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Stationary, axisymmetric, and asymptotically flat spacetimes of dust of which trajectories are integral
curves of the time translation Killing vector are investigated. The flow has no Newtonian limit.
Asymptotic flatness implies the existence of singularities of the curvature scalar that are distributions
and that are not isolated from regularity regions of the flow. The singularities are closely related to the
presence of additional stresses that contribute negative active mass to the total (Komar) mass, which is
zero for asymptotically flat spacetimes. Several families of solutions were constructed.
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I. INTRODUCTION

We study stationary, axisymmetric and asymptotically
flat spacetimes of dust in free fall along integral curves of
the time translation Killing vector. For reasons which will
become clear later, we shall call this motion ‘‘van Stockum
flow.’’ Despite the flow is a rigid rotation with zero angular
velocity with respect to asymptotically static observers, the
squared vorticity scalar (which for the particular flow
equals, up to a constant factor, the proper energy density
of dust) in contrast to Newtonian physics, does not vanish.
Angular velocity of the flow with respect to locally non-
rotating observers numerically equals the angular velocity
of dragging of inertial frames, while angular velocity of
matter in linearized gravity is many orders of magnitude
greater. This shows that van Stockum flow is ultrarelativ-
istic even in the limit of negligible density.

We demonstrate that asymptotic flatness implies the
existence of curvature singularities that have distributional
character, spatial measure zero, and are not isolated from
regularity regions. The singularities are closely related to
additional weird stresses with negative active mass. Total
mass of such spacetimes is necessarily zero, which has
already been conjectured by Bonnor [1], and total angular
momentum is determined by the amplitude of the dipole in
a multipole expansion.

We construct two classes of asymptotically flat solutions
and a class of asymptotically nonflat solutions. Bonnor’s
solutions [1,2] belong to the first two, and the van Stockum
solution [3] to the third.

II. VAN STOCKUM FLOW

We shall focus on axisymmetric, stationary and asymp-
totically flat spacetimes of dust flowing along opened
integral curves of the time translation Killing vector �.
By asymptotic flatness the axial symmetry Killing vector
�, of which integral lines are closed, vanishes on the
symmetry axis at least for radii sufficiently large.

Consequently, (i) �������;�� � 0 and �������;�� � 0 at
least at one point. The energy-momentum tensor is pro-
portional to ����, hence (ii) ��R�������� � 0 and
��R�

������� � 0 on the basis of Einstein’s equations.
In addition, we assume (iii) ��;�� � 0. Under these three
assumptions a theorem proved in Ref. [4] guarantees that,
maybe apart from isolated points ��; z�, there exist a coor-
dinate system in which the line element takes the general
form
 

ds2 � �V�dt� Kd��2 � V�1�2d�2 � e2��d�2 ��dz2�;

(2.1)

where V, K, �, and � are structure functions of two
variables � and z. In these coordinates � and � attain the
particularly simple form �� � 	�t and �� � 	��.

The four-velocity of van Stockum flow reads u � Z�,
thus Z�2 � ����� and ��Z;� � 0. Killing equations
imply u��;�� � ���Z;��, hence the expansion scalar u�;� �

0. On projecting u��;�� onto the u-orthogonal subspace and
taking the traceless part, one infers the shear tensor van-
ishes identically, as well. van Stockum flow is therefore
rigid. Despite the fact and that angular velocity of the flow
also vanishes (u / �), the vorticity scalar ! does not,
where (we use the notation xy � x�y�)

 !2 �
1

4

����2�rS�2

����2 � � 2�2 ; S �
��

��
:

