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We continue to investigate properties of the worldsheet conformal field theories (CFTs) which are
conjectured to be dual to free large N gauge theories, using the mapping of Feynman diagrams to the
worldsheet suggested in [R. Gopakumar, Phys. Rev. D 70, 025009 (2004); 70, 025010 (2004); C. R.
Physique 5, 1111 (2004); Phys. Rev. D 72, 066008 (2005)]. The modular invariance of these CFTs is
shown to be built into the formalism. We show that correlation functions in these CFTs which are
localized on subspaces of the moduli space may be interpreted as delta-function distributions, and that this
can be consistent with a local worldsheet description given some constraints on the operator product
expansion coefficients. We illustrate these features by a detailed analysis of a specific four-point function
diagram. To reliably compute this correlator, we use a novel perturbation scheme which involves an
expansion in the large dimension of some operators.
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I. INTRODUCTION

Since the seminal work of ’t Hooft [1], it has been
widely believed that large N SU�N� gauge theories (with
adjoint matter fields) should have a dual description in
terms of closed strings with a string coupling constant gs �
1=N. The original argument for this duality was based on
the reinterpretation of Feynman diagrams as string theory
diagrams. Feynman diagrams drawn in ’t Hooft’s double-
line notation resemble two-dimensional surfaces with
holes. It was conjectured that there should be an equivalent
description in which the holes get filled up, leading to
closed Riemann surfaces without boundaries.

The arguments of ’t Hooft do not give a prescription to
construct the string theory dual to a specific large N gauge
theory. Numerous attempts have been made to directly
construct string theory duals for given field theories.
However, success was mainly achieved when the field
theory had a topological interpretation (Chern-Simons the-
ory [2] and the Kontsevich model [3] are good examples of
this) or the putative dual string theory was exactly solvable
(d � 2 string/matrix model duality). This situation has
changed following the AdS/CFT correspondence [4]. By
now, there are many examples in which it is known how to
find the closed string dual of gauge theories which can be
realized as the world-volume theories of D-branes in some
decoupling limit. In these cases the closed string dual turns
out to be a standard closed string theory, living in a warped
higher dimensional space. In some cases, for which the
gauge theory is strongly coupled, the dual string back-
ground is weakly curved and a gravity approximation of
the string theory may be used. In general (and, in particu-
lar, for all weakly coupled gauge theories), this is not the
case, and the dual string theory is complicated (and does
not necessarily have a geometrical interpretation).

It is interesting to ask what is the string theory dual of
the simplest large N gauge theory, the free gauge theory.1

There have been various proposals for how to study the
string dual of free large N gauge theories (see, for instance,
[5–14]). It is clear that the dual string theories must live in
a highly curved background, which may or may not have a
geometrical interpretation (for four-dimensional free
gauge theories with massless matter fields, which are con-
formally invariant, one expects that any geometrical inter-
pretation should include an AdS5 factor).

In this paper we continue our study of a specific proposal
[5]2 for how to map the Feynman diagrams to worldsheets.
This proposal is based on rewriting the propagators in the
Feynman diagrams as integrals over Schwinger parame-
ters, and mapping these parameters to the moduli of a
Riemann surface with holes (which include the moduli of
the closed Riemann surface and the circumferences of the
holes).3 One can then integrate over the parameters of the
holes, and translate any Feynman diagram to a correlation
function on the closed string worldsheet. This proposal
makes the procedure advocated by ’t Hooft manifest.
Most of our discussion will be general, but whenever we
need a concrete example we will consider operators in-
volving adjoint scalar fields in a four-dimensional gauge
theory.

The mapping of [5] gives a closed string theory whose
integrated correlation functions (of physical vertex opera-

1Note that the free limit of an SU�N� gauge theory is not the
same as a theory of (N2 � 1) free fields, since the Gauss law
constraint is still imposed on physical states. Equivalently, we
only consider gauge-invariant operators.

2See [15–18] for further work on this proposal.
3The holes here are not those of the gauge theory Feynman

diagram but rather of its dual. They are therefore as many in
number as the vertices of the original graph.
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tors), by construction, reproduce the space-time correlation
functions. The worldsheet theory is also automatically
conformally invariant (so that it can be interpreted as a
closed string theory in conformal gauge) and modular
invariant. However, the construction does not give a
Lagrangian for the worldsheet theory, and it is not clear
from the construction if this worldsheet theory is a standard
local conformal field theory or not.

It was noted in [16] that the prescription of [5] gives rise
to an interesting feature, which naively is in contradiction
to having a well-behaved worldsheet field theory: some of
the putative worldsheet correlators localize on lower-
dimension subspaces of the moduli space of marked
Riemann surfaces. In a usual local field theory, one expects
the worldsheet correlator to be a smooth function on the
moduli space, which naively rules out any localization on
subspaces. In this paper we claim that such a localization
can arise in specific field theories by a special conspiracy
between the operator product expansion (OPE) coeffi-
cients. We also discuss the manifestation of modular in-
variance in the prescription of [5]. Although modular
invariance is guaranteed by the prescription, we will illus-
trate that in some amplitudes it is realized in a quite
intricate manner.

This paper is organized as follows. In Sec. II we present
the problems of modular invariance and the localization on
the worldsheet and our suggested resolution of these prob-
lems. In Sec. III we concentrate on a specific four-point
function: the ‘‘Broom’’ diagram. This diagram does not
localize on a subspace of the moduli space, but it has limits
in which it goes over to a localized diagram. We discuss the
limits in which this diagram can illustrate different general
features of the prescription, and we perform an explicit
perturbative analysis of the diagram around exactly solv-
able limits. In Sec. IV we present results about more
general exactly solvable subspaces of the Broom diagram,
which serve as a check on the perturbative analysis. In
Sec. V we discuss the delocalization of the worldsheet
amplitudes as illustrated by the field theory analysis of
Broom correlators. We end in Sec. VI with a summary
and a discussion of some open problems. In Appendix A
we discuss the elliptic function approach to the Strebel
problem which arises in computing the Broom diagram in
more detail, and present the matching between perturba-
tion theory and the exact results. In Appendix B two other
diagrams which also localize on a subspace of the moduli
space, the Square diagram and the Whale diagram, are
analyzed. We show that the Whale diagram localizes
in a different way than the other diagrams we discuss: it
localizes on a two-dimensional subspace of the two-
dimensional moduli space.

II. GENERAL FEATURES

In [5] a specific prescription was suggested for mapping
the correlation functions of free large N gauge theories to a

string worldsheet, in the ’t Hooft large N limit [1]. This
prescription involves rewriting each Feynman diagram
contributing to an n-point correlation function as an inte-
gral over the Schwinger parameters of the propagators,
after reduction to a ‘‘skeleton graph’’ in which homotopi-
cally equivalent propagators (when the Feynman diagram
is interpreted as a genus g Riemann surface using the
double-line notation) are joined together, and then map-
ping the space of these Schwinger parameters to the ‘‘dec-
orated moduli space’’ Mg;n � Rn

�. This is the moduli
space of genus g Riemann surfaces with n marked points,
together with a positive number pi associated with each
point. As described in detail in [5], this mapping uses the
properties of Strebel differentials4 on genus g Riemann
surfaces. After integrating over the pi, this procedure gives
a specific worldsheet n-point correlation function associ-
ated with this Feynman diagram which, by construction,
reproduces the correct n-point space-time correlation func-
tion (upon integration over the worldsheet moduli).

Certain properties of the mapping proposed in [5] and of
the worldsheet correlation functions it leads to can be
understood by general considerations. Two of these prop-
erties—the lack of special conformal invariance in space-
time and the localization of certain amplitudes on lower-
dimension subspaces of the moduli space—were eluci-
dated in [16]. We begin this section by discussing another
general property of the resulting worldsheet correlation
functions, which is modular invariance. We then discuss
in more detail the interpretation of the amplitudes which
are localized on the moduli space. We argue that these
amplitudes should be interpreted as delta-function distri-
butions, and we discuss why the appearance of such dis-
tributions in correlation functions is not necessarily in
contradiction with a local worldsheet interpretation. In
fact, we derive some general constraints on the OPE co-
efficients of the putative local worldsheet theory which are
needed for reproducing the localized correlation function.

In order to establish an exact sense in which the local-
ized correlators should be treated as delta functions, we
analyze a small deformation of the localized diagram. This
deformation involves taking the limit of correlation func-
tions with a large number of field contractions between the
vertex operators of the original localized diagram, and a
small number of additional contractions. We argue that
such correlation functions are smooth but tend to localize
near subspaces of the moduli space, and that the mapping
(and the corresponding Strebel differentials) may be com-
puted perturbatively in the inverse number of fields (or
in the distance from the localized limit). By using this
expansion we can show that in the limit in which the
correlation functions localize they become delta-function
distributions.

4See [19–21] for details about Strebel differentials and [22–
24] for additional applications of these differentials in string
theory.

OFER AHARONY et al. PHYSICAL REVIEW D 75, 106006 (2007)

106006-2



In the subsequent sections of the paper, we discuss in
detail a particular 4-point function diagram, which we call
the Broom diagram, and we use this diagram to illustrate
the general features described in this section. In particular,
the expansion method described in Sec. II B may be used to
compute this diagram in some regions of its parameters.

A. Modular invariance of worldsheet amplitudes
defined by the procedure of [5]

In this subsection we discuss how modular invariance is
realized in the prescription suggested in [5]. The mapping
from the Schwinger parameters on the gauge theory side to
the decorated moduli space of the Riemann surfaces
Mg;n � Rn

� is, by construction, consistent with the action
of the modular group on this space. The mapping uses the
Strebel theorem to relate the two, which ensures that (for
generic Feynman diagrams) we cover the whole decorated
moduli space (after the identifications imposed by the
modular group) and we cover it exactly once.

However, the way that modular invariance is technically
realized can in some cases be nontrivial. This is because
the mapping of [5] involves taking the square root of the
Strebel differential. In cases where this square root has
branch cuts, one must be careful to choose specific
branches in order to ensure that the final worldsheet corre-
lators are single valued on the moduli space.

Several correlators were analyzed in [16,17], where it
was shown by direct computation that these amplitudes are
consistent with the modular invariance. However, in all of
these cases the square roots of the Strebel differentials
corresponding to the diagrams contributing to those am-
plitudes did not include fractional powers and thus did not
have any branch cuts. In this paper we will analyze in detail
a diagram which does have branch cuts for the square root
of the Strebel differential. Note that the existence of the
branch cuts does not affect ‘‘large modular transforma-
tions’’ such as �! 1=�, but periodicity issues, such as
taking two points in a closed path around each other or
taking the torus modular parameter � to �� 1, should be
addressed with more care. We will illustrate the general
issue in this subsection by looking at general properties of
4-point functions on the sphere. A specific example will be
discussed in the next section.

Consider a four-point correlator on the gauge theory
side,

 hO1�x1�O2�x2�O3�x3�O4�x4�i: (1)

In the suggested mapping, we map the space-time opera-
tors Oi�xi� to worldsheet operators Vi;xi�z�, and we are
given a specific procedure to calculate

 hV1;x1
�0�V2;x2

�1�V3;x3
���V4;x4

�1�i: (2)

Note that when we write the field theory graph and assign
specific operators to each node, this by itself does not fix

the assignment of the positions of the dual operators on the
worldsheet. The mapping of [5] is modular invariant;
however, it is usually convenient to fix the modular free-
dom by choosing three specific operators to map to three
specific locations, as indicated in (2). Of course, we could
also choose to fix the modular group in any other way,
and all such ways are related by SL�2;C� modular
transformations.

