass matrix of heavy right-handed
neutrinos, is usually required by symmetries or assumed to
be proportional to the identity matrix, i.e. MR / I, as in
[2,3], respectively. In this way, MR is only responsible for
the smallness of neutrino masses, and thus some other
physics have to be introduced to account for neutrino
mixings.

However, in this paper, we show explicitly that an
economic understanding of both neutrino masses and mix-
ings can be achieved with the assumption that neutrino
flavor mixings occur only in the heavy right-handed neu-
trino sector. Based on the cyclic group Z3, we propose a
new, simple but nontrivial way which will lead to an MR in
a cyclic permuted form, from which the phenomenologi-
cally acceptable neutrino mass matrix can be obtained in
the type II seesaw model. Interestingly, the effective light
neutrino mass matrix obtained in this way is the most
generic one that can be obtained from the Harrison-

Perkins-Scott (HPS) tribimaximal mixing matrix with an
additional pure 1–3 rotation when vanishing CP phases are
assumed. Our model in which the only source of lepton
flavor mixing is MR, different from other models including
those mentioned above and those adopted in many phe-
nomenological works, provides a new possibility for future
model building and phenomenological studies.

We begin with a very brief review of the current status of
neutrino mixings and the type II seesaw model. The global
fit of current experimental data shows that, unlike the
mixing angles in the quark sector, two of the three mixing
angles are large and one of them might be maximal. As a
matter of fact, 30� < �sol < 38�, 36� < �atm < 54�, and
�CHOOZ < 10� at the 99% confidence level [7]. Under-
standing this peculiar property is also an interesting theo-
retical issue. In fact, these mixing angles can be well
described by the HPS mixing matrix [8] where sin2�sol �
1
3 , sin2�atm �

1
2 , and �CHOOZ � 0. The HPS mixing matrix

can be considered as the lowest order approximation.
Efforts on revealing its origin may help one to understand
not only the neutrino physics, but also the physics beyond
the SM, such as the new symmetries at high energy scales.
In this paper we will propose a new way to understand the
appearance of the HPS mixing matrix in the seesaw frame-
work, as mentioned above.

The seesaw mechanism [9], which is the leading candi-
date for the neutrino mass generating mechanism, can
provide a simple and natural way to understand neutrino
masses. Although by itself the seesaw mechanism cannot
explain the observed neutrino mixings, below we will show
that it can play an important role in the generation of
neutrino mixings.

In many models with right-handed neutrinos, e.g.
SO(10) or SU�2�L � SU�2�R � U�1�B�L based models,
the effective light neutrino mass matrix is given by the
type II seesaw relation

 M� � ML �M
D
�M

�1
R �M

D
� �

T; (1)
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where ML, MR are the Majorana mass matrices for left-
handed and right-handed neutrinos and MD

� is the Dirac
mass matrix. Given that the neutrino mass is generated by
the type II seesaw model, as shown in (1), the observed
neutrino mixing can provide important information about
the structure of M� and thus the physics behind ML, MR,
and MD

� .
In this paper we make the natural assumptions that there

are three Majorana neutrinos and consider the case where
the flavor symmetry is only broken in the MR sector.
Currently none of the CP violating phases has been ob-
served. In the following discussion, we assume vanishing
CP phases and focus on the mixing pattern. The case with
nonvanishing CP phases will be discussed elsewhere.

It is natural to expect that symmetries can lead to a
specific neutrino mass matrix. This idea has been pursued
in many works. In particular, discrete symmetries includ-
ing S3 (e.g. [1]), S4 (e.g. [2,3]), A4 (e.g. [4]), etc. have been
discussed extensively in the literature (for a recent review,
see [5] and references therein). Appropriate flavor symme-
tries can also lead to desired neutrino mixing. Without the
CP violating phases, there are six free parameters in MR in
the second term of (1), the effective neutrino mass matrix
in the type I seesaw model. In this paper, we propose a
hidden condition on MR under the transformation of the
Abelian finite group Z3 on the flavor basis, which will
reduce the independent parameters down to three. We
then use the resultant mass matrix to explain the observed
mixing pattern.