A. Equations of van Stockum flow

By definition of the flow, the energy-momentum tensor
reads T�� �DZ2����, where D is the proper energy
density such that ��D;� � 0 � ��D;�. Einstein’s equa-
tions and the contracted Bianchi identity imply the flow is
continuous and geodesic. As u�;� � 0, the continuity
equation �DZ���;� � 0 is satisfied identically. In addi-
tion, u�u�;� � �u�Z��;�. The geodesic equation
u�u�;� � 0 will be satisfied if 0 � �u�u�;� �

u�u��lnZ�;�. As u�u� � �1, Z must be constant. This,*Electronic address: Lukasz.Bratek@ifj.edu.pl
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in turn, implies V is also constant and, without loss of
generality, we may set V � 1. On defining K�� �
�2���� � 2������ � �2���� we obtain for dust
K���T�� � Tg��=2� � 0, then Einstein’s equations imply

K��R�� � 0 or �e�2�@� ln
�������
j�j

p
� 0 in coordinates,

hence � � ��z�. If so, the form of (2.1) allows us to set
��z� � 1. We have thus shown that the line element of
van Stockum flow reads
 

ds2 � �dt2 � 2K��; z�dtd�� ��2 � K2��; z��d�2

� e2���;z��d�2 � dz2�: (2.2)

Let E�� � R�� �
1
2R	

�
� � 8
T��, then E�� � 0 and

E�z � 0 yield the following relations

 �;� �
K2
;z � K2

;�

4�
; �;z � �

K;�K;z
2�

: (2.3)

The integrability condition �;�z � �;z� imposes on K the
elliptic constraint

 LK � 0; L � @2
� �

1

�
@� � @

2
z : (2.4)

Provided (2.3) and (2.4) are satisfied, the other components
of E��, but Ett and Et�, vanish identically. The latter two
will also vanish for C2 solutions (we stress, the reservation
’for C2 solutions’ is necessary) if only

 D � e�2�
K2
;� � K

2
;z

8
�2 : (2.5)

III. ASYMPTOTIC FLATNESS AND CURVATURE
SINGULARITIES

Let LK � 0 almost everywhere in an open subset V of
the plane ��; z� and letK� 2 C1�V � tend pointwise toK as
�! 0. We shall refer to K� as a regularized profile of K.
Let I 2 R3 be the set of points where LK does not exist in
the sense that lim�!0

R
I	
�LK��fdm � 0 for any 	 > 0,

where I 	 I	, 0< dist�@I	; I�< 	, e2�f � ��1K�
;� or

��2K�, and dm � e2��d�d�dz. We recall from the the-
ory of elliptic equations that I=S1 has measure zero in the
plane ��; z� and K 2 C2 elsewhere.

In what follows we shall prove that I � ; for asymp-
totically flat (starlike) van Stockum spacetimes. For if we
suppose for contradiction that I � ;, then inside a ball
BR 	 R3 bounded by a two-sphere SR of radius R and
centered at the origin
 Z

BR

De2��d� ^ d� ^ dz

�
LK�0 1

8


Z
SR

K
�
�K;zd�� K;�dz� ^ d�

�
1

8


Z
SR

K@rK
sin�

d� ^ d� (3.1)

in virtue of the Stokes theorem, provided �K2�;r � o�sin��,
(r sin� � �, r cos� � z). By asymptotic flatness K 

2Jr�1sin2� as r! 1, hence, for R sufficiently large, the
surface integral on the right-hand side is negative and tends
to 0 as R! 1, while the volume integral on the left-hand
side is positive, a contradiction, thus indeed I � ;.

The surface integral in Eq. (3.1) coincides in the limit
R! 1 with the total (Komar) mass M which vanishes for
asymptotically flat spacetimes with metric (2.2) and reads

 M � �
1

8

lim
R!1

Z
SR

1

2

�������
�g
p

�����r
���dx� ^ dx�

� lim
R!1

1

8


Z
SR

K@rK
sin�

d� ^ d� � 0: (3.2)

We conclude, therefore, that the integral
limR!1

R
BR

dm�8
�2��1e�2�KLK, which we were jus-
tified to omit in Eq. (3.1) for C2 solutions, does not vanish
and as �! 0 it tends for regularized profiles K� to minus
the total mass

R
R3nI Ddm of the regularity region R3 n I .