Once we choose such a specific fixing of the modular
group we can find the correlator (2) using the mapping of
[5]. However, when we do this we can find that the relation
between the Schwinger parameters and � is such that there
are apparently branch cuts on the �-plane. This would lead
to an ambiguity in rotating � by a full circle around (say)
z � 0. Since the mapping of [5] is well defined,5 it is clear
that there exists a choice of the branch which leads to an
answer which is single valued, i.e. periodic under a rotation
taking �! e2�i�. However, in some cases this choice of
branch is not the most natural one, and it requires changing
the branch of the square root at some point when we rotate.
Obviously, such a change in the branch is only consistent if
the correlator vanishes at some point on every path taking
�! e2�i�, and this is indeed what we will find in our
example in Sec. III A 1.

To illustrate this subtle point consider the ‘‘Broom dia-
gram,’’ illustrated in Fig. 1. In this example it turns out, as
we will discuss in more detail in Sec. III A 1 below, that if
we stay on the same branch of the square root of the Strebel
differential, the topology of the critical graph of this dif-
ferential changes as we take �! e2�i�, leading to a
different Feynman diagram, as described in Fig. 1. Thus,
one should be careful about the choices of branches when
performing computations using the procedure of [5].
However, this subtle issue does not affect the fact that the
prescription of [5] always gives modular-invariant
answers.

 

η

η → e2π i πiη η → e4 η

∞

η

0 1 0 1

∞

η

0 1

∞

FIG. 1. The skeleton graph which we refer to as the ‘‘Broom
diagram.’’ We depict here what happens if we make the naive
choice of branches, in which we do not change branches when
we rotate �. We see that for this choice the rotation in the �
plane changes the position of one of the edges, and thus changes
the correlator we are computing.

5Given a set of Schwinger parameters there is a unique set of
circumferences and the position on the moduli space is unique up
to the modular group, which we fixed as described above. In
other words, the prescription does not distinguish between � and
�e2�ik.
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B. Short edge expansions

In this subsection we describe a limit of free field theory
correlation functions which is governed by a saddle point
in the Schwinger parameter space. The expansion in the
position of the saddle point corresponds to an expansion in
the length of one or more small edges in the critical graph
of the corresponding Strebel differential. As we will see in
the next subsection, this is useful for analyzing correlators
involving diagrams whose contributions are localized on
subspaces of the moduli space. These are always diagrams
whose dual graph (which is the critical graph of the Strebel
differential) has some vanishing edges.

For simplicity, consider a four-dimensional large N
gauge theory, and consider a correlation function

 

�Yn
i�1

Oi�xi�
�

(3)

of gauge-invariant operators made purely of adjoint scalar
fields. In the free gauge theory, each Feynman graph
corresponding to such a correlation function involves Jij
contractions of fields between the ith and the jth operator,
so that the answer is given by

 

Y
1�i<j�n

jxi � xjj�2Jij : (4)

In the Schwinger parametrization (which generalizes the
one used in [5] to position space), this is rewritten as (up to
a constant)

 

Z Y
1�i<j�n;Jij>0

d�ij�
Jij�1
ij e��ijjxi�xjj

2
; (5)

and the integration over the �’s is identified with the
integral over the decorated moduli space of Riemann sur-
faces, with the �’s identified with the lengths of the edges
of the critical graph of the Strebel differential. When some
of the Jij vanish so that some of the � integrations are not
present, this integral is localized on a subspace of the
decorated moduli space, and it may also be localized on
a subspace of the moduli space, as discussed in [16].

Note that a rescaling of all the �’s acts on the decorated
moduli space just by rescaling the pi’s, without changing
the position on Mg;n. Thus, the position on the moduli
space is independent of the overall scale but depends only
on the ratios of the �ij’s. It is then useful to separate the
integral into the overall length and the ratios. When (say)
J12 > 0, we can do this by defining sij 	 �ij=�12.
Denoting by S1 the set f�i; j�j1 � i < j � n; Jij > 0g and
by S2 the set S1 � �1; 2�, we can rewrite (5) as
 Z

d�12

� Y
�i;j�2S2

dsijs
Jij�1
ij

�
�

��i;j�2S1
�Jij�1�

12

� e��12�jx1�x2j
2���i;j�2S2

sijjxi�xjj
2� (6)

or (up to a constant)

 Z � Y
�i;j�2S2

dsijs
Jij�1
ij

�

�

�
jx1 � x2j

2 �
X
�i;j�2S2

sijjxi � xjj
2

�
���i;j�2S1

�Jij�1��1
:

(7)

In general, the integral (7) is quite complicated when
written as an integral over the moduli space. However, if
we look at the limit when one (or more) of the Jij’s
becomes very large, the integral is dominated by a saddle
point in the Schwinger parameter space, and can be eval-
uated in the saddle point approximation. This saddle point
maps onto a point in the decorated moduli space (up to the
overall scaling of the pi), and therefore it is also located at
a point in the moduli space. In the limit of large J 	P
�i;j�2S1

Jij, and assuming without loss of generality that
J12 is of order J in this limit,6 this saddle point is located at
(at leading order in 1=J)

 sij �
�Jij � 1�jx1 � x2j

2

J12jxi � xjj2
: (8)

If all of the Jij’s become large then this saddle point will
map onto a point in the middle of the moduli space.
However, if one (or more) of the Jij’s remain finite in the
large J limit, then the sij and therefore the Strebel length lij
of the corresponding edge scales as 1=J in the large J limit.
Thus, expanding in 1=J leads to an expansion in small
edges of the Strebel differential.

As an example, we can consider the following operators:
 

O1�x1� � Tr��J1
1 �x1��;

O2�x2� � Tr��J2
2 �j

3�x2��;

O3�x3� � Tr��J2
2 �J3

4 �x3��;

O4�x4� � Tr��j
3�J3

4 �J1
1 �x4��;

(9)

where �i are some scalar fields in the adjoint of U�N�. In
this case the only planar diagram that contributes to

 hO1�x1�O2�x2�O3�x3�O4�x4�i (10)

has the skeleton drawn in Fig. 2. We can consider the limit
where the Ji become large while j remains finite, so that
there are many contractions along the bold lines in Fig. 2
and a few contractions on the thin line. The general argu-
ments above imply that in this limit the diagram will get its
dominant contribution from Strebel differentials for which
the (dual) edge corresponding to the line between x2 and x4

is very small.
The limit where edges of the critical graph of the Strebel

differential vanish is the same as the limit where several

6At least one of the Jij’s must be of order J in this limit, and
we choose the ordering of the points so that it is J12.
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zeros of the Strebel differential come together, leading to a
nongeneric critical graph. In the limit where the zeros
come together, this critical graph is the dual of the field
theory diagram which we obtain by removing the edges
corresponding to the finite Jij’s from the Feynman graph.
Such nongeneric Strebel differentials are often easier to
compute. For instance, in the example described above, the
differential for the resulting ‘‘�’’ diagram was computed
in [16]. We can then perform a perturbative expansion in
the length of the small edges around these nongeneric
Strebel differentials, and interpret the result in terms of
the large J limit of the field theory correlation functions
described above.

In this way, we are able to reliably change variables of
integration in some neighborhood of the saddle point of
(7). The correlator in the appropriate part of the Riemann
surface (which is the image of a neighborhood of the
saddle point under the Strebel map) is a very good ap-
proximation to the exact result because contributions from
other regions in the field theory integral are substantially
smaller.

C. Localized correlators as distributions

It was shown in [16] that certain worldsheet correlators,
corresponding to nongeneric Feynman diagrams which do
not include all possible contractions in their skeleton
graph, are localized on lower-dimension subspaces of the
moduli space of Riemann surfaces. This localization may
perhaps be attributed to the fact that the free field theory is
a singular limit from the string theory point of view, which
is naively related (at least in the context of string theory on
AdS5 � S

5) to the limit in which the tension of the string

vanishes; recall that similar localizations have been en-
countered also in a different ‘‘tensionless’’ limit [25].7 So,
this fact by itself is not in contradiction with the existence
of a local worldsheet description. In this subsection we
discuss the interpretation of the localized correlation func-
tions and their implications for the OPE coefficients.

Consider a Feynman diagram giving rise to a localized
worldsheet correlator. This correlator may be written as an
integral over a subspace of the moduli space of the
Riemann surface, which is the subspace spanned by the
Strebel differentials whose critical graph has the topology
dual to the Feynman graph. This integral, at least in the
special case considered above of correlation functions of
scalar operators in a four-dimensional gauge theory, is
positive definite. This is because the field theory expression
for the integral (5) is positive definite, and the mapping of
the space of Schwinger parameters to the decorated moduli
space is one-to-one (leading to a positive definite
Jacobian).

Feynman diagrams with a specific topology for their
skeleton graph give localized correlators independently
of the number of contractions; in particular, we can con-
sider the limit where the number of contractions J is large.
In this limit we can consider adding an additional small
number of contractions to the Feynman diagram such that,
as described in the previous subsection, they will lead to
additional small edges in the critical graph of the Strebel
differential, with a length of order 1=J. Upon adding the
additional edges the correlator is no longer localized, and is
a smooth function on the moduli space for finite J (this is
certainly true if we make all the edges finite, and in many
cases it is true even if we just add one small edge). This
function is still positive, and in the large J limit it becomes
localized on a subspace of the moduli space. Since the
localized correlator arises as a limit of smooth positive
functions whose integral is finite, it is clear that it must be
proportional to a delta-function distribution on the sub-
space where the correlator is nonvanishing. While our
argument that the correlator should be thought of as a
delta-function distribution is valid only in the large J limit,
it seems likely that the same interpretation of the localized
correlators should hold also for finite values of J.

When we have a correlator localized on a lower-
dimension subspace of the moduli space, in some cases
when we take the OPE limit of two points on the world-
sheet approaching each other (say, with two operators at �
and at 0 in the �! 0 limit), we find that the correlator is
localized at a specific angle in the�-plane, for instance that
it is nonzero only for (negative) real values of � (as for the
� diagram [16]). How is this consistent with having a
smooth OPE? For simplicity let us consider a four-point
function which is localized on the negative real axis,
namely

 hV1���V2�0�V3�1�V4�1�i � f�j�j����� �� (11)

for some worldsheet operators Vi. Here we have written

 

x 1

x 3

x 4

x 2

FIG. 2. The skeleton graph of the Broom diagram. The xi label
space-time points where operators are inserted. Bold lines rep-
resent many homotopic contractions. On the other hand, the line
connecting x2 and x4 has a small number of contractions.

