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1Dip. di Matematica e Applicazioni, Università ‘‘Federico II’’, V. Claudio 21, 80125 Napoli, Italy
2INFN, Sez. di Napoli, Complesso MSA, V. Cintia, 80126 Napoli, Italy

3Arnold Sommerfeld Center for Theoretical Physics, Universität München, Theresienstr. 37, 80333 München, Germany
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We explore some general consequences of a proper, full enforcement of the ‘‘twisted Poincaré’’
covariance of Chaichian et al., Wess, Koch et al., and Oeckl upon many-particle quantum mechanics and
field quantization on a Moyal-Weyl noncommutative space(time). This entails the associated braided
tensor product with an involutive braiding (or ?-tensor product in the parlance of Aschieri et al.)
prescription for any coordinate pair of x, y generating two different copies of the space(time); the
associated nontrivial commutation relations between them imply that x� y is central and its Poincaré
transformation properties remain undeformed. As a consequence, in quantum field theory (QFT) (even
with space-time noncommutativity) one can reproduce notions (like spacelike separation, time- and
normal-ordering, Wightman or Green’s functions, etc.), impose constraints (Wightman axioms), and
construct free or interacting theories which essentially coincide with the undeformed ones, since the only
observable quantities involve coordinate differences. In other words, one may thus well realize quantum
mechanics (QM) and QFT’s where the effect of space(time) noncommutativity amounts to a practically
unobservable common noncommutative translation of all reference frames.
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I. INTRODUCTION: MOYAL-WEYL SPACES,
TWISTED POINCARÉ ‘‘GROUP,’’ AND QFT

In the last decade a broad attention has been devoted to
the construction of quantum field theories (QFT) on the
perhaps simplest examples of noncommutative spaces, the
so-called Moyal-Weyl spaces. These are characterized by
coordinates x̂� fulfilling the commutation relations

 �x̂�; x̂�� � i���; (1)

where ��� is a constant real antisymmetric matrix. The
��� � 0 limit is the undeformed algebra A generated by
commuting coordinates x�. For the sake of definiteness we
shall suppose (with the exception of Sec. III)� � 0, 1, 2, 3
and endow the space with the ordinary Minkowski metric
���, to obtain a deformation of the 3� 1-dimensional
Minkowski space-time. As ��� is not an isotropic tensor,
relations (1) are not covariant (i.e. not form invariant)
under Lorentz transformations of the reference frame
(although they are invariant under translations).

The unital algebra Â generated by these x̂� is isomor-
phic to the one A� which is obtained by endowing the
vector space underlying A (extended over the formal
power series in ���) with a deformed product, the
?-product, which can be formally defined by

 a ? b :� � �F �1��a�� �F �2��b�: (2)

For typographical convenience we have denoted by �F �
F�1 the inverse of the so-called twist F . It (and therefore
also the associated isomorphism �: Â!A�) is not
uniquely determined, but what follows does not depend

on the specific choice of �F . The simplest is

 

�F � �F �1� 	 �F �2� :� exp
�
�
i
2
���P� 	 P�

�
: (3)

P� denote the generators of translations, and � in general
denotes the action of the universal enveloping algebra
(UEA) UP of the Poincaré Lie algebra P (on A this
amounts to the action of the corresponding algebra of
differential operators, e.g. P� can be identified with
i@� :� i@=@x�). In the second expression and in (2) we
have used a Sweedler notation with suppressed summation
index: �F �1� 	 �F �2� stands in fact for a (infinite) sumP
I

�F �1�I 	
�F �2�I . Relation (2) with the specific choice (3)

of the twist gives in particular

 x̂ �x̂�!
�
x� ? x� � x�x� � i���=2:

As a result, x� ? x� � x� ? x� � i���, i.e. again (1), as
claimed. One advantage of working with A� instead of Â
is that integration over the original commutative space can
be used also on the noncommutative one without losing its
properties (in particular Stokes’s theorem). In addition,

 