Putting this in other words, asymptotically flat
van Stockum spacetimes contain additional sources of
negative active mass located in I that balances positive
masses smoothly distributed in regular regions.

To be more explicit, the proper energy density ~D �

T��u�u�, the trace of spatial stresses ~S � T���u�u� �
g���, Tolman’s active mass density on a hypersurface of
constant time ~DT � �8
�

�1Rt��
�, and the curvature sca-

lar ~R � R�� of a spacetime with metric (2.2) read

 

~D �
3

4
e�2�

K2
;� � K2

;z

8
�2 �
1

8

e�2���;�� ��;zz�;

~DT � e�2�
K2
;� � K

2
;z

8
�2 �
1

8

e�2� K

�2 LK;

~S �
1

4
e�2�

K2
;� � K2

;z

8
�2 �
1

8

e�2���;�� ��;zz�;

~R � 8
� ~D� ~S�:

(3.3)

For any smooth � and K satisfying (2.3), the above defi-
nitions reduce to
 

~D �D� e�2�
K;�

16
�
LK �D� ~S;

~DT �D� e�2� K

8
�2 LK;

~S � �e�2�
K;�

16
�
LK;

~R � 8
D� e�2�
K;�
�

LK � 8
�D� 2~S�:

In particular, in the regularity region R3 n I we obtain
~D � ~DT � D � �8
��1 ~R and ~S � 0, like for dust, and
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Einstein’s equations are indeed equivalent there to (2.3),
(2.4), and (2.5). However, for regularized profiles K� we
get

R
I	

~Sdm � 0 outside I	 in the limit �! 0 for arbi-
trarily small 	. Note, that I is the set of scalar curvature
singularity as ~R is a distribution on I . Indeed, if K� is a
regularized profile of an asymptotically flat solution with
integrable D then

R
R3 ~R �

R
R3nI

~R � 8

R
R3 D in the

limit �! 0. Thus ~R � 8
D� 
I where D is smooth
and integrable, and 
I is a distribution localized on I .
The singularity is not isolated from regularity regions.1

Here is an example illustrating these statements. The
Bonnor solution [1] with an embedded surface layer of
negative mass and integrable D, which we shall denote by

K0
B, can be regularized by defining K�

B��; z� �
������������
8a3�

p
�

�2 � ��a�
����������������
z2 � �2

p
�2 � �2��3=2, a > 0, �> 0. Although

K�
B is globally C1, its limit K0

B is not even differentiable in
I , which for K0

B is the plane z � 0. On integrating over
R3 and taking the limit �! 0 we obtain

R
R3 Ddm �R

R3nI Ddm � �,
R
R3 ~Ddm � 3�=4,

R
I

~Sdm � �=4,R
R3 ~Rdm � 4
� and

R
R3 ~DTdm � 0. The latter

holds identically as 8

�������
�g
p ~DTd� ^ d� ^ dz �

d���1KK;zd� ^ d�� ��1KK;�d� ^ dz� for C2 functions,
hence

R
R3 ~DTdm � M � 0 in general for regularized

asymptotically flat profiles. Since 8
D � ~R for K0
B only

outside I , and since
R
R3nI Ddm �

R
R3 Ddm � � �

�=2 � �8
��1
R
R3 ~Rdm, the curvature scalar is a distribu-

tion, and ~R is smooth and bounded only outside I .