7Localization of worldsheet correlators on lower-dimension
subspaces of the moduli space of Riemann surfaces has also
appeared in the framework of string theory in twistor space [26].
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� � j�jei�. Let us write the OPE expansion of V1 and V2

in the general form

 V1���V2�0� ’
X
n; �n

c12
n �nOn; �n�0��n�2 �� �n�2; (12)

where the operators On; �n have weight �n; �n� and we as-
sumed that the Vi are physical operators of weight (1, 1).
We know from modular invariance that we can limit our-
selves to integer spins n� �n, though the sums n� �n can
take any value (and in string duals of conformal field
theories it is believed that they take continuous values
[16,27]). Combining (11) and (12) and using

 2����� �� �
X1

k��1

��1�keik�; (13)

we obtain that for any given value of n� �n we must have

 c12
n �nhOn; �n�0�V3�1�V4�1�i � constantn� �n��1�n� �n; (14)

where the constant may depend on n� �n but is indepen-
dent of n� �n; namely, for every value of n� �n there must
be an infinite series of operators appearing in the OPE, with

 n �
n� �n

2
;
n� �n

2



1

2
;
n� �n

2

 1; . . . ; (15)

which all give rise to the same constant in (14). A con-
spiracy of this form (14) is sufficient for reproducing
localized correlation functions of the form (11); any op-
erators appearing in the OPE which are not part of such a
conspiracy must not contribute to the localized 4-point
functions.

III. THE BROOM DIAGRAM AND ITS LIMITS

In this section we study in detail the Broom diagram and
the limits in which it degenerates to the Y and the �
diagrams. In Fig. 3 we have drawn both the field theory
diagram and its dual diagram which corresponds to the
critical graph of the Strebel differential. The field theory
graph is indicated in bolder lines, while the critical graph is
indicated by curves. The critical graph has two vertices: at
one vertex three lines meet, while at the other five lines
meet. Thus, the Strebel differential corresponding to this
graph has one zero of order 1 and one zero of order 3.

We label the vertices of the Broom diagram to be at 0, 1,
1, � (see Fig. 3); these correspond to the poles of the
Strebel differential. The residues at these poles are given
by the positive numbers p0, p1, p1, and p�, respectively.
From the figure it is easy to see that the following relations
hold:
 

l1 � p1; l2 � l3 � p1;

l4 � l3 � p0; l4 � l1 � l2 � p�:
(16)

Here l1, l2, l3, l4 denote the Strebel lengths of the edges of
the critical graph as shown in the figure. From the above
equations it is easy to solve for l2, l3, l4:

 l2 �
1
2�p1 � p0 � p� � p1�; (17)

 l3 �
1
2�p1 � p0 � p� � p1�; (18)

 l4 �
1
2�p� � p1 � p1 � p0�: (19)

Thus, all the Strebel lengths are solved in terms of the
residues, which indicates that in order to determine the
Strebel differential of the Broom diagram for given pi one
needs to solve only algebraic equations, and not the tran-
scendental equations involving elliptic functions in their
full generality. Note also that we have focused on a par-
ticular Broom diagram, in which the vertices correspond-
ing to 0 and 1 are connected. There are two other possible
Broom diagrams (with a central vertex at �), one in which
0 and 1 are connected and one in which 1 and 1 are
connected. All these cases are related by appropriate
choices of branch cuts as mentioned in Sec. II.

Now let us look at the various limits of the Broom
diagram. There are three limits (for positive pi) and they
are obtained by setting one of the edges l2, l3, or l4 to zero.
l2 � 0

As the edge l2 degenerates, we see the dual edge con-
necting 1 and � is removed and one is left with the �
diagram in which the residues satisfy the relation

 p1 � p� � p0 � p1: (20)

This � diagram, which we call the �1 diagram, and its
dual graph are shown in Fig. 4.
l3 � 0

When the edge l3 degenerates, the Broom diagram re-
duces to the Y diagram in which the residues satisfy the

 

0 1

∞

η

p0

p∞

pη

p1

l1

l2

l4

l3

FIG. 3. The Broom diagram in field theory (the straight lines)
and its dual graph.
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relation

 p0 � p1 � p1 � p�: (21)

Here the dual edge joining 1 and 0 disappears, as depicted
in Fig. 5.
l4 � 0

In this limit, the Broom diagram reduces again to a �
diagram which is distinct from the earlier one. Here the
residues satisfy the relation

 p� � p0 � p1 � p1; (22)

and the dual edge joining � and 0 is removed, see Fig. 6.
We call this diagram �2.

From the above discussion we see that the � diagrams
and the Y diagrams which are obtained as limits of the
Broom diagram are linear subspaces in the space of the p’s.
In fact, since the overall scale of the Strebel differential
only sets the overall scale for all lengths, we only need to
consider the ratios pi

p1
(i � �, 0, 1). Then, the � and the Y

diagrams correspond to planes in the positive octant of the
three ratios.

Our goal is to compute some Broom diagrams; this
should provide us with new worldsheet correlators which
can be studied and lead us to a better understanding of the
worldsheet CFT. Though the equations are algebraic, it is
very hard to obtain closed form expressions for the cross
ratio � as a function of the lengths li. As we will see in the
next section, at a generic point in the octant of the pi’s one
needs to solve a sixth order algebraic equation. Thus,
closed form expressions can only be obtained on subspaces
where the equations reduce to lower order ones.

We will therefore mostly use perturbation theory around
the limits mentioned above. There are two different tech-
niques to do this. One uses straightforward computations
on the sphere, while the other was developed in [17] and
uses expansions around special points of elliptic functions.
In this section, we use the more straightforward technique,
and in Appendix A we exhibit the other way to do it.8 Of
course, the final results agree precisely. As a further check
we will see in the next section that the perturbation theory
agrees with exact results obtained in some of the exactly
solvable subspaces in a common region of intersection.

 

0 1

∞

η

p0

p∞

pη

p1

l1

l2

l4

FIG. 5. The Y diagram and its dual graph.

 

0 1

∞

η

p0

p∞

pη

p1

l1

l2

l3

FIG. 6. The �2 diagram and its dual graph.

 

0 1

∞

η

p0

p∞

pη

p1

l1

l4
l3

FIG. 4. The �1 diagram and its dual graph.

8It is best to read Appendix A after Sec. IV, where the relevant
schemes are defined.
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A. Perturbing around the � and the Y

In this section we compute explicitly the first nontrivial
order of the Broom diagram when expanded around the �
and Y diagrams. We begin with the expansion around the Y
diagram, which exhibits many basic features of the pertur-
bation scheme, and continue to the expansion around the
�, emphasizing the implications for the localization of the
� found in [16]. A detailed field theory analysis using the
worldsheet correlator that we find is postponed to Sec. V.

1. Perturbation around the Y diagram

Let us consider the Broom diagram as a perturbation of
the Y diagram, and write down its Strebel differential
where we pick the positions of the worldsheet insertions
as in Fig. 7. Our expansion around the Y diagram is an
expansion around the subspace where the residues are
related by p� � p0 � p1 � p1.

We scale all the Strebel lengths relative to p1 and define
�i � pi=p1. The quadratic Strebel differential is

 qdz � dz � �p2
1

1

4�2

�z� c��z� c� ��3

z2�z� 1�2�z� ��2
dz � dz: (23)

We consider an expansion around the degenerate differen-
tial with all zeros coincident, or in other words we perform
a Taylor expansion with small parameter �. As mentioned
above, there is no Strebel condition here, just algebraic
constraints which fix the residues of the poles. The signs of
the square roots of the residues �2

i of (23) are set by the
limit �! 0 which is the Y diagram, for which [16] �0 �
�c2=�, �1 � �c� 1�2=��� 1�, �� � ��� c�2=����
1�. Expanding to the first order where the constraint equa-
tion is modified we get
 

�0 � �
c2

�
�

3

2

c
�
��

3

8

1

�
�2 �

1

16

1

c�
�3 �O��4�;

�1 �
�c� 1�2

�� 1
�

3

2

c� 1

�� 1
��

3

8

1

�� 1
�2

�
1

16

1

��� 1��c� 1�
�3 �O��4�;

�� �
��� c�2

���� 1�
�

3

2

�� c
���� 1�

��
3

8

1

���� 1�
�2

�
1

16

1

���� c���� 1�
�3 �O��4�:

(24)

Let the (rescaled) length of the small edge of the Broom
diagram be l (see Fig. 7):

 2l � �0 � �1 � 1� ��: (25)

Using (24) this is equal to

 l �
1

32

�3

c��� c��c� 1�
�O��4�: (26)

Not surprisingly, the edge is nonzero only at the third order

in the perturbation; the fact that the point we expand about
has a fourfold degenerate zero implies that the first two
contributions to the additional edge vanish. Note that in
(26) one can substitute for � and c their zeroth order (in �)
values. The geometric meaning of this equation is very
simple: it is 1

32 �
3 multiplied by the residue of the fourfold

zero in the Y diagram. For all other purposes [except (26)],
we may use the equations (24) to the first nontrivial order
in �. This should suffice to obtain the leading corrections to
the amplitude written explicitly in [17]. Some trivial alge-
bra gives the nice result:

 c �
1

2

�
1� �1 � ���0 � �1� �

3�
2

�
�O��3�: (27)

Notice that there is no correction of order �2. This will play
a major role in the sequel. Substituting this in the first
equation in (24) we get

 ��0 � �
1

4
�1� �1 � ���0 � �1��

2 �
3�2

16
�O��3�:

(28)

It is easy to obtain explicit formulas in the gauge we use, as
was noticed in [17]. We can rewrite (28) as
 

�2��0 � �1�
2 � 2�����1 � �0� � �1� �1�

2

� 3�2=4 � O��3�; (29)

using the relation among circumferences �� � �0 � �1 �

1�O��3�. This is a quadratic equation for �, with the two
solutions corresponding to two possible orientations of the
Y diagram before the additional line is added. We choose
the solution of (28) given by

 � �
� ���������������1
p

� i
������
�0
p

�0 � �1

�
2
�

3

16

i�2������������������0�1��
p �O��3�: (30)

This is the only thing we need, in principle, for the variable
change to the field theory. From here on all the equations
we write will be correct up to O��3�. One can invert
Eq. (30) to simplify the substitution in the field theory.
First, note that

 �� 1 �
� ������
�1
p

� i ���������������0
p

�0 � �1

�
2
�

3

16

i�2������������������0�1��
p : (31)

 

∞

0 1

η

c −
l

0
η

∞
1

c

FIG. 7. The critical (and the dual) graph for the Broom ex-
panded around the Y diagram.
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Simple manipulations lead to the equations
 

��0 � �1�j�j � �1� �1� �
3

32�1� �1�

�
�

i�2������������������0�1��
p �

������������
���1
p

� i
������
�0
p
�2 �

i ��2������������������0�1��
p �

������������
���1
p

� i
������
�0
p
�2
�
;

��0 � �1�j�� 1j � �1� �0� �
3

32�1� �0�

�
�

i�2������������������0�1��
p �

������
�1
p

� i
������������
���0
p

�2 �
i ��2������������������0�1��

p �
������
�1
p

� i
������������
���0
p

�2
�
:

(32)

A nice consistency check is that in the zeroth order, � � 0, one reproduces the equations obtained in [17]. It is easy to solve
the equations in the zeroth order (these are linear equations), and then to iterate and find the first correction. The zeroth
order result is

 �0 �
j�� 1j � j�j � 1

j�� 1j � j�j � 1
; �1 �

j�j � j�� 1j � 1

j�� 1j � j�j � 1
; �� �

j�j � j�� 1j � 1

j�� 1j � j�j � 1
: (33)

