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To gain insight into how bulk locality emerges from the holographic conformal field theory (CFT), we
reformulate the bulk-to-boundary map in as local a way as possible. In previous work, we carried out this
program for Lorentzian anti-de Sitter (AdS), and showed the support on the boundary could always be
reduced to a compact region spacelike separated from the bulk point. In the present work the idea is
extended to a complexified boundary, where spatial coordinates are continued to imaginary values. This
continuation enables us to represent a local bulk operator as a CFT operator with support on a finite disc on
the complexified boundary. We treat general AdS in Poincaré coordinates and AdS3 in Rindler
coordinates. We represent bulk operators inside the horizon of a Banados-Teitelboim-Zanelli (BTZ)
black hole and we verify that the correct bulk two-point functions are reproduced, including the
divergence when one point hits the BTZ singularity. We comment on the holographic description of
black holes formed by collapse and discuss locality and holographic entropy counting at finite N.
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I. INTRODUCTION

The AdS/CFT correspondence relates string theory in an
asymptotically anti-de Sitter (AdS) background to a con-
formal field theory (CFT) living on the boundary of AdS
[1–4]. The main observable of interest in the original work
on AdS/CFT was the boundary S-matrix. In the present
work we will focus instead on how one might recover
approximate local bulk quantities from the CFT. Even
with interactions included, one can hope to recover quasi-
local observables in the gravitational theory [5]. In this
paper we study this in detail, generalizing our earlier work
[6,7]. We develop the map at leading order in 1=N where
we can treat the gravity theory semiclassically and work
with free scalar fields.

The original bulk-to-boundary map of Euclidean AdS
[2,3] and its Lorentzian generalization [8,9] has been re-
formulated and studied further in [10–14]. In these works,
one can view the construction of a local bulk operator as an
integral over the entire boundary of AdS. Vanishing of
commutators of local bulk operators at spacelike separa-
tion relies on delicate cancellations in this approach [12].
The strategy we will adopt, following our earlier work
[6,7], is to reformulate the bulk-to-boundary map so that
the support on the boundary is as small as possible.

It is worth emphasizing the physical relevance of our
approach. By representing bulk operators as operators on
the boundary with compact support—in fact with support

that is as small as possible—we can have bulk operators
whose dual boundary operators are spacelike separated.
Such bulk operators will manifestly commute with each
other just by the locality of the boundary theory. This
statement will continue to hold at finite N. Moreover we
will find interesting applications of this basis of operators
to the study of black hole interiors and singularities, as well
as holographic entropy counting.

We will use the following framework developed in [6,7].
The first of these works [6] mainly considered two-
dimensional AdS space, and showed the boundary support
of a local bulk operator could be reduced to points space-
like separated from the bulk point. This was generalized to
the higher-dimensional case in [7]. In Lorentzian AdS, a
free bulk scalar field � is dual to a nonlocal operator in the
CFT, via a correspondence

 ��x; Z� $
Z
dx0K�x0jx; Z�O�x0�: (1)

Here Z is a radial coordinate in AdS which vanishes at the
boundary, x represents coordinates along the boundary, and
O�x0� is a local operator in the CFT. A similar approach has
been considered previously in [10–12,14]. We refer to the
kernel K as a smearing function. This correspondence can
be used inside correlation functions, for example
 

h��x1; Z1���x2; Z2�iSUGRA �
Z
dx01dx

0
2K�x

0
1jx1; Z1�

� K�x02jx2; Z2�

� hO�x01�O�x
0
2�iCFT:

To construct smearing functions one begins with a field
in Lorentzian AdS that satisfies the free wave equation and
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has normalizable falloff near the boundary of AdS,1

 ��x; Z� � Z��0�x� as Z! 0:

The parameter � is related to the mass of the field. The
boundary field�0�x� is dual to a local operator in the CFT2

 �0�x� $ O�x�: (2)

We will construct smearing functions that let us solve for
the bulk field in terms of the boundary field

 ��x; Z� �
Z
dx0K�x0jx; Z��0�x0�: (3)

K should not be confused with the standard bulk-to-
boundary propagator [3], since our smearing functions
generate normalizable solutions to the Lorentzian equa-
tions of motion. Using the duality (2), we obtain the
relation between bulk and boundary operators given in (1).

Solving for the bulk field in terms of the boundary field
is not a standard Cauchy problem: since the ‘‘initial con-
ditions’’ are specified on a timelike hypersurface we have
neither existence nor uniqueness theorems. In global AdS
it was shown that, although the smearing function is not
unique, one can always construct a smearing function
which has support on the boundary at points which are
spacelike separated from the bulk point [6,7]. It is then
interesting to see if a stronger statement can be made. Can
we further reduce the support on the boundary? This was
studied in [7], where smearing functions for AdS3 were
constructed in accelerating Rindler coordinates. It was
shown that smearing functions can only be constructed
by analytically continuing the boundary coordinates to
complex values, since the naive expression derived from
mode sums was divergent. This continuation leads to a
well-defined smearing function with compact support on
the complexified boundary of the Rindler patch; it can be
thought of as arising from a retarded Green’s function in de
Sitter space. Moreover the support shrinks to a point as the
bulk point approaches the boundary. In this way we recover
the expected relation (2).

It thus seems the most economical description of local
bulk physics in AdS/CFT requires the use of complexified
boundary coordinates. Complexified coordinates also ap-
peared in [15], and have been used to study the region
inside horizons in [16–20]. For other approaches to recov-
ering bulk physics see [21–23].

An outline of this paper is as follows. In Sec. II we
extend the work of [7] and use complexified boundary
coordinates to construct compact smearing functions in
AdS spacetimes of general dimension in two ways. First

we work in Poincaré coordinates and perform a Poincaré
mode sum, then we Wick rotate to de Sitter space and use a
retarded Green’s function. In Sec. III we translate our AdS3

results into Rindler coordinates and show that we recover
bulk correlators inside the Rindler horizon. After these
preliminaries we develop applications of this new formu-
lation of the bulk/boundary map to black holes and to
holographic entropy counting. In Sec. IV we argue that
the Rindler smearing functions can also be used in a
Banados-Teitelboim-Zanelli (BTZ) spacetime [24] and
we show how the BTZ singularity manifests itself in the
conformal field theory. In Sec. V we discuss local operators
inside the horizon of an AdS black hole formed by col-
lapse, where there is only a single asymptotic AdS region.
This provides evidence that our results will generalize to
time-dependent situations. Finally in Sec. VI we explain
how the number of degrees of freedom is reduced at finite
N and how this leads to a new perspective on holographic
entropy counting.

II. POINCARÉ COORDINATES

In this section we construct a compact smearing function
for a general-dimensional AdS spacetime. We obtain the
result in two ways: by performing the Poincaré mode sum
in Sec. II B, and by Wick rotating to de Sitter space in
Sec. II C.

A. Preliminaries

We will work in AdSD in Poincaré coordinates, with
metric

 ds2 �
R2

Z2 ��dT
2 � jdXj2 � dZ2�: (4)

Here R is the AdS radius. The coordinates range over 0<
Z<1, �1< T <1, and X 2 Rd�1 where d � D� 1.
An AdS-invariant distance function is provided by
 

��T; X; ZjT0; X0; Z0� �
1

2ZZ0
�Z2 � Z02 � jX� X0j2

� �T � T0�2�: (5)

We consider a free scalar field of mass m in this back-
ground. Normalizable solutions to the free wave equation
����m2�� � 0 can be expanded in a complete set of
modes
 

��T; X; Z� �
Z
j!j>jkj

d!dd�1ka!ke�i!T

� eik�XZd=2J��
�����������������
!2 � k2

p
Z�: (6)

The Bessel function has order � � �� d=2 where � �

d
2�

����������������������
d2

4 �m
2R2

q
is the conformal dimension of the corre-

sponding operator.