First consider a finite group G. Each element Ui of G
satisfies Uni

i � 1 for some nonzero integer ni. Under an
unitary transformation of G on the flavor basis �f �
��e; ��; ���, we propose that for each Ui that belongs to
G, the mass matrix MR in the new basis satisfies

 UiMRU
T
i � U0iMR: (2)

We show below that U0i is strongly constrained and any
choice of U0i satisfying the constraint will further restrict
the possible form of MR. In particular, we show that, if the
finite group G is chosen to be Z3, U0i � U2

i will lead to a
phenomenologically interesting M� and thus provide a
possible origin of the observed neutrino mixing angles.

To see that U0i cannot be arbitrary, consider that

 MR � �Ui�
niMR�UT

i �
ni � �Ui�

ni�1U0iMR�UT
i �
ni�1

� �Ui�
ni�1U0i�U

y
i U
0
i�MR�U

T
i �
ni�2 � . . .

� �Ui�
ni�1U0i�U

y
i U
0
i�
ni�1MR � �U

y
i U
0
i�
niMR: (3)

From (3) we find that (2) requires �Uyi U
0
i�
ni � 1.

Consequently, we obtain U0i � ei2�m=niUk
i with m some

integer and k � 0; 1; . . . ; ni � 1. Note that m � 0 when
Ui and MR are real. Moreover, k can be different for
different group elements Ui. Based on simplicity, we as-
sume k is universal for all group elements. It is obvious that

�Uyi U
0
i�
ni � 1 is only a necessary condition for (2) to be

satisfied. Given U0i, (2) will restrict the form of MR. In
general, different choices of kwill lead to differentMR. We
show this below in the case where the finite group G is the
cyclic group Z3.

The group Z3 contains only three elements; thus ni � 3.
Therefore, the only possible choices for U0i are U0i � I, or
U0i � Ui, or U0i � U2

i . The first choice, demanding MR to
be invariant under Z3 on the flavor basis, leads to an
unrealistic mass matrix with �e � �� � �� symmetry.
Another choice that one might think interesting is the
case where U0i � Ui. One of the necessary conditions in
this case requiresMR to be noninvertible so that at least one
of the mass eigenvalues is zero. For the cyclic group Z3, the
symmetric mass matrix MR turns out to be democratic in
this case and there is only one nonzero eigenvalue. We will
not pursue these in this paper.

In the following we focus on the case U0i � U2
i .MR built

in this way will give interesting phenomenology. In fact,
the resultant MR can be expressed as linear combinations
of elements in one of the two cosets of Z3 in the non-
Abelian symmetric group S3. Our bottom-up approach
ends up with the proposal that, under some finite group
G, MRU

T
i � UiMR, 8Ui 2 G.

To be explicit, consider the following three dimensional
unitary representation of S3 � fIiji � 1� 6g:

 I1 �

1 0 0
0 1 0
0 0 1

0
@

1
A; I2 �

1 0 0
0 0 1
0 1 0

0
@

1
A;

I3 �

0 1 0
1 0 0
0 0 1

0
@

1
A; I4 �

0 0 1
0 1 0
1 0 0

0
@

1
A;

I5 �

0 1 0
0 0 1
1 0 0

0
@

1
A; I6 �

0 0 1
1 0 0
0 1 0

0
@

1
A:

The four nontrivial subgroups fI1; I2g, fI1; I3g, fI1; I4g,
and Z3 � fI1; I5; I6g are all Abelian. Different from the
other three subgroups, the cyclic group Z3 is the only
nontrivial invariant subgroup of S3. fI1; I5; I6g form a regu-
lar representation of Z3. It is straightforward to solve that
the mass matrix MR which satisfies (2) with U0i � U2

i has
the following form:

 MR �

a b c
b c a
c a b

0
@

1
A � aI2 	 bI3 	 cI4: (4)

Note that fI2; I3; I4g is a coset of Z3 in S3.
Before proceeding to the discussion of the seesaw

mechanism, we would like to point out another interesting
feature of (2). In fact, before considering the constraints
from symmetry, if one uses a novel mechanism to generate
the most general mass matrix which does not necessarily to
be symmetric, the nontrivial fact is that, with our proposal
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(U0i � U2
i ), the mass matrix will still be in the form of (4)

under the Z3 group. This, however, is not true for the case
U0i � I or U0i � Ui. Starting with the most general M with
nine parameters, for the case U0i � I one gets

 M �
a b c
c a b
b c a

0
@

1
A � aI1 	 bI5 	 cI6;

while for the case U0i � Ui one gets

 M �
a a a
b b b
c c c

0
@

1
A:

But in the symmetric case, these two matrices will become
a �e � �� � �� symmetric one and a democratic one,
respectively, as discussed above. That is, the requirement
for M to be symmetric will further reduce the number of
free parameters in M. On the other hand, unlike the above
two cases, without any assumption on MR, starting from
our simple proposal MRUT

i � UiMR 8Ui 2 Z3 and the
most general MR with nine parameters, one still arrives at
the unique form of MR as given by (4).