To the end of finding the final iterated results as � � ���; �� the form (32) is not very convenient. An equivalent form of
(32) (obtained by using the known zero order relations) is
 

��0 � �1�j�j � �1� �1� �
3

16

j�� 1j � j�j � 1

j�j

�
Im��2��
Im���

�
;

��0 � �1�j�� 1j � �1� �0� �
3

16

j�� 1j � j�j � 1

j�� 1j

�
Im��2��� 1��

Im���

�
:

(34)

It is now trivial to solve these equations, and obtain the corrected form of the circumferences as functions of the sphere
modulus � and the separation of the zeros �. The first nontrivial order of the corrected solution is

 �0 �
j�� 1j � j�j � 1

j�� 1j � j�j � 1
�

3

16

j�j � 1

j�� 1j

�
Im��2��� 1��

Im���

�
�

3

16

j�� 1j

j�j

�
Im��2��
Im���

�
;

�1 �
j�j � j�� 1j � 1

j�� 1j � j�j � 1
�

3

16

j�� 1j � 1

j�j

�
Im��2��
Im���

�
�

3

16

j�j
j�� 1j

�
Im��2��� 1��

Im���

�
;

�� �
j�j � j�� 1j � 1

j�� 1j � j�j � 1
�

3

16

1

j�j

�
Im��2��
Im���

�
�

3

16

1

j�� 1j

�
Im��2��� 1��

Im���

�
:

(35)

Combining (26) with (24), one obtains at leading order

 l2 �
1

322

�6

c2��� c�2�c� 1�2
�

1

322

��6

�2��� 1�2
1

�0�1��
:

(36)

The cross ratio (30) contains �2, which means that one has
to take a third root of Eq. (36). This leads to 3 possible
solutions which corresponds to the 3 possible locations of
the additional edge. For any value of � and l, we have three
possible ways to split the zeros of the differential corre-
sponding to Y diagram and obtain the Broom; the differ-
ence will be in the position of the extra edge. Fixing the
specific diagram we want to compute uniquely fixes the
branch of the cubic root as was explained in Sec. II A. We
also explained in Sec. II A that the naive choice of the
branch is wrong because it changes the worldsheet corre-
lator we actually compute. This is now obvious from
Eq. (36): a rotation around, say, � � 0 changes the branch
upon computing the cubic root, so it would change the
topology of the diagram. Note that this is consistent only if
the additional edge vanishes somewhere as we do this
rotation, and indeed, for � 2 �0; 1� the circumferences

blow up in the zeroth order and the additional edge, con-
sequently, vanishes.

Finally, to accomplish the variable change, we need to
integrate the appropriate field theory integral (5) over the
small edge, l 	 s01. As described in Sec. II B, we suppose
that

P
�i;j���0;1�Jij is very large compared to J01. Then, this

integral is dominated by a saddle point which is parametri-
cally small s01 � J01=

P
J. Combining with (36) we obtain

that

 

J01P
J
� j�j3; (37)

which connects the small parameter of the expansion on
the Strebel side to the small parameter in the space-time
field theory.

2. Perturbation around the � diagram

In this subsection we study the localization of diagrams
on the worldsheet by perturbing around the � diagram.9

9More specifically we work around the �2 diagram.
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We start by discussing the relevant Strebel differential and
then calculate the field theory expression. Finally, we take
a short edge limit, as discussed in Sec. II B, to get an
explicit worldsheet expression (our short edge is depicted
in Fig. 8).10

For the � diagram p1 � p1 � p0 � p�. We begin with
the differential

 qdz � dz � �p2
1

1

4�2

�z� c��z� c� ��3

z2�z� 1�2�z� ��2
dz � dz: (38)

� is considered to be small and vanishes for the unper-
turbed � diagram. As in the expansion around the Y
diagram there are no reality constraints here. Expanding
the residues in � gives

 

�0 �
c2

�
�

3

2

c
�
��

3

8

1

�
�2 �

1

16

1

c�
�3 �O��4�;

�1 �
�c� 1�2

�� 1
�

3

2

c� 1

�� 1
��

3

8

1

�� 1
�2

�
1

16

1

��� 1��c� 1�
�3 �O��4�;

�� �
��� c�2

���� 1�
�

3

2

�� c
���� 1�

��
3

8

1

���� 1�
�2

�
1

16

1

���� c���� 1�
�3 �O��4�:

(39)

Solving for the zero and substituting back we get

 

�2��1 � �0�
2 � 2�����1 � �0� � �1� �1�

2

� 3�2=4 � O��3�; (40)

which is solved by

 � �
�
���������������1
p



������
�0
p
�2

��1 � �0�
2 


3�2

16

1��������������������1�0
p �O��3�: (41)

It is explicit that in the zeroth order the cross ratio is purely
real. The sign ambiguity appearing in Eq. (41) is fixed by
the choice of the ordering of insertions in the critical graph,
Fig. 8 (see [16] for details). One can show that for our
choice of ordering the right sign choice is �. Another
important equation (all equations from here on are at
leading nontrivial order in �) is

 2l � �� � �0 � �1 � 1 � �
1

16

�3

c��� c��c� 1�
; (42)

which upon using the relations above can be written in the
following form:

 l2 �
1

322

�6

�2��� 1�2
1

�0�1��
: (43)

We can put the zeroth order values of the � modulus in
Eq. (43). Hence, it follows that given a specific l there are 6
solutions for �, which can be written as

 

� � e�k�i=3l1=3

�
1

322

1

���0��2���0� � 1�2
1

�0�1��

�
�1=6

;

k � 0; . . . ; 5; (44)

where ��0� stands for the zeroth order solution (which is a
real quantity). Recalling Eq. (41) we see that there are four
deformations of the critical graph of the � diagram for
which � becomes complex and two for which it remains
real at the leading order.

It is easy to see that there are indeed 6 possible blowups
of the fourfold degenerate zero in the � diagram which
have a single simple zero and a threefold zero as in (38).
Two of them are simply adding self-contractions to the �
which turn it into a diagram which is set to zero in the field
theory. The other 4 diagrams correspond to adding a di-
agonal line to the �. They come in two pairs correspond-
ing to the mirror image of each other. In general, by
imposing l > 0 in (42) we cut the number of diagrams to
3, and then the two complex conjugate solutions of (41)
correspond to adding a diagonal line (a Broom diagram,

 

0∞

η 1

c −

l

∞

η

0

1

c

FIG. 8. The skeleton (and the dual graph) of the field theory
graph we consider. The line connecting 0 and � is taken to have
few contractions compared to the bold lines.

 

FIG. 9. Three of the 6 possible blowups of the fourfold degen-
erate zero, the other 3 are similar. The corresponding (dual) field
theory graph contains a self-contraction for the figure on the left.
The insertions are at 0, 1, �,1, and are exactly in this order also
for the faces in the figures.

10There is another possibility of adding an extra edge to the �
diagram by making it into a Square diagram. However, also for
the Square diagram the worldsheet correlator localizes on the
same subspace (see Appendix B), so this does not regularize the
worldsheet correlator.
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Fig. 8) and the third, real solution, corresponds to the self-
contraction11 of the vertex mapped to the point �. These
deformations of the critical graph of the Strebel differential
are depicted in Fig. 9.

IV. EXACTLY SOLVABLE SUBSPACES OF THE
BROOM DIAGRAM

A. The Strebel differential for the Broom diagram

In this section we reanalyze the broom diagram using a
different technique. This uses the uniformizing map for the
Strebel differential onto an auxiliary torus. By taking ap-
propriate scaling limits of the general case studied in [17],
we can specialize to the case of the Broom diagram. We
obtain a set of algebraic equations which turns out in
general to be equivalent to a single sixth order equation.
However, we will find subspaces where the order is lower,
where we can obtain closed form expressions for the cross
ratio. The techniques developed in this section will be used
in Appendix A to rederive the perturbative results of the
previous section and to check some of the exact results
obtained here.

As mentioned above, the Strebel differential for the
Broom diagram has both a third order zero and a simple
zero. Therefore, it can be put in the general form
 

	�z�dz� dz��C
�za� 1�z3

�z� z0�
2�z� z1�

2�z� z2�
2�z� z3�

2 dz
2:

(45)

Here we have chosen the triple zero at the origin and the
simple zero at 1

a .12 The equations which determine the
Strebel differential for a given set of Strebel lengths are
algebraic, as noted earlier. However, we will find it advan-
tageous to work with an equivalent set of algebraic rela-
tions that one obtains from taking an appropriate limit of
the general Strebel differential for a four-point function.

The most general Strebel differential can be written as
 

	�y�dy � dy

� �C0
�y2 � 1��y2k2 � 1�

�y� y0�
2�y� y1�

2�y� y2�
2�y� y3�

2 dy
2: (46)

We substitute the change of variables
 

y � 1� �2

�
a�

1

z

�
; ym � 1� �2

�
a�

1

zm

�
;

�m � 0; 1; 2; 3� (47)

and take the limit �! 0 with a, y, and ym finite. We also
scale C0 such that C0=�10 is finite. It easy to see that with
this substitution, the general Strebel differential (46) re-
duces to that of the Broom diagram given in (45).

For the general Strebel differential (46), it is appropriate
to go to the uniformizing variable u for the elliptic integral

 u �
Z y

1

dy
w
; w �

���������������������������������������
�1� y2��1� y2k2�

q
: (48)

To obtain the required limit we perform the substitution for
y given in (47). We can then perform the integral by first
expanding the integrand around the origin and then inte-
grating term by term. This leads to the following asymp-
totic expansion:

 u � �
1��������������������

2�k2 � 1�
p �

2�x�
1� 5k2

6�1� k2�
��x�3

�
3� 2k2 � 43k4

80�k2 � 1�
��x�5 � � � �

�
; (49)

where

 x2 	 a�
1

z
: (50)

From the above expansion we see that the expansion in �
corresponds to an expansion about u � 0. To see this in
another way, note that from the definition of u (48) we have

 y �
cn�u�
dn�u�

� 1�
1

2
�k2 � 1�u2: (51)

Here we have inserted the leading expansions of the func-
tions cn�u� and dn�u� about u � 0. Inverting the above
equation we see that we obtain the leading expansion in
(49).

Our goal is to determine the positions of the poles and
thus their cross ratio �. The general equations for the
positions of the poles in the u plane are13

 X3

m�0

rm
1

sn�um�
�
X3

m�0

rm sn�um� �
X3

m�0

rm
cn�um�dn�um�

sn�um�
� 0:

(52)

The r2
m are the residues of	�z� at z � zm, as in [17]. We

can now perform an expansion in � in these equations to
obtain (up to order �6)

11This may be seen geometrically, because the original critical
curve is symmetric with respect to complex conjugation. It is
possible to add a self-contraction respecting this symmetry (and
leaving the Strebel differential manifestly real), as in Fig. 9,
while it is not possible to do this for the Broom diagram.

12Unlike in the general discussion and figures of the previous
section, the poles are now at arbitrary positions zi.