1This is to be contrasted with the original formulations of the
bulk-to-boundary map [8,9] that include both normalizable and
non-normalizable modes on the boundary.

2Again this should be compared with the original formulation
of the bulk-to-boundary map where the non-normalizable com-
ponent at the boundary is dual to a source for the CFT operator.
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In Poincaré coordinates we define the boundary field by
 

�Poincare
0 �T; X� � lim

Z!0

1

Z�
��T; X; Z�

�
1

2����� 1�

Z
j!j>jkj

d!dd�1ka!k

� e�i!Teik�X�!2 � k2��=2: (7)

Note that

 a!k �
2����� 1�

�2��d�!2 � k2��=2

�
Z
dTdd�1Xei!Te�ik�X�Poincare

0 �T; X�: (8)

Substituting this back into the bulk mode expansion (6), we
obtain an expression for the bulk field in terms of the
boundary field, namely

 ��T;X;Z� �
Z
dT0dd�1X0K�T0;X0jT;X;Z��Poincare

0 �T0;X0�;

(9)

where
 

K�T0; X0jT; X; Z� �
2����� 1�

�2��d
Z
j!j>jkj

d!dd�1k

� e�i!�T�T
0�eik��X�X

0�

� Zd=2J��
�����������������
!2 � k2

p
Z�=�!2 � k2��=2:

(10)

One could proceed to evaluate this integral representation
for K along the lines of [6,7,12]. However one generically
obtains a smearing function with support on the entire
boundary of the Poincaré patch.3 In the following we will
improve on this by constructing smearing functions that
make manifest the property that local bulk operators go
over to local boundary operators as the bulk point ap-
proaches the boundary.

Such smearing functions require complexifying the
boundary spatial coordinates X. We will establish this in
two ways: in Sec. II B, for fields in AdS3, by starting with
the mode sum (9) and performing a suitable analytic
continuation, and again in Sec. II C, for fields in general-
dimensional AdS, by Wick rotating to de Sitter space and
using a retarded de Sitter Green’s function.

B. Poincaré mode sum

Consider a field in AdS3. The Poincaré mode sum (9)
reads

 

��T; X; Z� �
2����� 1�

4�2

Z
j!j>jkj

d!dk
ZJ��

�����������������
!2 � k2
p

Z�

�!2 � k2��=2

�

�Z
dT0dX0e�i!�T�T

0�eik�X�X
0�

��Poincare
0 �T0; X0�

�
:

The Poincaré boundary field has no Fourier components
with j!j< jkj, so provided we perform the T0 and X0

integrals first we can subsequently integrate over ! and k
without restriction. Thus
 

��T;X;Z��2�����1�
Z
d!dke�i!TeikX

ZJ��
����������������
!2�k2
p

Z�

�!2�k2��=2

��Poincare
0 �!;k�; (11)

where�Poincare
0 �!; k� is the Fourier transform of the bound-

ary field. We now use the two integrals

 

Z 2�

0
d�e�ir! sin��kr cos� � 2�J0�r

�����������������
!2 � k2

p
�; (12)

 

Z 1

0
rdr�1� r2���1J0�br� � 2��1����b��J��b� (13)

to obtain
 

J��
�����������������
!2� k2
p

Z�

�!2� k2��=2
�

1

��2Z������

Z
T02�Y02<Z2

dT0dY0

� �Z2� T02� Y02���1e�i!T
0
e�kY

0
: (14)

Inserting this into (11) one gets

 ��T; X; Z� �
�
�

Z
T02�Y02<Z2

dT0dY0
�
Z2 � T02 � Y02

Z

�
��1

�
Z
d!dke�i!�T�T

0�eik�X�iY
0��Poincare

0 �!; k�:

(15)

We identify the second line of (15) as�Poincare
0 �T � T0; X�

iY0�, so we can write (recall � � �� 1)
 

��T; X; Z� �
�� 1

�

Z
T02�Y02<Z2

dT0dY0

�

�
Z2 � T02 � Y02

Z

�
��2

��Poincare
0 �T � T0; X� iY0�: (16)

That is, we have succeeded in expressing the bulk field in
terms of an integral over a disk of radius Z in the (real T,
imaginary X) plane. We can express the result in terms of
the invariant distance (5),

3In even-dimensional AdS one can restrict to spacelike sepa-
ration in the Poincaré patch [6,7].

LOCAL BULK OPERATORS IN AdS/CFT . . . PHYSICAL REVIEW D 75, 106001 (2007)

106001-3



 

��T;X;Z� �
�� 1

�

Z
T02�Y02<Z2

dT0dY0

� lim
Z0!0
�2Z0��T;X;ZjT�T0;X� iY0;Z0����2

��Poincare
0 �T�T0;X� iY0�: (17)

We will obtain the generalization of this result to higher-
dimensional AdS in the next subsection.

C. de Sitter continuation

Having seen that we need to analytically continue the
boundary spatial coordinates to complex values in order to
obtain a smearing function with compact support, we will
now begin by Wick rotating the Poincaré longitudinal
spatial coordinates, setting X � iY. This turns the AdS
metric (4) into

 ds2 �
R2

Z2 �dZ
2 � dT2 � jdYj2�:

This is nothing but de Sitter space written in flat
Friedmann-Robertson-Walker (FRW) coordinates, with Z
playing the role of conformal time (note the flip in signa-
ture). The AdS boundary becomes the past boundary of de
Sitter space. Up to a divergent conformal factor the in-
duced metric on the past boundary is

 ds2
bdy � dT2 � jdYj2

i.e. a plane Rd which should be thought of as compactified
to a sphere Sd by adding a point at infinity. The Penrose
diagram is shown in Fig. 1.

In de Sitter space it is clear that the field at any point
inside the Poincaré patch can be expressed in terms of data
on a compact region of the past boundary.4 With this
motivation we will construct a retarded Green’s function
in de Sitter space and use it to reproduce and generalize the
smearing function (16) that we previously obtained from a
Poincaré mode sum.

The de Sitter invariant distance function is
 

��T; Y; ZjT0; Y0; Z0� �
1

2ZZ0
�Z2 � Z02 � �T � T0�2

� jY � Y0j2�:

We consider a scalar field of mass m in de Sitter space. For
now we take m2R2 > 1, however later we will analytically
continue m2 ! �m2. The analytically continued mass can
be identified with the mass of a field in AdS (note that the
Wick rotation flips the signature of the metric).

The field at some bulk point can be written in terms of
the retarded Green’s function. The retarded Green’s func-
tion coincides with the imaginary part of the commutator
inside the past light cone of the future point and vanishes

outside this region. The field at some bulk point is therefore
 

��T; Y; Z� �
Z
dT0dd�1Y0

�
R
Z0

�
d�1

Gret�T; Y; ZjT0; Y0; Z0�

� @
$

Z0��T
0; Y0; Z0�; (18)

where the region of integration is over a spacelike surface
of fixed Z0 inside the past light cone of the bulk point. In the
Z0 ! 0 limit this becomes the disk

 �T � T0�2 � jY � Y0j2 < Z2: (19)

As Z0 ! 0 (with other coordinates held fixed) the retarded
Green’s function takes the form [25]
 

Gret � iR
�d�1�c���� i���d=2�i

���������������������
m2R2��d=2�2
p

� c	���� i���d=2�i
���������������������
m2R2��d=2�2
p

� c:c:�;

where we take branch cuts along the positive real � axis
and where

 c �
��2i

��������������������������
m2R2 � �d2�

2
q

���d2� i
��������������������������
m2R2 � �d2�

2
q

�

2��d=2��i
���������������������
m2R2��d=2�2
p

�4���d�1�=2��12� i
��������������������������
m2R2 � �d2�

2
q

�
:

The boundary field is defined as usual using (7). Choosing
normalizable modes from the AdS viewpoint corresponds
to taking only positive frequencies in the Z direction,

which have a Zd=2�i
�����������������
m2R2��d2�

2
p

Z-dependence.
Evaluating (18) as Z0 ! 0 we obtain the smearing func-

tion5

 

z =
∞

S N

z = 0

FIG. 1. The Penrose diagram for de Sitter space. Flat FRW
coordinates cover the lower triangle. Horizontal slices are
spheres. Each point on the diagram represents an Sd�1 which
shrinks to a point at the north and south poles (the right and left
edges of the diagram).