IV. THREE CLASSES OF SOLUTIONS

A. Solutions with a layer of negative mass

Solutions to Eq. (2.4) can be sought via integral trans-
forms, for example,

 K��; z� � �
Z 1

0
�K̂J���e��jzjJ1����d�; or

�
Z 1

0
�K̂K��� cos��z�K1����d�

generate z-symmetric solutions; J1 and K1 are Bessel
functions. To give an example, the solution �2r�3 dis-
cussed in Ref. [2] has K̂J��� � 1 and K̂K��� � 2=
, while
the Bonnor solution K0

B has K̂J��� / e
�a�. The latter be-

longs to a class of solutions defined by specifying K̂J��� �
l2n�2�2n

�2n�1�! e
�a�, n 2 N, which yields

 

Kn��; z� �
�n� 1�l2n�2�2

�a� jzj�2n�3

� 2F1

�
3

2
� n; 2� n; 2;�

�2

�a� jzj�2

�
:

Apart from the plane z � 0 the solutions are smooth every-
where. One can show that jKnj<��l=�a� jzj��2n�2, thus,
at least for l < a, hypersurfaces of constant t are globally
spacelike as then jKnj< �. Since Kn@rKn�r; �� 

r��4n�3�sin4� times a bounded geometrical factor, the
spacetimes are asymptotically flat with M � 0. Function
De2� is finite for z � 0 and for r sufficiently large behaves
as r��4n�6�. The plane z � 0 is thus a curvature singularity
with finite and negative active mass. Only the Bonnor
solution K0

B (n � 0) has nonzero angular momentum.

B. External and internal multipolar solutions and a
multipole expansion

Let K��; z� � W�r�Y�cos��, where � � r sin�, z �
r cos�. There exist three families of solutions to Eq. (2.4)
satisfying r2W00�r� � �W�r� and �1� x2�Y00�x� �
�Y�x� � 0, (x � cos�); with (i) � � ���� 1�, � � 0;
(ii) �cos2���=4, 0 
 �< 
=2 and (iii) �cosh2���=4,
�> 0. The (i) class contains x-analytic external (W �
r�n) and internal (W � rn�1) solutions. In this way we
obtain external K�n�E and internal K�n�I multipolar solutions

n 0; 2; 4; 6; . . . 1; 3; 5; 7; . . .

K�n�E ��; z�
z

��2�z2��n�1�=2 An�
z2

�2�z2�
1

��2�z2�n=2 Bn�
z2

�2�z2�

K�n�I ��; z� z��2 � z2�n=2An�
z2

�2�z2� ��2 � z2��n�1�=2Bn�
z2

�2�z2�

where An�y��2F1�
1
2�

n
2 ;�

n
2 ;3

2 ;y� and Bn�y��2F1��
1
2�

n
2 ;

n
2 ;1

2 ;
z2

�2�z2�. Internal solutions K�n�I (of which element is the
van Stockum solution [3]) give rise to spacetimes that are
not asymptotically flat. With the exception of the mono-
pole K�0�E , K�n�E yield asymptotically flat spacetimes that
contain in the center pathological singularities with non-
integrable D (e.g. e2�D> a4=�2
r6� for the dipole
K�1�E � a2sin2���r�1). For the solutions M � 0, thus con-
tributions to M from the singularities are formally �1.
Another nonphysical property of K�n�E is that jK��; z�j>�
in the vicinity of the center. In the region the axial sym-
metry Killing vector � is timelike, as so, the region con-
tains closed timelike curves (e.g. K�1�E is such inside the
region bounded by � � a

����������
sin�
p

sin�, z � a cos�
����������
sin�
p

,
� 2 �0; 
�). However, external multipoles K�n>0�

E appear
in multipolar expansions of asymptotically flat solutions.
We shall illustrate this by giving an example below.