13See Eq. (2.9) in [17] and the discussion in Sec. 2 there. The
location of the pole corresponding to zm in the u-plane is denoted
by um.
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 X3

m�0

rm

� ���
2
p
�1� k2�xm �

1� 3k3

2�k2 � 1�

��������������������
�2� 2k2�

q
�2x3

m

�
� 0;

X3

m�0

rm

� ��������������
k2 � 1

2

s
1

xm
�

1� 3k2

4

����������������
1

2� 2k2

s
xm�2 �

�3� k2��5k2 � 1�

32�k2 � 1�

����������������
1

2� 2k2

s
x3
m�4

�
� 0;

X3

m�0

rm

� ��������������
k2 � 1

2

s
1

xm
�

3� k2

4

����������������
1

2� 2k2

s
xm�2 �

3k3 � 50k2 � 5

16�8�k2 � 1��3=2
x3
m�4

�
� 0:

(53)

The above equations give the following simple conditions,
at leading order, for the poles:

 

X3

m�0

rmxm �
X3

m�0

rm
1

xm
�

X3

m�0

rmx
3
m � 0: (54)

These equations are algebraic.
The SL�2;C� invariant quantity which characterizes the

location of the poles is their cross ratio. From the definition
of xm in (50) and its relation to the poles ym (47) which
occur in the Strebel differential, we see that the cross ratio
is a function of x2

m. Using this freedom, one can suitably
change xm ! 
xm to write the conditions on the residues
as conditions on the perimeters

 p0 � jr1j; p1 � jr2j; p� � jr3j; p1 � jr0j:

(55)

Note that all the perimeters are greater than zero. Rewriting
the condition in (54) in terms of the perimeters leads to the
following equations:
 p0

x1
�
p1

x2
�
p�
x3
�
p1
x0
;

p0x1 � p1x2 � p�x3 � p1x0;

p0x
3
1 � p1x

3
2 � p�x

3
3 � p1x

3
0:

(56)

In terms of the ratios
 

�i �
p0

p1
; �1 �

p1

p1
; �� �

p�
p1

;

wi �
xi
x0
; i � 1; 2; 3;

(57)

the conditions (56) reduce to
 �0

w1
�
�1

w2
�
��
w3
� 1; �0w1 � �1w2 � ��w3 � 1;

�0w
3
1 � �1w

3
2 � ��w

3
3 � 1: (58)

Since the perimeters p0, p1, p�, p1 are positive we have
�0, �1, �� > 0. Thus we have to look for the solutions to
the above system of equations in the ��0; �1; ��� positive
octant. These are the equations we will be using in
Appendix A to analyze perturbations around some exact
solutions of (58).

To make the change of variables from the Schwinger
parameters to the cross ratio, we need to express the latter
in terms of the Strebel lengths (which in this case are
determined by the perimeters). The solutions to Eqs. (58)
are sufficient to determine the cross ratio � in terms of p0,
p1, p�, p1 (or rather the ratios �0, �1, ��),

 � �
�w2

3 � w
2
2��w

2
1 � 1�

�w2
1 � w

2
2��w

2
3 � 1�

: (59)

Here we have used the expression for the cross ratio of the
poles yi and substituted the change of variables (47) and
(50).

The equations in (58) can be reduced to a sixth order
equation in one of the ratios wi. Therefore, it is difficult to
solve them in general. However, they simplify in various
limits which we will discuss next.

B. Global solutions

As mentioned above, we have to look for solutions to
(58) in the positive octant defined by �0 > 0, �1 > 0, �� >
0. In this octant there are three special planes in which the
solutions reduce to that of the Y diagram of (21) and the �
diagrams of (20) and (22). Since these planes are important
limits of the general solution, we will summarize the
results for the cross ratio in these planes obtained in
[16,17].

(i) Y-plane.—From (21) we see that the Y-plane is
specified by the following linear equation in the
octant:

 �0 � �1 � �� � 1: (60)

From [16,17], the formula for the cross ratio in terms
of the �’s reduces to

 �Y
 �
� ������
�1
p


 i �������������0��
p

�0 � �1

�
2
: (61)

(ii) �1-plane.—We will call the subspace given by (20)
the �1-plane

 �1 � �� � 1� �0: (62)

The expression for the cross ratio is obtained in a
way similar to the Y-plane and is given by
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 ��1

� �

� ������
�0
p


�������������1��
p

�1 � �0

�
2
: (63)

Here we have defined ��
 corresponding to the 
branches, note that both branches are real and
negative.

(iii) �2-plane.—The �2-plane is the subspace given by
(22). In the �-octant, its equation is given by

 �0 � �� � 1� �1: (64)

This plane is related to the �1-plane by �0 $ �1

exchange. The equation for the cross ratio on this
plane is given by

 ��2

�

� ������
�0
p



�������������1��
p

�1 � �0

�
2
: (65)

An important point to note is that the choice of branches
�Y
 is related to the choice in ��1


and ��2

. We now

focus on two particular limits which enable us to fix the
solution globally, the diagonal line �0 � �1 � �� and,
more generally, the plane �0 � �1.

1. The diagonal line �0 � �1 � �� � �

A nice feature of this line is that it intersects both the
�-planes,14 (20) and (22) at � � 1 and also the Y-plane,
(21) at � � 1=3. As we will shortly see, on this plane the
equations in (58) can be exactly solved and the cross ratio
can be exactly determined. In addition, matching with the
solutions on the �-planes given in (63) and (65) and the
Y-plane in (61) at the intersection points will enable us to
uniquely fix the branch of the solution.

We will first evaluate the cross ratio at the intersection
points with the � and the Y planes. Consider the �1 plane,
and approach the point � � 1 on the diagonal line along
the �1 plane by taking �� � 1� �, �1 � �0 � �.
Substituting this in (63) we obtain to leading order in �

 ��� � �
1

4�0
�1� �0�

2; ��� � �4
�0

�2 : (66)

The values of the cross ratio given above correspond to the
two different signs in (63). We will choose the positive
branch in what follows, a similar analysis can be carried
out with the negative branch. What is important in our
analysis is to show that the perturbation about the � plane
leads in general to a complex cross ratio; it will be easy to
see that this is true in both of the branches (66). On the
positive branch the value of the cross ratio at �0 � �1 �

�� � 1 is given by

 ��� � �
1

4�0
�1� �0�

2 � 0: (67)

Now let us look at the point � � 1=3 where the diagonal
line intersects the Y-plane. Substituting the values �0 �

�1 � �� � 1=3 we obtain

 �Y
 � exp
�

i

�
3

�
: (68)

We again choose the positive branch here since that is what
corresponds to the positive branch in the �1 plane. This
gives the following value for the cross ratio:

 �Y� � exp
�
i
�
3

�
� �!2; (69)

where ! 	 exp�2�i=3� is the cube root of unity.
The �2 plane is related to the �1 plane by �0 $ �1. In

fact it can be shown from (63) and (65) that
��1


��0; �1; ��� � 1� ��2

��1; �0; ���. Thus it is suf-

ficient to focus on the �1 plane. Furthermore when �0 �
�1 it seems that we have ��1


and 1� ��1

labeling the

same Riemann surface. This is consistent with the Z2

permutation symmetry of the Broom diagram.
Let us now solve the Eqs. (58) at a general point on the

diagonal line. They reduce to the following simple set of
equations:

 

1

w1
�

1

w2
�

1

w3
� w1 � w2 � w3 � w3

1 � w
3
2 � w

3
3 �

1

�
:

(70)

One can solve for any of the variables in the above equa-
tions to obtain the following cubic equation (we assume
� � 1):

 3�2w3
3 � 3�w2

3 � w3 � � � 0: (71)

Here we have chosen to eliminate w1, w2 and write the
remaining equation for w3. One can solve this cubic equa-
tion quite easily: under the shift w3 � y� 1

3� , the equation
simplifies to

 y3 �
1

3�

�
1�

1

9�2

�
� 0: (72)

This gives the following three solutions for w3:

 w3 �
1

3�
�
�1; !;!2�

3�
�9�2 � 1�1=3: (73)

One can then solve for the values w1, w2 from the first two
equations of (70).

From the symmetry of the equations in (70) it is easy to
see that there are 6 solutions which correspond to the 6
permutations in the assignments of the 3 solutions in (73)
to w1, w2, w3. From the formula for the cross ratio in (59)
one can see that a permutation involving the exchange

14Note, however, that this intersection point is actually a
singular � diagram where one edge is of zero length.
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(1$ 2) has the effect (�$ 1� �), while the exchange
(1$ 3) has the effect (�$ 1=�).

Since the diagonal line intersects both the � and the Y
plane at � � 1 and � � 1=3, respectively, we must choose
the assignment such that the cross ratio reduces to the
values at these points, given in (67) and (69), respectively.
The following assignments satisfy this criterion uniquely:

 w1 �
1

3�
�

1

3�

; w2 �

1

3�
�
!
3�

;

w3 �
1

3�
�
!2

3�

:

(74)

Here we have defined, for convenience

 
 	 �9�2 � 1�1=3 (75)

to be the real value of the cube root. Evaluating the cross
ratio (59) using the above assignment, we obtain

 �dia � �
!2�
� 2�2�
� 1�

�
� 2!�2�
�!�
: (76)

It is easy to see that this expression for � vanishes at

 � 2,15 or � � 1, which corresponds to the point where
the diagonal line meets the �-plane. It also correctly
reduces to �!2 at 
 � 0 or � � 1=3, where the diagonal
line meets the Y-plane.

We easily see from the exact expression (76) that, at
least in the direction of this diagonal line, the cross ratio
becomes complex when we perturb infinitesimally away
from the � plane(s).

2. The �0 � �1 plane

We will now study in a little more detail the behavior of
� in the plane �0 � �1 	 �. In this plane we know the
exact value of � along the line �� � 1 (which is the
intersection with the � planes) as well as along the line
�� � � analyzed above. We will use this exact information
and study the perturbation around the � plane and see that
it is consistent with our general results.

The exact equations (58) in this plane take the simplified
form

 

�
w1
�
�
w2
�
��
w3
� ��w1 � w2� � ��w3

� ��w3
1 � w

3
2� � ��w

3
3 � 1: (77)

We can eliminate w1, w2 from these equations and obtain a

quartic equation for w3

 

����2
� � �2�w4

3 � �
2
���2

� � 3� 4�2�w3
3

� 3���1� �2
� � 2�2�w2

3 � �3�
2
� � 1� 4�2�w3

� ���1� �2� � 0: (78)

In principle, it is possible to solve this quartic equation
exactly and obtain the cross ratio explicitly. However, the
general expressions appear to be much too cumbersome, so
we will content ourselves with looking at various limits
and, in Appendix A, perturbing around them.

In the limit �� � 1 we get the simple quartic equation

 �1� �2��w3 � 1�4 � 0: (79)

For �� � �, we get the cubic equation

 w3
3 �

1

�
w2

3 �
1

3�
w3 �

1

3�
� 0; (80)

which we had obtained and solved in the previous subsec-
tion. There is a further limit where the quartic simplifies.
This is along the line � � 1. We again get a cubic equation

 ��w
3
3 � �

2
�w

2
3 � 3��w3 � 3 � 0: (81)

This cubic equation can be mapped to the previous cubic in
terms of the variables w03 �

1
w3

, �0� �
1
��

.