4To go outside the Poincaré patch one would have to include
the point at infinity in Rd.

5Here we use the identities sin��z� � �
��z���1�z� and

��2z�
��z���1=2�z� �

22z�1���
�
p .
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K�T0; Y0jT;Y;Z� �
���� d

2� 1�

�d=2���� d� 1�

�

�
Z2� �T� T0�2� jY� Y0j2

Z

�
��d

� ��Z2� �T� T0�2� jY� Y0j2�: (20)

However at this point we still have � � d
2�

i
��������������������������
m2R2 � �d2�

2
q

. By analytically continuing m2 ! �m2

we can take � to coincide with the conformal dimension
in AdS. Since �> 0 in the domain of integration this
analytic continuation is straightforward. Furthermore we
can shift iY ! X� iY and iY0 ! X� iY0, assuming
�Poincare

0 is analytic everywhere in the strip jYj< Z; this
is true for any given Poincaré mode function (6). Thus we
wind up with the integral representation

 

��T; X; Z� �
���� d

2� 1�

�d=2���� d� 1�

Z
T02�jY0j2<Z2

dT0dd�1Y0

�

�
Z2 � T02 � jY0j2

Z

�
��d

��Poincare
0 �T � T0; X� iY0�: (21)

This matches (16) for d � 2. As a further check we can
examine the limit Z! 0 where we should recover (7). In
this limit the region of integration becomes very small so
we can bring the boundary field out of the integral and we
indeed recover (7).

D. Recovering bulk correlators

In this section we show that the smearing functions we
have constructed can be used to reproduce bulk correlation
functions. As a corollary, this shows that the operators we
have defined will commute with each other at bulk space-
like separation. For simplicity we will only treat the case of
a massless field in AdS3.

The Wightman function for a massless scalar in AdS3 is

 G�xjx0� � h0j��x���x0�j0iSUGRA

�
1

4�R
1���������������

�2 � 1
p

���
���������������
�2 � 1
p

�
; (22)

where � is defined in (5), and where branch cuts are
handled with a T ! T � i� prescription.6 We will consider
the correlation function between an arbitrary bulk point
�T; X; Z� and a point near the boundary with coordinates
(T0 � 0, X0 � 0, Z0 ! 0). Taking the appropriate limit of
(22) we have

 h��T; X; Z��Poincare
0 �0; 0�iSUGRA �

1

2�R
Z2

�T2 � X2 � Z2�2
:

(23)

We would like to reproduce this from the CFT. To do this
note that from (16) we have
 

��T; X; Z� �
1

�

Z
T02�Y02<Z2

dT0dY0

��Poincare
0 �T � T0; X� iY0�: (24)

Also by sending both points to the boundary in (22) we
have the boundary correlator7

 h�Poincare
0 �T; X��Poincare

0 �0; 0�iCFT �
1

2�R
1

�T2 � X2�2
:

(25)

Thus our claim is that we can reproduce (23) by computing
 

1

�

Z
T02�Y02<Z2

dT0dY0h�Poincare
0 �T�T0;X� iY0��Poincare

0 �0;0�i

�
1

2�2R

Z
T02�Y02<Z2

dT0dY0
1

��T�T0�2��X� iY0�2�2
:

(26)

Let us begin by studying this in the regime

 jT � Xj> Z and jT � Xj> Z: (27)

In this regime there are no poles in the range of integration,
so (26) is well defined without having to give a prescription
for dealing with light cone singularities in the CFT. It is
convenient to work in polar coordinates, setting T0 �
r cos� and Y0 � r sin�. Defining z � ei� we have

 

1

�R

Z Z

0
rdr

I
jzj�1

dz
2�i

z

�T � X� rz�2�z�T � X� � r�2
:

(28)

Evaluating the contour integral gives

 

1

�R

Z Z

0
rdr

T2 � X2 � r2

�T2 � X2 � r2�3
�

1

2�R
Z2

�T2 � X2 � Z2�2

(29)

as promised.
Now let us return to the question of dealing with light

cone singularities in the CFT. That is, let us ask how we can
analytically continue this result outside the range (27). In
general the integrand in (28) has two double poles, located
at

 z � z1 � �
r

T � X
and z � z2 � �

T � X
r

: (30)

6This Wightman function identifies j0i as the Poincaré vacuum
state.

7We obtained this from a boundary correlator in supergravity,
but the result matches the correlator of local operators in the
CFT.
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In the range (27) we see that the contour always encircles
the pole at z1 and never encircles the pole at z2. When we
try to go outside this range one of the poles crosses the
integration contour jzj � 1. So to analytically continue the
calculation outside the range (27) we merely have to de-
form the z contour of integration so that it continues to
encircle the pole at z1 and exclude the pole at z2.

One might ask how one can distinguish the two poles in
general. Recall that the boundary CFT correlator is defined
with a T ! T � i� prescription. This means the poles are
displaced to8

 z1 � �
r

T � X
� i�; z2 � �

T � X
r
� i�: (31)

We see that z1 is always in the lower half-plane while z2 is
always in the upper half-plane. So the general prescription
is to only encircle the pole in the lower half-plane. The i�
prescription makes the z contour integral well defined,
since the poles never collide. It also makes the integral
over r well defined, since the poles in r are displaced off
the real axis.

This lets us see how the bulk light cone singularity
emerges from the CFT. Let us perform the z integral in
(28) first, followed by the r integral. The two poles pinch
the z contour of integration when r2 � r2

0 
 �T � i��
2 �

X2. Thus the integral over z has a pole when r � �r0.
When one of these singularities in the complex r plane hits
the r � Z endpoint of the contour for integrating over r,
the integral over r diverges. This reproduces the bulk light
cone singularity at T2 � X2 � Z2, regulated by the appro-
priate i� prescription.

Since our smeared operators have the correct 2-point
functions, it follows that at infinite N they commute as
operators in the CFT whenever the bulk points are space-
like separated. This relies on the fact that at infinite N the
commutator is a c-number, and one can check that it
vanishes at bulk spacelike separation by computing a
correlator h jO1O2 �O2O1j i in any state of the CFT.
However at finite N the commutator becomes an operator.
The delicate cancellations which occurred at infinite N
become state dependent and are no longer possible in
general. Thus we do not necessarily expect the commutator
to vanish at bulk spacelike separation. We discuss this
point further in Sec. VI.

III. AdS3 IN RINDLER COORDINATES

We now specialize to AdS3. This is a particularly inter-
esting example, since the BTZ black hole can be con-
structed as a quotient of AdS3 [24]. After some
preliminaries we discuss AdS3 in accelerating Rindler-
like coordinates. We show that our Poincaré results can
be translated into accelerating coordinates and, with the

help of an antipodal map, can be used to describe local bulk
operators inside the Rindler horizon.