Assuming that ML � m0I1 and MD
� � mdI1 which are

invariant trivially under Z3, from (1) it can be shown that
the effective neutrino mass can be written as

 M� � mI1 	m2
d

B	 C �B �C
�B A	 B �A
�C �A C	 A

0
@

1
A (5)

where m � m0 �m2
d�A	 B	 C�, and

 A �
a2 � bc
R

; B �
b2 � ac
R

; C �
c2 � ab
R

(6)

with R � a3 	 b3 	 c3 � 3abc.
This particular form of mass matrix can be diagonalized

by the tribimaximal mixing [10] followed by a pure 1–3
rotation. It is worth mentioning that any real symmetric
mass matrix which is diagonalized by the tribimaximal
mixing followed by a pure 1–3 rotation can always be
written in the form of (5). Therefore what we derive here
is a novel way to understand the phenomenological
Majorana neutrino mass matrix with vanishing CP phases
that one can construct from the current neutrino data. Note
that, if m0 � 0, then two of the three neutrino masses
obtained from (5) will be identical; thus to obtain correct
mass square differences a nonzero ML is necessary.

Note that the form ofM� in (5) is coincident with the one
in the Friedberg-Lee (FL) model [11] in which a new
symmetry, i.e. the invariance of the neutrino mass terms
under the transformation

 �e ! �e 	 z; �� ! �� 	 z; �� ! �� 	 z;

is proposed to explain the observed neutrino mixings.
Although more work is necessary in order to understand
the origin of this symmetry and its breaking mechanism

leading to the first term in the right-hand side of (5),
Friedberg and Lee’s work provides an illuminating ex-
ample showing that neutrino physics is a great arena for
exploring new physics, which is also what we pursue here.
Although sharing the same motivation to explain neutrino
data, ideas presented in this paper and the physics dis-
cussed here are very different. For example, what
Friedberg and Lee discussed are Dirac neutrinos, but here
we consider Majorana neutrinos. Moreover, based on Z3

symmetry and the seesaw mechanism, we provide a simple
but new way which can lead to not only the desired
neutrino mass matrix, but also the small neutrino masses.

Before we proceed, let us discuss another way to imple-
ment Z3 symmetry via its one dimensional representation
rather than the regular representation discussed above.
Consider the Z3 transformation which is realized in the
following way:

 �1R ! �1R; �2R ! ei4�=3�2R; �3R ! ei2�=3�3R

(7)

and

 �1 ! ei4�=3�1; �2 ! �2; �3 ! ei2�=3�3

where �i are gauge singlet scalar fields. The invariant
Majorana mass terms are

 ���1R�
C; ��2R�

C; ��3R�
C�

�2 �3 �1

�3 �1 �2

�1 �2 �3

0
@

1
A �1R

�2R

�3R

0
@

1
A: (8)

The vacuum expectation values (VEVs) of �i will lead to
the same mass matrix as the one given in (4). This is
equivalent to constructing the following mass term:

 ��iR�C�ij�jR

where �ij � ��i	j� mod3. Note that, to obtain a phenome-
nological mass matrix via the type II seesaw relation (1),
appropriateML andMD

� have to be constructed. It is easy to
find that a MD

� / I1 can be obtained by the same Z3 charge
assignment to �iL as in (7). It may then lead to an ML
similar to that ofMR, as given by (8). If the pattern ofML is
exactly the same as (4), then the final neutrino mass matrix
will also be in the form of (4) from which the correct
neutrino masses cannot be generated. In (8) all the cou-
plings are set to be unity for simplicity. This may not be the
case for ML and a proper choice of relevant couplings can
also lead to an M� approximately given by (5).