V. FIELD THEORY ANALYSIS

In this section we return to the field theory and consider
the worldsheet correlator for the Broom diagram, in the
limit where it is close to the � diagram. As mentioned in
Sec. II, this is obtained by taking a suitable limit of a large
number of contractions. We will, therefore, consider this
limit in more detail.

The field theory integral, written with conductance var-
iables as in Sec. II B, is (up to an overall numerical factor)

 

G�x0; x1; x1; x�� �
Z
d�1�d�1�d�0�d�01�

m1�
1� �

m1�

1� �
m0�

0�

� �m01
01 exp���1��x1 � x��2

� �1��x1 � x��2 � �0��x0 � x��2

� �01�x0 � x1�
2�: (82)

Notice that the m’s are the physical multiplicities Jij
defined in Sec. II B minus one, and are non-negative in-
tegers. We integrate over the overall scale to get

15If we had chosen the negative branch in (66) we would have
had to perform the w1 $ w3 exchange in the assignments of
(76), which would have resulted in �dia $ 1=�dia.
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 G�x0; x1; x1; x�� �
Z
d�1�ds1�ds0�ds01�

m1��m1��m0��m01�3
1� s

m1�

1� s
m0�

0� s
m01
01 exp���1���x1 � x��

2 � s1��x1 � x��
2

� s0��x0 � x��
2 � s01�x0 � x1�

2��

�
Z
ds1�ds0�ds01s

m1�

1� s
m0�

0� s
m01
01 ��x1 � x��

2 � s1��x1 � x��2 � s0��x0 � x��2 � s01�x0 � x1�
2��M;

(83)

where si 	 �i=�1� and M 	 m1� �m1� �m0� �
m01 � 4. We assume that m0� � mi where mi stands for
all other m’s. The integration over s0� can then be per-
formed by a saddle point approximation. Most importantly,
the saddle point is dominant and the value of s0� at the
saddle point is extremely small. Indeed, denoting

 A � �x1 � x��2 � s1��x1 � x��2 � s01�x1 � x0�
2; (84)

we have

 s0�jsaddle point �
m0�

M
A

�x� � x0�
2 : (85)

Note that around the saddle point we will have an integra-
tion of the form

R
d��s0��e

��1=2����s0��
2

with

 � �
M2

m0�

�
�x� � x0�

2

A

�
2
�

m0�

�s0�jsaddle point�
2 ; (86)

and in order for the saddle point to be dominant � should
be very large. This is a reason why the smallm0� expansion
can be useful to study localization. It remains to evaluate
the integral at this saddle point taking into account the
quadratic fluctuations of the Gaussian. One can actually
evaluate the integral exactly using the formula

 B�x; y� �
��x���y�
��x� y�

�
Z 1

0

tx�1

�1� t�x�y
dt: (87)

The result of the integral over s0� is given by

 G � B�m0� � 1;M�m0� � 1�
Z
ds1�ds01s

m1�

1� s
m01
01 ��x1 � x��

2 � s1��x1 � x��2 � s01�x1 � x0�
2��m1��m1��m01�3

�
1

�x� � x0�
2�m0��1�

: (88)

This effectively means that we have separated out the propagators corresponding to the m0� � 1 contractions, and written
the others as in a � diagram. The nontrivial input is still to come, with the transformation to the � plane. One should keep
in mind that the above form of the integral would be completely useless in the case where we do not have a dominant
saddle, because one cannot generally make the change of variables in the last equation [� � ��s1�; s0�; s01� and s0� is
generic].

We can now use our results on the Strebel problem from the previous sections to explicitly calculate the relevant
worldsheet correlator, identifying the (normalized) lengths in the two formalisms, l� s0�, �0 � s01, �1 � �0 � s1� (in the
notation of Sec. III). First, let us summarize the important relations we have established so far:

 

�2 � e��2k�i=3�l2=3�322���0��2���0� � 1�2�0�1���1=3;

ljsaddle point �
m0�

M

�x1 � x��
2 � ��1 � �0��x1 � x��

2 � �0�x1 � x0�
2

�x� � x0�
2 ;

� �
�
���������������1
p

�
������
�0
p
�2

��1 � �0�
2 �

3�2

16

1��������������������1�0
p ; �� � �0 � �1 � 1� 2l:

(89)

We define Re���0�� � d2, to find at zeroth order in l:

 

�� �
�d�

������
�0
p
�2

d2 � 1
;

�1 � �0 �
�d�

������
�0
p
�2

d2 � 1
� 1 �

�1� d
������
�0
p
�2

d2 � 1
:

(90)

We see that d is well defined in the range 1 � d <1. In
what follows we limit ourselves to small d2 � 1 	 �, since
this is relevant for the OPE limit �! 1 and it will give
compact expressions. However, an analysis for general
values of � is also possible.

The above relations assume smallness of � and l and thus
we cannot trust them for all values of the parameters.
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Smallness of l implies

 l�
m0�

M

�x1 � x�
x0 � x�

�
2 �1�

������
�0
p
�2

d2 � 1
� min�1; �0�; (91)

which constrains �0 (defining n 	 m0�=M) to

 

n
�

�x1 � x�
x0 � x�

�
2
� �0 �

�
n

�x1 � x�
x0 � x�

�
�2
: (92)

For generic, finite xi and �0, we see that we cannot get as
close as we like to d � 1; we are bounded by a value of
orderm0�=M. The smallness of l automatically implies the
smallness of �. Thus, we conclude that for generic xi the
calculations can be trusted for

 n� �� 1;
n
�
� �0 �

�
n
: (93)

To actually calculate the worldsheet correlator we have
to establish the dictionary between the Schwinger parame-
ters appearing on the field theory side and the cross ratio
appearing in the string correlator. From (89) we find
 

Re��� � d2 �
3

25=3

�x1 � x�
x0 � x�

�
4=3 �1�

������
�0
p
�2=3

�1=6
0

n2=3�1=3;

Im��� � 

33=2

25=3

�x1 � x�
x0 � x�

�
4=3 �1�

������
�0
p
�2=3

�1=6
0

n2=3�1=3; (94)

and we get that [define 1=3 	 33=2

25=3 �
x1�x�
x0�x�

�4=3]

 22=31=3n2=3�1=3 < Im��� � 1 (95)

in the trusted regions. From (94) we can easily write down
the dictionary (choosing the plus sign for Im���):

 � � Re��� �
1���
3
p Im��� � 1; (96)

as well as the solution for �0

 

�������
�
0

q
�

Im���3

2�n2 � 1


��������������������������������������������
Im���3

2�n2

�
Im���3

2�n2 � 2
�s
: (97)

The plus sign is for �0 > 1 and the minus sign is for �0 <
1. The Jacobian of the transformation fRe���; Im���g !

f�0; dg is

 jJ j �

��������2d
@ Im���
@�0

��������
� n2=3�1=3 1

3

�
�������
�
0

q
� 1��1=3�

�������
�
0

q
� 1�

��
0 �
7=6

; (98)

where we have to sum over both branches for �0. The
Jacobian of f�0; �1g ! f�0; dg is, in the vicinity of d � 1,

 2
�1�

�������
�
0

q
�2

�2 : (99)

From here we easily obtain that to leading order the total
Jacobian is

 6
�1�

�������
�
0

q
�7=3��
0 �

7=6

n2=3�7=3�
�������
�
0

q
� 1�

: (100)

Finally, we can recast the field theory integral as a
worldsheet expression. The field theory integral (88) is
proportional to

 

Z
d Im���dRe���

�
�������
��0

q
�1=2�������

��0
q

� 1
�
�������
��0

q m01�m1�
�

�������
��0

q m1��m01

���2=3��m1��m01

0@�1�
�������
��0

q
�2�������

��0
q

1A��11=6��m1��m01

: (101)

Here we have summed over both branches of the Jacobian.
One can use the dictionary (96) and (97) to write the
integrand directly in terms of the cross ratio �.

We expect that the above integrand has an extremum at
the point corresponding to the unique saddle point of the
field theory integral. We indeed find this maximum, which

is a consistency check on the computation. The typical
behavior of the integrand is shown in Fig. 10.

This provides a concrete example of our general dis-
cussion in Sec. II B; we see that in the Broom diagram the
correlation function is a smooth function on the world-
sheet, but that in the limit in which this diagram goes over

 

0.0004 0.0006 0.0008 0.0012 0.0014 0.0016
Im η

1

2

3

4
S

FIG. 10. A typical behavior of the integrand. Depicted here is
the integrand as a function of Im��� for some given Re���. The
vertical axis is proportional to the amplitude (denoted by S). As
m0� ! 0, the integrand approaches ��Im����.
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to the � diagram the correlator becomes proportional to a
delta function on the real line.

VI. SUMMARY AND DISCUSSION

In this paper we analyzed in detail a specific four-point
function diagram, the Broom diagram, in order to illustrate
several general features of the translation of [5] from
Feynman diagrams to the worldsheet. We showed that
this translation is modular invariant, but that the modular
invariance is sometimes realized nontrivially (requiring
following specific branches of fractional powers). We
showed that diagrams which localize on lower-
dimensional subspaces of the moduli space can be thought
of as delta-function distributions, and that such a localiza-
tion can be consistent with the worldsheet OPE.

While we have gained some understanding of the local-
ization that certain worldsheet correlators exhibit, we
would also like to be able to extract some broad patterns
related to this behavior. For instance, we might ask the
following general questions:

(i) Which free field theory diagrams exhibit localization
on a subspace of the moduli space?

(ii) What subspace of the moduli space do the corre-
sponding Strebel differentials localize on?

The idea here would be to obtain an answer to the first
question based purely on the graph topology rather than
through the kind of explicit computations that we have
carried out. Obviously, a sufficient condition for localiza-
tion (discussed in [16]) is for a diagram to have less edges
than one plus the (real) dimension of the moduli space, but
this is certainly not a necessary condition. An answer to the
second question would also be important in studying the
properties of the conjectured worldsheet theory.

So far we do not have any general answers to these
questions, but we can make an observation based on the
analysis of various sphere 4-point function diagrams in
[16] and in this paper (including Appendix B). In these
examples two types of localization occur: localization
to a one-real-dimensional subspace of the two-real-
dimensional moduli space, or localization to a two-
dimensional region (in the Whale diagram discussed in
Appendix B). In all cases, the localization is such that
one of the three possible OPE limits of the diagram (which
are �! 0, �! 1, and �! 1) does not appear (namely,
the region covered by the Strebel map comes close to 2 of
the fixed vertices but not the third one). Recall that in a 4-
point function one cannot distinguish between the OPE
limit of two points coming together and that of the other
two points coming together (the two limits are related by a
modular transformation). In all cases, we find that the
worldsheet OPE limit that is not present corresponds to
bringing two points together such that both pairs of the
corresponding space-time operators have no contractions
between them in the Feynman diagram that is being com-
puted. For example, in the �1 diagram of Fig. 4, the

covered region includes �! 0 and �! 1 but not �!
1, and there are indeed no contractions between the opera-
tors at � and at 1, as well as between the operators at 0 and
at 1.