A. Preliminaries

AdS3 can be realized as the universal cover of a hyper-
boloid

 �U2 � V2 � X2 � Y2 � �R2 (32)

inside R2;2 with metric ds2 � �dU2 � dV2 � dX2 � dY2.
To describe this in Rindler coordinates we set

 U �
Rr
r�

cosh
r��
R

; V � R

���������������
r2

r2
�

� 1

s
sinh

r�t

R2 ;

X � R

���������������
r2

r2
�

� 1

s
cosh

r�t

R2 ; Y �
Rr
r�

sinh
r��
R

(33)

so that the induced metric is

 ds2 � �
r2 � r2

�

R2 dt2 �
R2

r2 � r2
�

dr2 � r2d�2: (34)

Here �1< t, �<1 and r� < r <1. The Rindler hori-
zon is located at r � r�. These coordinates cover the right
Rindler wedge of AdS3 as shown in Fig. 2. One can
continue into the future wedge by setting

 U �
Rr
r�

cosh
r��
R

; V � R

���������������
1�

r2

r2
�

s
cosh

r�t

R2 ;

X � R

���������������
1�

r2

r2
�

s
sinh

r�t

R2 ; Y �
Rr
r�

sinh
r��

R2

 ∞

r = 0

r = 0

r =∞r =

FIG. 2. A slice of constant � in AdS3, drawn as an AdS2

Penrose diagram. The four Rindler wedges are separated by
horizons at r � r�.8Assuming that T and X are real and r > 0.
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with 0< r< r�. One can extend these coordinates to the
(left, past) wedges by starting from the (right, future)
definitions and changing the signs of V and X. It will
frequently be convenient to work with rescaled coordinates

 t̂ � r�t=R
2; �̂ � r��=R:

An AdS-invariant distance function is provided by

 ��xjx0� � �
1

R2 X�X
0� (35)

in terms of the embedding coordinates X� � X��x�. For
two points in the right Rindler wedge we have
 

� �
rr0

r2
�

cosh��̂� �̂0� �
�
r2

r2
�

� 1
�

1=2
�
r02

r2
�

� 1
�

1=2

� cosh�t̂� t̂0� (36)

while for a point (t̂, r, �̂) inside the future horizon and a
point (t̂0, r0, �̂0) in the fright

left g Rindler wedge we have
 

� �
rr0

r2
�

cosh��̂� �̂0� �
�
1�

r2

r2
�

�
1=2
�
r02

r2
�

� 1
�

1=2

� sinh�t̂� t̂0�: (37)

B. Rindler smearing functions

We could set about constructing a smearing function
starting from a Rindler mode sum. For points outside the
Rindler horizon this was carried out in [7], while for points
inside the horizon we set up but do not evaluate the mode
sum in Appendix A. However the Rindler mode sum is
divergent and must be defined by analytic continuation in t̂
and/or �̂. The divergence means there is no smearing
function with support on real values of the Rindler bound-
ary coordinates.

A simpler approach to constructing the Rindler smearing
function is to begin with our Poincaré result (16) and
translate it into Rindler coordinates. The translation is
easiest to understand in de Sitter space. Wick rotating �̂ �
iy turns the AdS metric (34) into

 ds2 �
R2

r2
�

�
r2
�

r2 � r2
�

dr2 � �r2 � r2
��dt̂

2 � r2dy2

�
:

This is de Sitter space in static coordinates. To avoid a
conical singularity at r � 0 we must periodically identify
y� y� 2�. The right Rindler wedge becomes the past
wedge of de Sitter space, as shown in Fig. 3. The induced
metric on the past boundary is, up to a divergent conformal
factor,

 ds2
bdy � dt̂2 � dy2; �1< t̂ <1; y� y� 2�;

i.e. an infinite cylinder which can be compactified to a
sphere by adding the north and south poles. This sphere can
be identified with the past boundary that we identified

working in Poincaré coordinates. However note that any
observer inside the past wedge of de Sitter space can at
most see one hemisphere of the past boundary, namely, the
region characterized by

 �1< t̂ <1; ��=2< y< �=2:

For a point inside the past wedge of de Sitter we can
construct a retarded Green’s function that lets us express
the value of the field in terms of data on the past boundary.
In AdS this means we can express the value of the field
anywhere in the right Rindler wedge in terms of a data on
the right Rindler boundary. In fact the result is a simple
translation of our Poincaré result (16). We define the right
boundary field in Rindler coordinates by

 �Rindler;R
0 �t̂; �̂� � lim

r!1
r���t̂; r; �̂�jright boundary: (38)

This is related to the Poincaré boundary field by

 �Rindler;R
0 �t̂; �̂� � lim

r!1
�rZ���Poincare

0 �T; X�: (39)

We also have the boundary change of coordinates

 

dTdX

Z2
�
r2dt̂d�̂

r2
�

: (40)

Making these substitutions in (16), the value of the field at
a bulk point inside the right Rindler wedge of AdS3 is
 

��t̂; r; �̂� �
��� 1�2��2

�r2
�

Z
spacelike

dxdy lim
r0!1

� ��=r0���2�Rindler;R
0 �t̂� x; �̂� iy�; (41)

where as r0 ! 1 the AdS-invariant distance (36) becomes
 

��t̂;r;�̂jt̂�x;r0;�̂� iy��
rr0

r2
�

�
cosy�

�
1�

r2
�

r2

�
1=2

coshx
�

(42)

 N

∞

r = ∞

r = 0r = 0
S

r =

FIG. 3. de Sitter space in static coordinates.
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and the integration is over ‘‘spacelike separated’’ points on
the Wick rotated boundary, that is, over real values of (x, y)
such that �> 0.

The result (41) for bulk points in the right Rindler wedge
was obtained in [7], starting from a Rindler mode sum and
defining it via an analytic continuation, or alternatively
from a de Sitter Green’s function. Now let us ask what
happens for bulk points inside the Rindler horizon. It is
clear from Fig. 2 that, if we were willing to work in
Poincaré coordinates, there would be no problem: we could
use (16) to obtain a smearing function with compact sup-
port on the Poincaré boundary. However if we wish to work
in Rindler coordinates there is a problem: the smearing
function extends outside the Rindler wedge, and covers
points on the (real slice of) the boundary which are to the
future of the right Rindler patch.9

To fix this we can use the antipodal map.10 The antipodal
map acts on the embedding coordinates of Sec. III A by

 A: X� ! �X�: (43)

In terms of Rindler coordinates this can be realized by

 A: t̂! t̂� i�; �̂! �̂� i�: (44)

Note that ��xjAx0� � ���xjx0�. Fields with integer con-
formal dimension transform simply under the antipodal
map,

 ��Ax� � ��1����x�: (45)

This is discussed in Appendix B, where we also treat the
slightly more involved case of noninteger �.

In Rindler coordinates the antipodal map can be used to
move the part of the smearing function which extends
outside the right Rindler wedge over to the left boundary.
To see this one starts with the Poincaré result (16) and
breaks the integration region up into two pieces. One piece
gives a smearing function in the right Rindler wedge, while
under the antipodal map the other piece becomes a smear-
ing function in the left Rindler wedge. Thus for a bulk point
inside the Rindler horizon we have
 

��t̂; r; �̂� �
��� 1�2��2

�r2
�

�Z
�>0

dxdy lim
r0!1
��=r0���2

��Rindler;R
0 �t̂� x; �̂� iy�

�
Z
�<0

dxdy lim
r0!1
���=r0���2��1��

��Rindler;L
0 �t̂� x; �̂� iy�

�
: (46)

Here as r0 ! 1 the AdS-invariant distance (35) becomes

 

��t̂; r; �̂jt̂� x;r0; �̂� iy� �
rr0

r2
�

�
cosy�

�
r2
�

r2 � 1
�

1=2
sinhx

�
(47)

when the boundary point is in the fright
left g Rindler wedge. The

integration is over points with �> 0 on the right boundary
and points with �< 0 on the left boundary, and we define

 �Rindler;L
0 �t̂; �̂� � lim

r!1
r���t̂; r; �̂�jleft boundary: (48)

C. Reproducing bulk correlators

It is instructive to check that the Rindler smearing
functions we have constructed let us recover the correct
bulk two-point functions from the CFT,11 especially for
points inside the Rindler horizon. Clearly of special im-
portance is the point r � 0, where the Rindler coordinates
become singular. So in this section we show how this
works for a point located at r � 0 and a point near the
right boundary.