Z
d4xa ? b �

Z
d4xab (4)

for any regular a, b functions in the vector space under-
lying A vanishing sufficiently fast at infinity. The defini-
tion (2) and (3) involves a power series in ��� and for the
moment should be regarded as formal: it can be applied to a
much larger domain if �F is rather realized as an integral
operator, as we shall explain in (13).
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Different (obviously not Lorentz-covariant) approaches
to the quantization of field theory on Moyal-Weyl spaces
have been proposed (see [1– 4] and references therein).
New complications appear, like nonunitarity [5], violation
of causality [6,7], UV-IR mixing of divergences [8] and
subsequent nonrenormalizability, alleged change of statis-
tics, etc. Some of these problems, like nonunitarity [9], or
the very occurrence of divergences [10], may be due
simply to naive (and unjustified) applications of commu-
tative QFT rules (path-integral methods, Feynman dia-
grams, etc.) and could disappear adopting a sounder
field-operator approach.

In Refs. [11–13] it has been recognized that the commu-
tation relations of Â
A� are in fact covariant under a
deformed version of the Poincaré group, namely, the tri-
angular noncocommutative Hopf �-algebra H obtained
from UP by ‘‘twisting’’ [14] with F (this result had
been in fact anticipated in terms of corepresentations of
the dual Hopf algebra in Sec. 4.4.1 of [15]. For a general
introduction to the twist, see e.g. [16]). This means that (up
to possible isomorphisms) the algebra structure and the co-
unit " of UP , H (extended over the formal power series in
���) are the same, but the coproduct is changed through
the similarity transformation
 

��g� � g�1� 	 g�2� ! �̂�g� � F��g�F�1 � g�1̂� 	 g�2̂�;

g 2 H � UP (5)

(at the right-hand side’s (rhs’s) we have again used
Sweedler notation with suppressed summation indices),
and the antipode S accordingly. A straightforward compu-
tation gives

 �̂�P�� � P� 	 1� 1 	 P� � ��P��;

�̂�M!� � M! 	 1� 1 	M! � P�!; �� 	 P � ��M!�;

where we have set M! :� !��M�� and used a row-by-
column matrix product on the right. The left identity shows
that the Hopf P subalgebra remains undeformed and
equivalent to the Abelian translation group T 
 R4.
Denoting by �, �̂ the (say, left) actions of UP , H, they
coincide on first degree polynomials in x�, x̂�,

 P��x� � i��� � P��̂x̂�; M!�x� � 2i�x!��;

M!�̂x̂� � 2i�x̂!��;
(6)

and more generally on irreducible representations (irreps);
as noted in [11], this yields the same classification of
elementary particles as unitary irreps of P . But �, �̂ differ
on products of coordinates, and more generally on tensor
products of representations, as � is extended by the rule
g��ab� � �g�1��a��g�2��b� involving ��g� (the rule re-
duces to the usual Leibniz rule for g � P�,M��), whereas

�̂ is extended on products of elements in both Â, A� by
the rule

 g�̂�â b̂� � �g�1̂��̂ â��g�2̂��̂ b̂� , g�̂�a ? b�

� �g�1̂��̂a� ? �g�2̂��̂b�; (7)

which respects the commutation relations (1), making Â,
A� isomorphic H-module algebras; this deforms, in par-
ticular, the Leibniz rule of M�� (but not of P�).

How to implement this twisted Poincaré covariance in
QFT is the subject of debate and different proposals [17–
26], two main issues being whether one should: (a) take the
?-product of fields at different space-time points;
(b) deform the canonical commutation relations (CCR) of
creation and annihilation operators a, ay for free fields.