We show above that the desired mass matrix can be
obtained via Z3 symmetry. Although more work is neces-
sary to build a complete model and, in particular, appro-
priate assignment of the charges of gauge symmetries are
needed, here we concentrate on possible consequences of
Z3 in the neutrino sector and assume that other symmetries
will not spoil our discussion. For example, we require any
U(1) symmetry or other symmetries, if they exist, will not
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forbid the required mass terms under discussion. In addi-
tion, in our discussion the three mass matrices relevant to
the type II seesaw model, i.e.ML,MD

� , andMR, are taken to
be independent. There might be some relations between
them in certain models. For example, in SO(10) models a
discrete parity symmetry may lead to ML / MR. However,
it may be broken as well. Moreover, the discussion here
does not depend on any specific models, although it is
interesting to study how to embed our proposal to the
existing models such as SO(10), which is beyond the scope
of this paper. Therefore, we take them to be independent
for generality.

From (6), we have A	 B	 C � 1=�a	 b	 c�, and

 a �
A2 � BC

R0
; b �

B2 � AC
R0

; c �
C2 � AB

R0
;

(9)

where R0 � A3 	 B3 	 C3 � 3ABC. Now, from any set of
A, B, and C which satisfies experimental data, the corre-
sponding a, b, and c can be found by (9). For heavy right-
handed neutrinos, m ’ m0.

Under tribimaximal rotation, we have
 

�U0�
TM�U0

� mI1 	m2
d

3�B	C�
2 0

��
3
p

2 ��B	 C�

0 0 0��
3
p

2 ��B	 C� 0 1
2 �4A	 B	 C�

0
BB@

1
CCA

where

 U0 �
1���
6
p

2
���
2
p

0
�1

���
2
p ���

3
p

�1
���
2
p

�
���
3
p

0
B@

1
CA (10)

is the tribimaximal mixing matrix. From the above expres-
sion, one can find that the matrix element U13 given by
sin�13 in the standard parametrization is given by

 j sin�13j �

���
2
p
jB� Cj���������������������������������������

�R00�2 	 3�B� C�2
p (11)

where

 R00 � �2A	 B	 C

� 2
���������������������������������������������������������������������
A2 	 B2 	 C2 � AB� AC� BC

p
:

The current experimental bound on sin�13 is sin2�13 �
0:040 at 3� C.L. (please see the latest arXiv version of
[12]). This can be satisfied if

 

�
B� C
A� C

�
2
�

�
b� c
a� c

�
2

 1:

Without loss of generality, assume A > C. The neutrino
masses are found to be

 m1 ’ m	
3
2m

2
d�B	 C�; m2 � m;

m3 ’ m	 2m2
dA	

1
2m

2
d�B	 C�:

One can examine that appropriately chosen a, b, and c
can satisfy the current experimental data. As an example,

 m � 0:01 eV; md � 100 GeV;

a � 4:7� 1014 GeV; b � 5:7� 1013 GeV;

c � 3:0� 1013 GeV

will lead to

 jU13j � 0:022;

and

 �m2
21 � m2

2 �m
2
1 � 7:9� 10�5 eV2;

�m2
31 � m2

3 �m
2
1 � 2:6� 10�3 eV2;

which are in good agreement with the current neutrino
experimental data, i.e.

 7:1� 10�5 eV2 <�m2
21 < 8:9� 10�5 eV2;

2:0� 10�3 eV2 < �m2
31 < 3:2� 10�3 eV2

at 3� C.L. [12].
In addition, one can show that this model can account for

the case of nearly degenerate neutrinos. As an example,

 m � 0:25 eV; md � 15 GeV;

a � 8:93� 1013 GeV; b � 2:92� 1012 GeV;

c � 9:01� 1011 GeV

will lead to the same squared mass differences as given
above and jU13j � 0:008.

In conclusion, we argue that Z3 symmetry can lead to
observed neutrino mixing. With our proposal thatMRU

T
i �

UiMR, 8Ui 2 Z3, MR must be in a cyclic permuted form,
as shown in (4). This will lead to tribimaximal mixing
followed by an additional 1–3 rotation, capable of explain-
ing the current data. Another way to reach (5) is based on
the invariance of the mass terms under Z3 transformations,
similar to the usual Z2 R-parity transformations. In the
seesaw framework, this will lead to a possible explanation
of both the smallness of neutrino masses and the origin of
the neutrino mixing. It can be easily shown that �13 � 0
requires b � c in (4), i.e., the �� � �� symmetry [13].
Therefore, from the naturalness principle, the smallness of
�13 is presumably protected by the symmetry. Based on our
work, the yet unknown �� � �� symmetry breaking
mechanism leading to the smallness of sin�13, and other
possible phenomena including lepton flavor violations, is
worth further studies in the future.
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