The AdS Wightman function is

 GAdS�xjx
0� � h0j��x���x0�j0iSUGRA

�
1

4�R
1���������������

�2 � 1
p

1

���
���������������
�2 � 1
p

���1
: (49)

Here j0i is the global or AdS-invariant vacuum state.
Branch cuts are handled with a �! �� i� prescription,
or equivalently �! �� i� sin��� �0�, where � is the
global time coordinate defined in Appendix B.12 We con-
sider a point near the origin of Rindler coordinates (t � 0,
r � r0, � � 0), and a point near the right boundary with
coordinates (t, r, �). As r0 ! 0 and r! 1 the invariant
distance (37) is

 � 
r
r�

�
r0

r�
cosh�̂� sinht̂

�
:

Thus the AdS correlator approaches a finite,
�̂-independent value as r0 ! 0

 GAdS�0; 0; 0jt̂; r; �̂� 
1

2�R

�
r�

2r sinht̂� i�

�
�
: (50)

The fact that the correlator is independent of �̂ reflects the
fact that r � 0 is a fixed point of the isometry �̂! �̂�
const.

Now let us see how this behavior is reproduced by the
CFT. We will work with a field of integer conformal
dimension. At t̂ � r � �̂ � 0 the smearing function (46)
reduces to

9This is easiest to see by considering a bulk point in the future
wedge of Fig. 2 and following light rays to the right boundary.

10Exactly the same procedure applies to AdS2 in Rindler
coordinates [6]. An alternate procedure would be to analytically
continue outside the strip ��=2< y< �=2.

11This was done in Sec. II D for Poincaré coordinates.
12For points inside the Poincaré patch this is equivalent to T !
T � i�.
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��0; 0; 0� �
��� 1�2��2

�r�
�

Z 1
0
dxsinh��2x

�
Z �=2

��=2
dy��Rindler;R

0 �x; iy�

� ��1���Rindler;L
0 �x; iy�� (51)

while as r! 1 the smearing function (41) reduces to

 ��t̂; r; �̂�  r���Rindler;R
0 �t̂; �̂�: (52)

This means we should be able to recover (50) by comput-
ing
 

��� 1�2��2

��rr���
Z 1

0
dxsinh��2x

Z �=2

��=2
dyh��Rindler;R

0 �x; iy�

� ��1���Rindler;L
0 �x; iy���Rindler;R

0 �t̂; �̂�iCFT: (53)

For convenience we will work in the regime

 t̂ < 0; t̂ < �̂ <�t̂: (54)

In this regime the smeared CFT operators are never light-
like separated, so (53) is well defined without a prescrip-
tion for dealing with light cone singularities in the CFT.
The appropriate CFT correlators can be obtained from (49)
by sending the bulk points to the appropriate boundary13

 h�Rindler;R
0 �t̂; �̂��Rindler;R

0 �t̂0; �̂0�iCFT

�
�r2
�=2��

2�R�cosh��̂� �̂0� � cosh�t̂� t̂0 � i����
;

h�Rindler;R
0 �t̂; �̂��Rindler;L

0 �t̂0; �̂0�iCFT

�
�r2
�=2��

2�R�cosh��̂� �̂0� � cosh�t̂� t̂0���
:

(55)

Then we have

 

��� 1�r�
�

8�2Rr�

Z 1
0
dxsinh��2x

Z �=2

��=2
dy��cosh��̂� iy� � cosh�t̂� x���� � ��1���cosh��̂� iy� � cosh�t̂� x�����

�
��� 1�r�

�

8�2Rr�

Z 1
0
dxsinh��2x

Z �

��
dy�cosh��̂� iy� � cosh�t̂� x����

�
��� 1�2��3r�

�

i�2Rr�

Z 1
0
dxsinh��2x

I
jzj�e�

z��1dz

�z� et̂�x���z� e��t̂�x���
: (56)

In the last line we set z � e�̂�iy. In the regime (58) the z
contour of integration always encircles the pole at et̂�x and
never encircles the pole at e��t̂�x�. To analytically continue
outside (54) we proceed as in Sec. II D and deform the
contour of integration so that it continues to encircle the
appropriate pole. This continuation gives an integral that is
independent of �̂, and in this way the smearing function
(51) captures the fact that r � 0 is a fixed point of the
isometry �! �� const. It is entertaining to push the
calculation a little further and show that the CFT exactly
reproduces the bulk correlator. Just to be concrete, let us set
� � 2. Then evaluating the contour integral in (56) gives

 �
r2
�

�Rr2

Z 1
0
dx

2 cosh�t̂� x�

�2 sinh�t̂� x��3
�

1

2�R

�
r�

2r sinht̂

�
2

(57)

in agreement with (50) for � � 2. The result is also valid
outside the range (54) using the analytic continuation
described above.

IV. BTZ BLACK HOLE

To make a BTZ black hole starting from AdS3 all we
have to do is periodically identify the � coordinate, ��
�� 2� [24,26]. Scalar fields on AdS3 will descend to
scalar fields on BTZ provided they satisfy ��t; r; �� �
��t; r; �� 2��. The global AdS vacuum descends to the
Hartle-Hawking vacuum state in BTZ.

In this construction we are identifying points separated
by real values of the � coordinate. Since the Rindler
smearing functions we have constructed are translation
invariant in �, and since they only involve integration
over the imaginary part of �, we can apply our Rindler
results to a BTZ black hole without modification. That is,
(41) and (46) can be used to represent bulk fields in a BTZ
spacetime; if the boundary field has the correct periodicity
then so will the bulk field. This shows quite explicitly that
we can recover local physics outside the BTZ horizon
using operators that act on a single copy of the CFT, while
to describe the region inside the horizon we must use
operators that act on both the CFT and its thermofield
double [6,16–18,27].

The BTZ black hole has a spacelike singularity at r � 0,
which has been studied from the CFT point of view in
[17,18,21,23].14 In the semiclassical limit that we are con-
sidering this singularity should be encoded in the CFT. We
are now in a position to see this directly, by studying bulk
correlators with one point close to the singularity.

The BTZ Wightman function is given by an image sum
[28,29]

13We obtained these expressions as boundary supergravity
correlators, but the same result holds for correlation functions
in a finite temperature CFT.

14The singularity is an analytic continuation of one of conical
type. The curvature remains constant near the singularity.
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 GBTZ�xjx0� �
X1

n��1

GAdS�t; r; �jt0; r0; �0 � 2�n�: (58)

This diverges when r � 0, just because r � 0 is a fixed
point of the isometry of shifting� by a constant: when r �
0 the invariant distance (37) is independent of �0 and the
image sum diverges. To estimate the divergence, note that
for small r0 the BTZ image sum is cut off at jnj  1

2� �

log�r�=r0�. This means the BTZ Wightman function di-
verges logarithmically near the singularity

 GBTZ�0; r0; 0jt̂; r; �̂� �
1

2�2R

�
r�

2r sinht̂

�
�

log
r�
r0

as r0 ! 0:

How does this divergence arise from the CFT view-
point? A priori there are a number of possibilities:

(i) The CFT itself could be incomplete in the same
sense as classical gravity.

(ii) The mapping between CFT operators and local bulk
fields could become singular at this point.

(iii) The mapping could remain smooth, but the CFT
operator moves outside the class of physically rea-
sonable observables.

The boundary S-matrix in the gravity theory appears to be
well defined around the BTZ background by virtue of
cosmic censorship, provided one avoids processes that
produce naked singularities. Hence the same will be true
of the CFT correlators, so in that sense the CFT gives a
complete well-defined theory at large N. Thus the first
possibility is ruled out. The mapping is nonsingular, as
can be seen explicitly in (51), which rules out the second
possibility. It is the third possibility which is realized.