We can give the following heuristic explanation for this
observation. In general, the space-time OPE of single-trace
vertex operators in large N gauge theories contains two
types of terms (which contribute at leading order in largeN
to correlation functions): single-trace operators and
double-trace operators. In free large N theories, the
single-trace operators arise just by contractions, and they
do not contribute to diagrams where there is no contraction
between the two operators in the OPE. Now, in general, as
discussed in [16], there is no clear relation between the
space-time OPE and the worldsheet OPE in the string
theory corresponding to a large N gauge theory.
However, when we have an OPE between two operators
in some n-point function, the single-trace terms in the
space-time OPE are related to �n� 1�-point functions,
which are in turn related to �n� 1�-point functions on
the worldsheet, so it is natural to expect that the contribu-
tions related to these terms in the space-time OPE will arise
from the OPE limit also on the worldsheet [which also
gives �n� 1�-point functions]. It is hard to directly relate
the two OPEs because the operators appearing in the space-
time OPE are non-normalizable (from the point of view of
the string theory living in a higher dimensional space), and
such non-normalizable single-trace operators do not ap-
pear in the worldsheet OPE;16 however, it seems likely that
some relation of this type should exist. The observation in
the previous paragraph is consistent with this point of view,
since the only cases where a worldsheet OPE does not exist
is when it is not required to exist from the point of view of
the space-time OPE. However, the observation is stronger,
since one might think that a worldsheet OPE could exist
even when it is not required to exist, but (in the examples
that we analyzed) this does not happen. This seems to
suggest that the worldsheet OPE always leads to nonzero
contributions related to the single-trace operators in the
space-time OPE, so that the appearance of the two is
precisely correlated.

It would be interesting to check whether the observation
described above can be generalized also to higher n-point
functions, and whether all localizations may be explained
by arguments like the one presented in the previous para-
graph. It seems that more elaborate arguments are needed
to explain localizations of the type found in two-point
functions on the torus in [16]. It would also be interesting
to understand why in some cases the diagram localizes to a
lower-dimensional subspace of the moduli space, while in
other localized cases it has a nonzero measure on the

16The question of how the worldsheet OPE is related to the
space-time OPE in the AdS/CFT correspondence can be explic-
itly studied in the AdS3=CFT2 case (for some of the relevant
works see [28]).
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moduli space. One difference between these cases is that
the localization to the lower-dimensional subspace implies
strong constraints on the worldsheet OPE limit (for pairs of
points which do have an OPE limit), as discussed in
Sec. II C, while no such constraints arise when the local-
ized subspace has nonzero measure. Note that when we go
away from the free field theory limit we expect all of these
localization properties to disappear, since at some order in
the perturbation expansion in our coupling constant there
should appear some diagram which covers the whole mod-
uli space; this is consistent with the argument above, since
in a nonfree theory single-trace operators in the OPE can
always contribute to any correlation function, beginning at
some order in the perturbation expansion.
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APPENDIX A: PERTURBATION EXPANSION AND
THE MATCHING WITH EXACT ANSWERS

Our goal here is to find the particular branch of the
perturbation expansion around the �-plane which is con-
sistent with the global solutions discussed in Sec. IV. We
will carry out the general expansion in Appendix A 2.
However, as a simpler exercise we will first perturb in the
�0 � �1 � � plane. This will illustrate how matching with
the exact solution along the diagonal line fixes the branch.

1. Perturbing around the line �� � 1

With the data of the exact solution in these limits we can
study the perturbation around the line �� � 1. More pre-
cisely let us consider the strip �� � 1� � and fixed �. To
study the perturbation, we need to make a double expan-
sion of (78) in � and �w3 � w3 � 1. The resulting equa-
tion is

 

��2 � 1��w4
3 � 8�2��w3 � 12�2��w2

3 � 4�2�2

� 12�2�2�w3 � � � � � 0: (A1)

If we take �w3 / �, we see that the first few terms scale as
�4, ��1, �2�1, �2, �2�, respectively. It is easy to verify
that we can have two consistent branches for the perturba-
tion. In one branch ��1 / �2, implying  � 1. The other
is where �4 / ��1, which implies that  � 1

3 .
In the first expansion where �w3 / �, we can show from

(59) that � / 1
�2 . This is not the branch we need.

In the second expansion where �w3 / �
1=3, we find upon

solving (A1) to leading order that

 �w3
3 � �

8�2

�1� �2�
� 	 �8�3�: (A2)

Therefore, w1w2 �
1���w3

w3���
w3 � �1� 2��1=3. Here �

has to be chosen to be one of the appropriate cube roots
defined by (A2), as will be fixed later. Together with the
equation for w1 � w2, this gives

 �w1 � ��1=3 1� �
�

; �w2 � ��1=3 1� �
�

: (A3)

This gives a cross ratio (to leading order)

 � � �
1

4�
�1� ��2; (A4)

which agrees with the answer obtained for the � plane.
This is, therefore, the correct branch of the perturbation
expansion.

However, we see from the expression (A2) for � that
this perturbation expansion is valid away from � � 1; it
will break down in some vicinity of � � 1. More precisely,
if we take � � 1� � for small �, then we see from (A2)
that the small parameter in the perturbation expansion is
not � but rather �� 	

1
b . We can thus approach � � 1 as long

as we choose � so that b� 1.
Actually, we can independently do a perturbation ex-

pansion for arbitrary values of b. In other words consider
some small neighborhood of � � �� � 1. We take � � b�
and do a double expansion of (78) in � and � keeping the
first few terms. We get

 2��w3 � 1��b�w3 � 1�3 � w3�w
2
3 � 3�� � 0: (A5)

Since w3 is not identically one everywhere in this region of
expansion, we have the cubic equation for w3:

 �w3
3 � 3w2

3 � 3�w3 � 1 � 0; (A6)

where � 	 � b�1
b . The roots of this cubic equation are

given by
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w3 �

	
�

1

�
�q� r� 1�;�

1

�
�q!� r!2 � 1�;

�
1

�
�q!2 � r!� 1�



; (A7)

where

 

q 	 �1� �2�1=3�1� ��1=3;

r 	 �1� �2�1=3�1� ��1=3:
(A8)

In the b! 1 limit, we see that q� 21=3=b2=3 and r�
22=3=b1=3, so that to leading order in 1=b

 w3 �

	
1�

22=3

b1=3
; 1�

22=3

b1=3
!2; 1�

22=3

b1=3
!


: (A9)

This exactly matches with the result of the earlier pertur-
bation expansion (A2).

To decide which is the appropriate cube root to pick, we
go back to the exact answers obtained on the line �� � �.
By specializing to the case b � 1, we restrict ourselves to
this line in the vicinity of �� � � � 1. In this case the
possible values of w3 from (A7) are given by

 w3 �

	
1;�

i���
3
p ;

i���
3
p



: (A10)

But from the exact answer we know that the global prop-
erties demand that we choose the middle root w3 � �

i��
3
p

[as in (74)]. Since we expect to continuously interpolate
between b � 1 and large b, we must continue to pick the
middle root in the perturbation expansion about the
�-plane in (A9) as well. As we will see in the next
subsection this choice leads to the cross ratio near the
�-plane being generically complex.

2. Perturbation expansion about the Y and
the � diagrams

We now consider the perturbation expansion about a
generic point in either the � or the Y-planes. The exact
global solutions discussed in the previous sections will fix
the precise branch of the solution. This will enable us to
show that the perturbation expansion of the cross ratio
about the �-plane is generically complex though the cross
ratio on the �-plane is real.

We first obtain a perturbation expansion either about the
Y or the � diagram by looking at a further limit of the
equations in (54). From (45) we see that in the limit a! 1
we obtain the appropriate Strebel differential either for the
Y or the � diagram. Expanding the equations (54), using
(50) in the a! 1 limit we obtain

 X3

m�0

rm

�
1�

1

2zma
�

1

8�zma�
2 �

1

16

1

�zma�
3 � � � �

�
� 0;

X3

m�0

rm

�
1�

1

2zma
�

3

8�zma�2
�

5

16

1

�zma�3
� � � �

�
� 0;

X3

m�0

rm

�
1�

3

2zma
�

3

8�zma�
2 �

1

16

1

�zma�
3 � � � �

�
� 0:

(A11)

Taking linear combinations of these equations further we
obtain the following equivalent set:

 X3

m�0

rm

�
1�

1

16
~�3~z3

m

�
�O�~�4�

�
X3

m�0

rm

�
~zm �

1

8
~�2~z3

m

�
�O�~�3�

�
X3

m�0

rm

�
~z2
m �

1

2
~�~z3
m

�
�O�~�2� � 0; (A12)

where ~� � 1=a and ~zm � 1=zm. From these equations we
see that the leading order equations reduce to those found
in [17] [see Eq. (3.4)]. To solve for the corrected cross ratio
to order ~� we first remove the translational mode ~z0 by
defining ~z1 � ~v1 � ~z0, ~z2 � ~v2 � ~z0, ~z3 � ~v3 � ~z0. In
terms of these variables the sum of the residues in the first
equation of (A12) reduces to

 

X3

m�0

rm � �
~�3

16
�r1 ~v3

1 � r2 ~v3
2 � r3 ~v3

3�: (A13)

Here we have kept terms only to O�~�3�. From this equation
we see that the condition on the sum of the residues is
violated only at O�~�3�. Keeping terms to O�~�2� in the
remaining two equations of (A12) we obtain

 

r1 ~v1 � r2 ~v2 � r3 ~v3 � �
~�2

8
�r1 ~v3

1 � r2 ~v3
2 � r3 ~v3

3�;

r1 ~v2
1 � r1 ~v2

2 � r3 ~v2
3 � �

~�
2
�r1 ~v3

1 � r2 ~v3
2 � r3 ~v3

3� �O�~�
2�:

(A14)

Note that in the last equation we have not evaluated the
O�~�2� term explicitly. We will see that this term does not
contribute to the cross ratio to O�~�2�. Now define

 v1 �
~v1

~v3
; v2 �

~v2

~v3
: (A15)

Then the equations (A14) reduce to
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 r1v1 � r2v2 � r3 � �
~�2

8
�r1v

3
1 � r2v

3
2 � r3�~v

2
3;

r1v2
1 � r2v2

2 � r3 � �
~�
2
�r1v

3
1 � r2v

3
2 � r3�~v3 �O�~�2�:

(A16)

It is clear from these equations that they reduce to the
zeroth order equations of [17] [see Eq. (3.5)], and we
need the information of ~v3 at the zeroth order to solve
for the first corrections in v1, v2. The zeroth order expres-
sion for ~v3 is obtained from the deviation of the sum of
perimeters. Writing (A13) in terms of v1, v2, and ~v3 we
obtain

 � 2
X3

m�0

rm �
~�3

8
�r1v

3
1 � r2v

3
2 � r3�~v

3
3: (A17)

Writing
P
mrm � s~�3 we obtain ~v3 to the zeroth order as

 ~v �0�3 � �2�1; !;!2�

�
2s

r1v
�0�3
1 � r2v

�0�3
2 � r3

�
1=3
: (A18)

Here the superscripts in v1 and v2 refer to their zeroth
order values. We will fix the choice of the cube root later
using global considerations. Let us define

 �1 �
1
2�r1v

3
1 � r2v

3
2 � r3�~v3 �O�~��;

�2 �
1
8�r1v

3
1 � r2v

3
2 � r3�~v2

3:
(A19)