It should be clear that Ka � �
R
a
�a a

�1sdsf��; z� s�,
a > 0, where f��; z� � K�0�E � zr�1, is a z-symmetric so-
lution such that 0 
 Ka 
 a. The conformal mapping z�
i� � a cosh�u� iv� (u � 0, 0 
 v 
 
) is invertible
apart from two points ��; z� � �0;�a� and transforms
Sa � f��; z�:� � 0; z 2 ��a; a�g to the segment u � 0,
v 2 �0; 
�. In this map the solution reads

 Ka�u; v� � asin2�v�
�
cosh�u� �

1

2
sinh2�u� ln

�
tanh2

�
u
2

���
:1In this sense we cannot agree with the statement of paper [1]

that a solution found therein has no curvature singularity.
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The resulting spacetime is asymptotically flat as Ka 

�4=3�ae�usin2v for large u. In the vicinity of u � 0, Ka 

u2 lnu, therefore I � Sa. Multipolar expansion of Ka in
the base of functions K�n�E , n � 1; 3; 5; . . . , reads
 

Ka��; z� �
2

3

�2

r3 a
2 �

1

5

�2��2 � 4z2�

r7 a4

�
3

28

�2��4 � 12�2z2 � 8z4�

r11 a6 � . . . ;

and �a�r; �� 
 ��a4=72�r�4�7� 9 cos2��sin2� as r!
1. Asymptotically, (2.2) reduces to
 

ds2 
�dt2 �
4

3

a2

r
sin2�dtd�� dr2

� r2�d�2 � sin2�d�2�:

Comparison with the asymptotic expansion of the Kerr
metric gives total mass M � 0 and total angular momen-
tum J � a2=3 in agreement with Eq. (3.2) and with the
analogous expression for the total angular momentum of
asymptotically flat van Stockum flow

 J � lim
r!1

1

16


ZZ �2K
r
�

�
1�

K2

r2sin2�

�
@rK

�
r2 sin�d�d�:

V. SUMMARY

We investigated stationary, axisymmetric and asymp-
totically flat spacetimes of self-gravitating dust moving
on integral curves of the time translation Killing vector.
The flow is rigid with the proper energy density propor-
tional to the square of vorticity scalar, and is ultrarelativ-
istic even in the limit of negligible density. Geometry of the
spacetime is described by van Stockum metric [3], hence
the name ‘‘van Stockum spacetimes.’’

We demonstrated that positive definiteness and integra-
bility of proper energy density excludes regular asymptoti-
cally flat van Stockum spacetimes. Asymptotical flatness
implies the existence of spatial measure zero sets of scalar
curvature singularities. The singularities have distribu-
tional character and are not isolated from regularity re-
gions. Closely related to the singularities are stresses
(distinct from dust) that contribute negative active masses
to the total Komar mass (ADM and Komar mass agree for
the spacetimes). In effect, owing to the presence of the
singularities, total mass of asymptotically flat van Stockum
spacetimes is zero. We illustrated our statements by dis-
cussing Bonnor solution [1] with a negative layer of mass
and with integrable energy density. We constructed also a
class of similar solutions and a class of external (asymp-
totically flat) and internal (not asymptotically flat) multi-
polar solutions. The external multipoles appear in
multipolar expansions of asymptotically flat solutions.
The use of multipolar expansions is the other way around
to see that total mass of asymptotically flat solutions is zero
and that the total angular momentum is proportional to the
amplitude of the dipole momentum.

Because of the mathematically singular properties ex-
amined in Sec. III and peculiarities of the corresponding
flows discussed in Secs. I and II, global and asymptotically
flat van Stockum spacetimes, or spacetimes of which line
elements asymptotically tend to or are matched on to
asymptotically flat van Stockum metrics (then total mass
would be zero), are not viable physically and thus seem to
be of no importance to astrophysics. However, there is still
a possibility that van Stockum spacetime can be part of a
regular spacetime.

[1] W. B. Bonnor, Gen. Relativ. Gravit. 37, 12, 2245 (2005)
[2] W. B. Bonnor, J. Phys. A: Math. Gen. 10, 10, 1673 (1977).
[3] W. J. van Stockum, Proc. Roy. Soc. Edin. 57, 135 (1937).

[4] R. M. Wald, General Relativity (The University of
Chicago Press, Chicago, 1984).

BRIEF REPORTS PHYSICAL REVIEW D 75, 107502 (2007)

107502-4