Before discussing this in more detail, let us follow
through with our calculation of the bulk two-point function
using the CFT. As in Sec. III C we place one point near the
singularity and the other near the right boundary. Then all
we have to do is replace the AdS boundary correlators with
BTZ boundary correlators in (53).15 Boundary correlators
in the BTZ geometry can be obtained from (55) by per-
forming an image sum to make them 2� periodic in� [30].
However as we have seen (53) gives a result that is inde-
pendent of �. Therefore substituting BTZ boundary corre-
lators in (53) leads to a divergent image sum. So the
divergence is present in the CFT computation of the corre-
lator, for the same reason it was present in the bulk.

Now let us make some comments on the interpretation
of this divergence. In AdS3 as two bulk points coincide
their correlator exhibits the expected Hadamard short-
distance singularity

 GAdS �
1

4�R
�������������������
2��� 1�

p as �! 1: (59)

Generically as two points coincide in BTZ their correlator
diverges in exactly the same way, because only one term in
the image sum (58) will have a singularity. However if we
place one point at the BTZ singularity then GBTZ diverges
no matter where the other point is located. This is because
r � 0 is a fixed point of the orbifold symmetry and the
symmetry operation is of infinite order.

We can use the coefficient of the singularity (59) as a
definition of the norm of these operators. For generic points
the norm is finite, however the norm diverges for the
operator at the fixed point. One way to see this is by using
a point splitting regularization and considering
lim�!0GBTZ�0; 0; 0j�r; ��; �t�. The invariant distance is
independent of the coordinate separation in the� direction
if one point lies at r � 0, so GBTZ�0; 0; 0j�r; ��; �t� di-
verges even at finite �. Thus the operator �jr�0 has infinite
norm.

In the CFT we interpret the operator (51) dual to �jr�0

exactly as in the bulk. It is a non-normalizable operator
which has divergent correlators with all operators of inter-
est. This is how a well-behaved conformal field theory
gives rise to a divergent correlation function: through the
introduction of a non-normalizable operator. We will com-
ment further in Sec. VII on how this picture generalizes
when backreaction and finite N are taken into account.

V. COLLAPSE GEOMETRIES

As we have seen, it is possible to probe the region inside
the horizon of a BTZ black hole using operators that act on
both the left and right copies of the CFT. A similar result
should hold for a general eternal AdS-Schwarzschild black
hole. However in the more physical case of a black hole
formed in collapse there is only a single asymptotic AdS
region, and one might ask: can the region inside the hori-
zon be described using the single copy of the CFT?

For simplicity let us work in AdS3 and consider a large
(stable) black hole formed by sending in a null shell from
the boundary. The Penrose diagram is shown in Fig. 4.
Consider a bulk point P inside the horizon and to the future
of the shell. Can an operator inserted at that point be
described in the CFT?

The answer is yes, and for fields with integer conformal
dimension the explicit construction is quite simple. As can
be seen from the global mode expansion given in
Appendix B, fields with integer conformal dimension are
single-valued on the AdS hyperboloid (periodic in global
time with period 2�). Note from (33) that continuing t̂!
t̂� i� has the effect of changing the sign of two of the
embedding coordinates, namely

 V ! �V X ! �X:

Thus for integer conformal dimension the boundary fields

15As is written, (53) is only valid in the range (54). To extend it
outside this range we must analytically continue in �, as
discussed at the end of Sec. III C.
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in the left and right Rindler wedges are related by

 �Rindler;L
0 �t̂; �̂� � �Rindler;R

0 �t̂� i�; �̂�: (60)

(This relation was also used in [16].) The collapse geome-
try can be made by taking the right and future regions of an
eternal BTZ black hole and joining them across the shell to
a piece of AdS3. For points to the future of the shell we can,
by analytic continuation, pretend that we are in an eternal
BTZ geometry. We can therefore use the relation (60) in
our BTZ smearing function (46) to represent bulk operators
that are located inside the horizon.

This shows that we can represent a bulk point inside the
horizon in terms of a single CFT, provided we analytically
continue in both the t̂ and �̂ coordinates. Our explicit
construction works for points that are to the future of the
infalling shell. One could also ask about representing bulk
points inside the shell, such as the point Q in Fig. 4. This is
indeed possible, although the construction is more compli-
cated since one must propagate modes across the shell
[31].

VI. COMMENTS ON FINITE N

We have seen that in the semiclassical limit one can
construct local operators anywhere in the bulk of AdS.
However at finite N, when the Planck length is finite,
holography demands that the number of independent de-
grees of freedom inside a volume is finite, bounded by the
area of the region in Planck units. In this section we
attempt to understand how this comes about.

The smeared operators we have constructed in the CFT
are still well defined at finite N. For example in N � 4
Yang-Mills we can define the operator
 

��T;X;Z� �
Z
dT0d3X0K�T0;X0jT;X;Z�TrF2�T0;X0� (61)

at any N. At finite N it does not obey the correct bulk
dilaton equation of motion [10]. However it is a perfectly
good operator in the gauge theory, and it has the right
behavior in the large-N limit to be associated with a
particular point in the bulk. So as a first step, it seems
reasonable to associate ��T; X; Z� with a point in the bulk,
even at finite N. Since the bulk point was arbitrary, at first
sight this means we can associate an infinite number of
local operators with any given region in the bulk.

This might seem like a surprising conclusion, so let us
give supporting evidence for our approach. Consider pure
AdSD, dual to a CFTD�1 in its ground state. The conformal
symmetry of the CFT is valid at any N. This means that,
even when the Planck length is finite, AdS quantum gravity
has an exact SO�D� 1; 2� symmetry. Purely formally, we
can realize this symmetry as acting on a set of coordinates
�T; X; Z�. The smearing functions we have constructed
transform covariantly under SO�D� 1; 2� [7]—a property
which suffices to determine them up to an overall coeffi-
cient.16 This means that at any N, the smearing functions
we have defined are the unique way to start with a primary
operator in the CFT and build a representation of SO�D�
1; 2� which transforms as a scalar field in AdS. Since the
construction we have outlined is fixed by the symmetries,
the operators (61) are singled out even at finite N.

How can this continuum of operators be compatible with
holography? We believe the answer is that only a few of
these operators will commute with each other at finite N.
At infiniteN we managed to construct smeared operators in
the CFT which commute with each other even though the
smearing functions overlap on the boundary. We discussed
this in Sec. II D. But at finite N it is implausible that all the
overlapping operators will commute.17 Let us estimate how
many commuting operators we do expect. If we take a local
CFT operator and smear it, it will trivially commute with
another smeared operator provided the two smearings are
‘‘spacelike’’ to each other: that is, provided the two smear-
ing functions have supports which only involve points on
the boundary that are at spacelike separation. In this case
the two smeared operators will commute with each other
by locality of the boundary theory. The condition for
spacelike separation was studied in [6] for AdS3 and is
easily extended to any dimension. In Poincaré coordinates,
working on a hypersurface of fixed time, it boils down to

 

Q

P

FIG. 4. An AdS black hole formed by collapse. The left edge
of the diagram is the origin of AdS, the right edge is the AdS
boundary. The dashed line is the black hole horizon while the
solid diagonal line represents the infalling shell.

16The coefficient can be fixed by matching onto a properly
normalized operator in the CFT in the limit that the bulk point
approaches the boundary.

17By overlapping operators we mean the smearing functions
have support at timelike relative separation.
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the requirement that the separation between any two bulk
operators satisfies j�Xj> 2Z. Since the necessary separa-
tion gets larger as Z increases, the maximum number of
commuting operators in a given region is achieved by
placing them all at the boundary of the region. For ex-
ample, inside a bulk region

 0<Xi < L; Z0 < Z<1; i � 1 � � � d� 1

the maximum number of trivially commuting operators is
given when they are evenly spaced along the boundary of
the region, at Z � Z0, with a characteristic coordinate
spacing of order Z0. Thus according to this prescription
there are at most ��L=Z0�

d�1 trivially commuting opera-
tors one can build in this region by smearing a single local
operator in the CFT.18 This corresponds to one commuting
operator per AdS area (in units of the AdS radius of
curvature R). This is far too few degrees of freedom to
describe a local bulk field.