Then, the two equations of (A16) are

 r1v1 � r2v2 � r3 � �~�2�2;

r1v2
1 � r2v2

2 � r3 � �~��1:
(A20)

We will show that the correction to the cross ratio is a
function of ~�2�1 and ~�2�2, thus theO�~�� correction to �1 in
(A19) is not required at this order. Eliminating v2 using the
first equation of (A20), we obtain the following quadratic
equation for v1:
 

r1�r1 � r2�v2
1 � 2r1�r3 � ~�2�2�v1 � r3�r3 � r2 � 2~�2�2�

� r2~��1 � 0: (A21)

Here we have retained terms to O�~�2�; note that �1 has an
O�~�� term which will not be important in the final result for
the cross ratio. Solving for v1 to O�~�� we obtain

 v1 �
�r1�r3 � ~�2�2� 


����
D
p

r1�r1 � r2�
; (A22)

where

 D � r1r2r3r0 � r1r2�r1 � r2�~��1 � 2r1r2r3~�2�2: (A23)

From the first equation of (A20) we obtain

 v2 � �
r2�r3 � ~�2�2� 


����
D
p

r2�r1 � r2�
: (A24)

The cross ratio is obtained from

 � � v1
1� v2

v1 � v2
: (A25)

Substituting the values of v1 and v2 from (A22) and (A24)
we obtain
 

�
 � 

1

�r1 � r2�
2
����
D
p ��r1�r3 � ~�2�2� 


����
D
p
�

� �r2��r0 � ~�2�2� 

����
D
p
�: (A26)

Now, expanding all terms to O�~�2�we obtain the following
expression for the cross ratio:
 

�
 � ��0�
 

1�����������������

r1r2r3r0
p ~�2�2�r1r2�r0 � r3�


 �r2 � r1�
�����������������
r1r2r3r0
p

� 

~�2�2

1

4

���������
r1r2

r3r0

s
1

r3r0
; (A27)

where the zeroth order term for the cross ratio is given by
 

��0�
 � 

1

�r1 � r2�
2 �����������������
r1r2r3r0
p ��r1r3 


�����������������
r1r2r3r0
p

�

� ��r2r0 

�����������������
r1r2r3r0
p

�: (A28)

Note that the corrections to the cross ratio begin at O�~�2�,
and the �1 dependence occurs as ~�2�2

1. Therefore, we need
only the leading term in the ~� expansion of �1. We now
have to substitute the values of �1 and �2. This is simplified
by the observation
 

r1v
�0�3
1 � r2v

�0�3
2 � r3 �

r3r0

r1r2�r1 � r2�
2 �r1r2�r0 � r3�



�����������������
r1r2r3r0
p

�r2 � r1��: (A29)

Using this relation one can write the term involving �2 in
corrections to the cross ratio in (A27) in terms of �2

1. Then
the expression for the cross ratio simplifies to

 �
 � ��0�
 

3

4

���������
r1r2

r3r0

s
1

r3r0
�2

1~�2: (A30)

Now, substituting the value of �1 from (A19) and using the
relation (A29) we obtain
 

�
 � ��0�
 

3

16
�1; !2; !�

28=3�s~�3�2=3

�r1r2r3r0�
1=6�r1 � r2�

8=3

� �
���������
r1r2
p

�r0 � r3� 

���������
r3r0
p

�r2 � r1��
4=3: (A31)

We now need to choose the value of the cube root of
unity in ~v�0�3 . We do this by systematically matching the
solutions globally. Since we have chosen the positive
branch of the square root we must choose the branch ��.
We fix the choice of the cube root by examining the cross
ratio at the point �0 � �1 � �� � 1=3� ~�3. This point
lies on the diagonal line, and it is also close to the Y-plane.
Evaluating the cross ratio from (76) we obtain
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 �dia � �!
2 � i

313=6

42=3
!~�2: (A32)

One can easily verify that it is the choice !2 among the
roots in (A31) in which the cross ratio �� reduces to the
above expression. Thus, the cross ratio at a generic point
near the Y-plane is given by
 

�Y� � ��0�Y� � i
3

16
!

28=3�s~�3�2=3

��0�1���1=6��0 � �1�
8=3

� �
�����������
�0�1
p

�1� ��� � i
������
��
p
��0 � �1��

4=3; (A33)

where s~�3 � �0 � �1 � �� � 1 and ��0�Y�, the zeroth order
cross ratio, is given in (61). Here we have made the choice
r3 � �1, r2 � �0, r1 � �1, r0 � ��. The cross ratio at a
generic point near the �-plane is given by

 ��� � ��0��� �
3

16
!2 28=3�s~�3�2=3

��0�1���1=6��1 � �0�
8=3

���
�����������
�0�1
p

�1� ��� �
������
��
p
��0 � �1��

4=3;

(A34)

where s~�3 � 1� �1 � �� � �0 and ��0��� is the zeroth
order cross ratio given in (63). Here we have made the
choice r1 � �2, r0 � ���, r2 � ��1, r3 � 1 to obtain
the expansion about the �2 plane. It is clear from the above
expression that the perturbation expansion of the Broom
diagram about a generic point in the �-plane leads to a
complex cross ratio.

APPENDIX B: THE SQUARE AND THE WHALE
DIAGRAMS

In this Appendix we discuss two additional interesting
simple four-point function diagrams, the Square diagram
(see Fig. 11) and the Whale diagram (see Fig. 12). Both of
them obey the constraint (defining as before �i � pi=p1)

 � �� � �0 � �1 � 1: (B1)

The Strebel differential is given by

 qdz2 � �p2
1

1

4�2 �d lnF�z��2;

F�z� � z�0�z� ������z� 1��1 :
(B2)

The poles of the differential are given by poles and zeros of
F (which are at 0, �, 1, and 1). The zeros of the differen-
tial are given by the zeros of @F, which we will denote by
c
. We have here one Strebel condition

 Re �lnF�z��jc�c� � 0! FFy�c�� � FFy�c��: (B3)

Next, define

 x � ��0�; y � �1�1� ��; (B4)

so that the zeros are given by

 2c
 � 1� x� y

�������������������������������������������������������
�1� x�2 � y2 � 2y�1� x�

q
: (B5)

From here it is easy to see that for x, y real and y� � y �
y� (x� � x � x�), where
 

y
 � 1� x
 2
�������
�x
p

� �1

�������
�x
p

�2;

�x
 � �1� y
 2
���
y
p
� ��1

���
y
p
�2�;

(B6)
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1 ∞

0

FIG. 11. The Square diagram.

 

∞
0

1η

FIG. 12. The Whale diagram, which satisfies �� � 1 � �0 �
�1, like the Square diagram.
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FIG. 13. The curve on the complex � plane for which the
Strebel condition is satisfied. On the left �0 � �1 � 70 and on
the right �0 � 40, �1 � 70. In general, one can see numerically
that, as �0 is taken to 1 the curve around � � 1 shrinks to zero
size, and as �1 is taken to 1 the curve around � � 0 shrinks to
zero size. This implies that the diagrams corresponding to these
curves cover the full region corresponding to the OPE limits
�! 0, 1.
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the reality condition (B3) is satisfied as the two zeros are
complex conjugates of each other. Note that the zeros can
be rewritten as
 

c
 �
� ���������������
y� � y
p



���������������
y� � y
p

2

�
2
;

c
 � 1 �
� ���������������
x� � x
p


���������������
x� � x
p

2

�
2
:

(B7)

Further, the dictionary between the two sets of variables is
given by

 � �
x�y� �y�
y �x� x �y

; �0 �
x �y� �xy
y� �y

; �1 �
x �y� �xy
x� �x

:

(B8)

Note that when � is real the transformation is singular, but
as we saw above in this case we can solve the Strebel
problem.

From Eq. (B3) we see that there is no solution for large
�’s. Note that when we take � to be large and at least one
of the circumferences does not scale to zero, one of the
zeros c
 becomes large and the other remains finite, and
the condition (B3) cannot be satisfied. Recall that �0 and
�1 cannot both be small due to (B1). The fact that there are
no solutions for large � means that the OPE of the vertices
at � and at 1 is not covered by diagrams satisfying (B1).
The solution of Eq. (B3) can be obtained numerically, and
has the general shape depicted in Fig. 13.

The nice feature of the Strebel differential (B2) is that
the horizontal leaves can be computed here explicitly. The
horizontal leaves satisfy

 

�
dz
dt

�
2
> 0; (B9)

and thus

 

d
dt

Re�lnF�z�� � 0! F�z�t��Fy��z�t�� � C: (B10)

Here C is a non-negative constant parametrizing a certain
leaf. The Strebel condition (B3) now has a nice interpre-
tation: the C parameter for both zeros has to be equal, and
this is required if we want a leaf to go from one zero to
another. Otherwise, either the leaves emanating from a
zero will not be compact (will not end) or they will end
on the same zero and the critical graph will be discon-
nected. Both of these cases contradict the Strebel
conditions.

We still have to identify which diagram the various
solutions depicted in Fig. 13 correspond to. The only two
diagrams which have the Strebel differential (B2) are the
Square diagram and the Whale diagram.

 

FIG. 14. The (disconnected) critical graphs and the leaves of
the two possible topologies. The arrows indicate directions of
increasing C. On the left we have shape I, and on the right
shape II.
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FIG. 15. On the left we draw the critical graph of the Square
diagram for a typical real solution. On the right we have the
critical curves when slightly moving to the complex plane. We
see how the graph smoothly becomes disconnected, and has
topology I.
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FIG. 16. On the left, we draw the critical graph of a complex solution for �. It is easy to see that this critical graph is dual to the
Whale diagram. In the next two graphs we again slightly move away from the point where the Strebel conditions are satisfied. We keep
the same real part of � and first move up and then down along the imaginary axis. The critical graph has topology II when lowering
Im���, and topology I when raising Im���. The last graph is a generic complex � not satisfying the Strebel conditions. The critical
graph is disconnected and we do not have a cell decomposition.

OFER AHARONY et al. PHYSICAL REVIEW D 75, 106006 (2007)

106006-22



We claim that the solution corresponding to the Square
is the real17 � solution on the straight line in Fig. 13, and
the other solutions correspond to the Whale. First, note that
at a generic point of the � plane (where the Strebel
condition is not satisfied) the horizontal leaves begin and
end on the same zero, and can have only two topologically
distinct shapes. This follows from the fact that the nodes of
the graph (the zeros of the Strebel differential) correspond
to saddle points of FFy (as the zeros are second order), and
from the fact that the parameter C goes to zero in the

vicinity of 0 and 1 and diverges as one approaches 1 or
�. We can call the two shapes shape I and shape II, see
Fig. 14. It is easy to show that the graph in Fig. 13 is the
boundary region between the two different shapes. The real
line is the boundary between two different ways to get
shape I, and the complex solution is the boundary between
shape I and II. When one goes between the two ways to get
shape I, one gets a dual of a Square diagram, and when
going from I to II one obtains the dual of the Whale
diagram. The topology in the different regions is shown
in Fig. 13.

In Figs. 15 and 16, we depict the critical graphs of the
Square, the Whale, and the additional diagrams that we get
by slightly deforming away from the solution to the Strebel
condition (B3).
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