Turning back to the infinite number of operators de-
scribed above, we note that—although they do not all
commute—their correlation functions nonetheless look
local up to 1=N corrections that involve mixing with other
operators. The infinite set of operators can therefore be
used to describe bulk physics which is approximately local,
at least as far as correlation functions are concerned, as
long as the 1=N corrections can be ignored. However note
that if one tries to place operators too close together or in a
state with large energy, their commutator may get a large
contribution from smeared operators corresponding to bulk
excitations which are outside the given spacetime volume.
We should not associate such operators with independent
degrees of freedom within the volume. Presumably there is
a finite maximal set of operators that mutually commute up
to terms that vanish as N ! 1 and remain inside the given
volume. Bekenstein-style arguments [33] (made on the
supergravity side) support this idea. It is this set of opera-
tors which we argue counts the independent degrees of
freedom inside a volume.

We obtain a natural proposal for a basis of these opera-
tors by generalizing the above construction of trivially
commuting operators. Let us consider all possible degrees
of freedom within a given bulk volume, rather than those
associated with a particular supergravity field. For con-
creteness, we will consider AdS5. We expect of order N2

independent local operators in the boundary theory.
Therefore we should be able to construct a basis of N2

mutually commuting bulk operators as we did above for
the trivially commuting operators. This implies a total of
N2 degrees of freedom per area in AdS units. This matches
perfectly with the relation l3Planck � R3=N2 and saturates
the holographic bound.

VII. CONCLUSIONS

In this paper we developed the representation of local
operators in the bulk of AdS in terms of nonlocal operators
on the complexified boundary. We showed that these non-
local operators reproduce the correct bulk-to-bulk correla-
tion functions. In particular they reproduce the divergent
correlators of an operator inserted at the BTZ singularity.
We commented on black holes formed by collapse, and
discussed the way in which bulk locality arises in the
large-N limit but breaks down at finite N.

Local bulk operators thus provide a powerful tool for
understanding the AdS/CFT correspondence. They give
new insights into the way in which light cone singularities
and spacelike commutativity arise in the bulk. They enable
us to probe nontrivial geometries, including regions inside
horizons which are naively hidden from the boundary, and
they show very explicitly how a bulk singularity can mani-
fest itself in a well-behaved CFT. Our results were all
obtained in the infinite N limit. However we argued that
in some contexts (two-point functions in pure AdS) our
results carry over exactly to any value of N. And based on
consideration of the operators at infinite N we were able to
give a qualitative picture of the independent bulk degrees
of freedom at finite N.

There are a number of directions for future work. We
begin with a few further remarks on the nature of the BTZ
singularity from the CFT viewpoint. At leading order in a
large N expansion, we found that a bulk field probe of the
singularity is represented by a non-normalizable operator
in the CFT. Note that backreaction/finite N effects play a
crucial role in understanding the physics near the singu-
larity, even in the case of BTZ, as discussed in [16,28,34]
(and references therein). Therefore we certainly expect
large corrections to the smearing function within a
Planck length of the singularity. It would be interesting
to know whether these corrections render operators at the
singularity normalizable, or whether one should simply
abandon a bulk spacetime description of the physics in
this region. Nevertheless it seems the operators defined by
(46) have smooth analytic continuations through complex
values of r from region 2�� (in the notation of [16]) to the
past of the singularity to region 2�� to the future of the
singularity, avoiding the Planck scale region near the sin-
gularity. This raises the question of whether the CFT also
gives a smooth description of regions to the future of the
singularity. An important criterion in deciding whether
certain combinations of CFT correlators reproduce sen-
sible bulk spacetime physics, is whether the set of ampli-
tudes can be reproduced by a unitary local bulk Lorentzian
spacetime effective action. This seems to be true for re-
gions outside the horizon, and regions to the past of the
singularity, but it is unlikely this will be true if one also
includes operators to the future of the singularity. It would
be very interesting to show this explicitly. Moreover the
resolution of the black hole information problem via AdS/

18Thus the bulk region can be described by a boundary theory
with a lattice spacing �Z0. This is clearly closely related to the
cutoff procedure introduced in [32].
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CFT suggests [35,36] that nonlocal terms appear in a bulk
effective action connecting the region near the singularity
with the region outside the horizon. The local operators
constructed in the present work are an important first step
in trying to reconstruct these new quantum gravity features
of the bulk effective action.

In Sec. VI we commented on the way in which the
number of commuting degrees of freedom is reduced at
finite N. We also showed how bulk locality is recovered in
correlation functions in the large-N limit, despite the
seemingly low number of degrees of freedom (correspond-
ing to a theory with a cutoff �X > Z):, namely, through the
presence of a continuum of bulk operators whose commu-
tators are O�1=N�. Constructing a precise analog of smear-
ing functions at finite N and better understanding the
analog of bulk spacetime geometry is an important open
problem.

For eternal black holes we found that local operators
inside the horizon are dual to operators which act on both
copies of the CFT. In Sec. V we showed that, at least in
some cases, one could represent an operator inside the
horizon of a black hole formed by collapse in terms of a
single CFT, by using an operator which is analytically
continued both in the spatial and temporal coordinates of
the CFT. These ideas will be further explored in [31].

This leads to an interesting question, namely, whether
there is an algorithm for constructing smearing functions
with compact support in a general asymptotically AdS
background. The smearing functions we have constructed
in this paper can all be thought of as arising from a Wick
rotation of the boundary spatial coordinates. This should
certainly be a well-defined operation on the analytic cor-
relators that arise from the CFT. However a general bulk
geometry will typically not have an interpretation with a
real metric after performing such a continuation. One could
still try to represent the smearing function as a mode sum,
but it is not clear that the smearing function will have
compact support on the (complexified) boundary. One
way to address this issue would be to attempt to find a
procedure, purely within the CFT, for identifying a set of
well-behaved smearing functions. The only obvious con-
dition to impose is that in the semiclassical limit the
smeared operators should commute at bulk spacelike sepa-
ration. Is that enough to uniquely determine the smearing
functions?
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APPENDIX A: RINDLER MODE SUM

In this appendix we set up the Rindler mode sum for a
bulk point inside the horizon. It is convenient to introduce
Kruskal coordinates on AdS3 in which

 ds2 � �
4R2

�1� uv�2
dudv� r2d�2:

These coordinates are defined by

 u �
�
r� r�
r� r�

�
1=2
et̂; v � �

�
r� r�
r� r�

�
1=2
e�t̂

in the right Rindler wedge and

 u �
�
r� � r
r� � r

�
1=2
et̂; u �

�
r� � r
r� � r

�
1=2
e�t̂

in the future Rindler wedge; to cover the left and past
wedges just change the signs of both u and v. A complete
set of normalizable modes in the right Rindler wedge is
given by
 

�R�t; r; �� � e�i!teik�r��

�
1�

r2
�

r2

�
�i!̂=2

F
�
�

2
� i!̂�;

�

2

� i!̂�;�;
r2
�

r2

�
; (A1)

where !, k 2 R, !̂� � 1
2 �!̂� k̂�, !̂ � !R2=r�, k̂ �

kR=r�. We can extend this mode to the entire Kruskal
diagram by analytically continuing across the Rindler ho-
rizons. If we continue through the lower half of the com-
plex u and v planes we get a mode which is positive
frequency with respect to Kruskal time, while continuing
through the upper half of the complex u and v planes gives
a negative frequency Kruskal mode.19 The analytic con-
tinuation is straightforward, with the help of a z! 1� z
transformation of the hypergeometric function. Define
 

f!k�r� �
1

r�

�
1�

r2
�

r2

�
�i!̂=2

F
�

�

2
� i!̂�;

�

2
� i!̂�;�;

r2
�

r2

�
;

g!k�r� �
1

r�

�
r2
�

r2 � 1
�
�i!̂=2

�
������i!̂�

����=2� � i!̂������=2� � i!̂��

� F
�
�

2
� i!̂�;

�

2
� i!̂�; 1� i!̂; 1�

r2
�

r2

�
:

Then a complete set of fpositive
negativeg frequency Kruskal modes is

19Positive and negative frequency in the sense of multiplying
annihilation and creation operators in the expansion of the field.
This prescription for selecting positive frequency Kruskal modes
picks out the AdS-invariant vacuum state.
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given by

 ��R �t; r; �� � e�i!teik�f!k�r�;

��F �t; r; �� � e�i!teik��g!k�r� � e
��!̂g�!;k�r��;

��L �t; r; �� � e��!̂e�i!teik�f!k�r�

(A2)

in the (right, future, left) Rindler wedges. This means we
can express the value of the field in the future wedge in
terms of data on the right and left boundaries, via

 �F�t;r;���
Z
d!dk

1

4�2g!k�r�

�

�Z
dt0d�0�e�i!�t�t

0�eik����
0��Rindler;R

0 �t0;�0�

�e�i!��t�t
0�eik����

0��Rindler;L
0 �t0;�0��

�
:

(Recall that time is oriented oppositely on the two bounda-
ries, so for t � 0 this expression is in fact symmetric
between the right and left boundaries.) Switching the order
of integration and performing the ! and k integrals first
gives a formal representation of the Rindler smearing
function, essentially as the Fourier transform of g!k.
However it is easy to check that g!k grows exponentially
as k! �1. So we are not justified in switching the order
of integration and the Fourier transform does not exist. One
can presumably make sense of the Rindler smearing func-
tion in this approach by deforming the contours of integra-
tion as in [7]. For points inside the horizon this should
reproduce the result (46) we obtained from Poincaré
coordinates.

APPENDIX B: NONINTEGER �

In this appendix we work out the generalization of the
Rindler smearing function (46) appropriate for arbitrary
conformal dimension.

We first need to discuss the generalization of the anti-
podal map. This is easiest to understand in global coordi-
nates, where the embedding coordinates of Sec. III A are
given by

 U � R cos�= cos	; V � R sin�= cos	;

X � R cos� tan	; Y � R sin� tan	

for �1< �<1, 0 � 	 < �=2, �� �� 2�. The in-
duced metric is

 ds2 �
R2

cos2	
��d�2 � d	2 � sin2	d�2�:

The antipodal map acts by

 A: ��; 	; �� ! ��� �; 	; �� ��:

The global mode expansion is

 

���; 	; �� �
X1
n�0

X1
l��1

anle�i!nl�eil�sinjlj	cos�	

� P�jlj;��1�
n �cos2	� � c:c:;

where !nl � 2n� jlj � � and Pn is a Jacobi polynomial.
So fields which are fpositive

negativeg frequency with respect to
global time satisfy

 ���x� � e�i�����Ax�:

This means the generalization of (46) to arbitrary confor-
mal dimension is

 

� �
��� 1�2��2

�r2
�

�Z
�>0

dxdy lim
r0!1
��=r0���2

��Rindler;R
0 �t̂� x; �̂� iy�

�
Z
�<0

dxdy lim
r0!1
���=r0���2�e�i���Rindler;L

0�

� �t̂� x; �̂� iy� � ei���Rindler;L
0� �t̂� x; �̂� iy��

�
;

(B1)

where we have decomposed the left boundary field into
pieces �Rindler;L

0� that are fpositive
negativeg frequency with respect to

global (equivalently, Kruskal) time. These may in turn be
expressed in terms of integrals involving �Rindler;L

0 and
�Rindler;R

0 over all time, as in Appendix 2 of [6].

[1] J. M. Maldacena, Adv. Theor. Math. Phys. 2, 231 (1998).
[2] S. S. Gubser, I. R. Klebanov, and A. M. Polyakov, Phys.

Lett. B 428, 105 (1998).
[3] E. Witten, Adv. Theor. Math. Phys. 2, 253 (1998).
[4] O. Aharony, S. S. Gubser, J. M. Maldacena, H. Ooguri, and

Y. Oz, Phys. Rep. 323, 183 (2000).

[5] S. B. Giddings, D. Marolf, and J. B. Hartle, Phys. Rev. D
74, 064018 (2006).

[6] A. Hamilton, D. Kabat, G. Lifschytz, and D. A. Lowe,
Phys. Rev. D 73, 086003 (2006).

[7] A. Hamilton, D. Kabat, G. Lifschytz, and D. A. Lowe,
Phys. Rev. D 74, 066009 (2006).

HAMILTON, KABAT, LIFSCHYTZ, AND LOWE PHYSICAL REVIEW D 75, 106001 (2007)

106001-14



[8] V. Balasubramanian, P. Kraus, A. E. Lawrence, and S. P.
Trivedi, Phys. Rev. D 59, 104021 (1999).

[9] V. Balasubramanian, P. Kraus, and A. E. Lawrence, Phys.
Rev. D 59, 046003 (1999).

[10] T. Banks, M. R. Douglas, G. T. Horowitz, and E. J.
Martinec, hep-th/9808016.

[11] V. Balasubramanian, S. B. Giddings, and A. E. Lawrence,
J. High Energy Phys. 03 (1999) 001.

[12] I. Bena, Phys. Rev. D 62, 066007 (2000).
[13] L. Susskind, hep-th/9901079.
[14] J. Polchinski, hep-th/9901076.
[15] V. Balasubramanian, A. Naqvi, and J. Simon, J. High

Energy Phys. 08 (2004) 023.
[16] P. Kraus, H. Ooguri, and S. Shenker, Phys. Rev. D 67,

124022 (2003).
[17] L. Fidkowski, V. Hubeny, M. Kleban, and S. Shenker, J.

High Energy Phys. 02 (2004) 014.
[18] G. Festuccia and H. Liu, J. High Energy Phys. 04 (2006)

044.
[19] G. Festuccia and H. Liu, hep-th/0611098.
[20] B. Freivogel et al., J. High Energy Phys. 03 (2006)

007.

[21] V. E. Hubeny, H. Liu, and M. Rangamani, J. High Energy
Phys. 01 (2007) 009.

[22] J. Hammersley, J. High Energy Phys. 12 (2006) 047.
[23] C. Yang, hep-th/0611049.
[24] M. Banados, C. Teitelboim, and J. Zanelli, Phys. Rev. Lett.

69, 1849 (1992).
[25] R. Bousso, A. Maloney, and A. Strominger, Phys. Rev. D

65, 104039 (2002).
[26] S. Carlip, Classical Quantum Gravity 12, 2853 (1995).
[27] J. M. Maldacena, J. High Energy Phys. 04, 021 (2003).
[28] G. Lifschytz and M. Ortiz, Phys. Rev. D 49, 1929 (1994).
[29] I. Ichinose and Y. Satoh, Nucl. Phys. B447, 340 (1995).
[30] E. Keski-Vakkuri, Phys. Rev. D 59, 104001 (1999).
[31] D. A. Lowe and S. Roy (unpublished).
[32] L. Susskind and E. Witten, hep-th/9805114.
[33] J. D. Bekenstein, Phys. Rev. D 23, 287 (1981).
[34] M. Berkooz, B. Craps, D. Kutasov, and G. Rajesh, J. High

Energy Phys. 03 (2003) 031.
[35] D. A. Lowe and L. Thorlacius, Phys. Rev. D 60, 104012

(1999).
[36] D. A. Lowe and L. Thorlacius, Phys. Rev. D 73, 104027

(2006).

LOCAL BULK OPERATORS IN AdS/CFT . . . PHYSICAL REVIEW D 75, 106001 (2007)

106001-15