The aim of this work is to point out that a proper
enforcement of twisted Poincaré covariance answers affir-
matively to (a) and brings a radical simplification to the
framework, in that all coordinate differences become
?-central, i.e. central w.r.t. the ?-product (Sec. II). We first
explore (Sec. III) some consequences of the latter fact in
n-particle quantum mechanics (QM): we find that twisted
Galilei covariance is compatible with Bose or Fermi sta-
tistics and that the dynamics of an isolated system of n
particles is the same as its counterpart on commutative
space. As for QFT, which we treat in field-operator ap-
proach, we sketch the general consequences of (slightly
adapted) Wightman axioms in Sec. IV, show in Sec. V that
the latter can be satisfied by free (for simplicity scalar)
fields if we also suitably deform the CCR of the a, ay’s so
that the ?-commutator of the fields is equal to the unde-
formed counterpart, show in Sec. VI that then the time-
ordered perturbative computation of Green functions of a
scalar ’?n interacting theory gives the same results as the
undeformed theory. In other words, we end up in this way
with twisted Poincaré covariant QFT’s which are physi-
cally equivalent to their counterparts on commutative
Minkowski space, with the obvious consequence that the
above-mentioned complications will disappear. In Sec. VII
we draw some conclusions and briefly comment on the
alternatives implying violation of the cluster property by
the Wightman functions.

II. THE ACTION OF THE TWISTED POINCARÉ
GROUP ON SEVERAL SPACE-TIME VARIABLES

Dealing with n-point (Green’s, Wightman’s, etc.) func-
tions in QFT requires n sets of noncommutative
Minkowski space-time coordinates x̂�i , i � 1; . . . ; n, of
type (1). Similarly, dealing with n-particle QM requires n
sets of noncommutative Euclidean space coordinates x̂�i ,
(one for each particle) of type (1).

Our starting, basic observation is that to consistently
adopt the viewpoint of twisted Poincaré covariance one
should require that also the larger algebra Ân generated
by them is aH-module algebra, meaning, in particular, that
within the latter (7) still holds. This is also the philosophy
adopted in Ref. [27]. To this end one cannot adopt as Ân
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the tensor product algebra of n copies of Â, or equiva-
lently assume trivial commutation relations

 �x̂�i ; x̂
�
j � � 0 i � j;

as done e.g. in [20,28], because the latter are incompatible
with (7) by the noncocommutativity of �̂ (this can be
checked e.g. by letting the Lorentz generators M�� act
on both sides). In fact it is a basic property of quasitrian-
gular Hopf algebra theory (see e.g. [29]) that one has to
adopt as Ân rather the deformation of the tensor product
algebra, usually called braided tensor product algebra,
dictated by the quasitriangular structure R of H. Given
two left H-module algebras M̂, M̂0 the braided tensor
product algebra M̂	 M̂0 is still M̂ 	 M̂0 as a vector space,
but is characterized by the product

 �m̂	 m̂0� � �n̂	 n̂0� � m̂�R�2��̂ n̂�	�R�1��̂m̂0�n̂0; (8)

where we have again used a Sweedler notation with sup-
pressed summation index: R �R�1� 	R�2� stands in fact
for a (infinite) sum

P
IR

�1�
I 	R�2�

I . In the present case
R � F 21F

�1 � �F ��2 is even triangular, i.e. RR21 �
1 	 1, implying that these rules are symmetric w.r.t. to the
exchange of M̂, M̂0, or equivalently the braiding coincides
with the ordinary flip up to a similarity transformation. If
M̂, M̂0 are H-module algebras, deformations of two
UP -module algebras M, M0, so that the isomorphisms
M̂
M�, M̂0 
M0� hold, the braided tensor product (8) is
isomorphic to the ?-tensor product 	? of [27], which is
defined by setting for any m 2 M�, m0 2 M0�

 m 	? m
0 � � �F �1��m� 	 � �F �2��m0�: (9)

That this is the ‘‘right’’ deformation of the tensor product
follows also from the observation that this is nothing but
the extension of the ?-product law (2) to the whole tensor
product algebra M 	M0, in the sense

 m 	? m
0 � �m 	 1� ? �1 	m0�: (10)

If M̂, M̂0 are unital (8) reduces to the ordinary tensor
algebra rule if either m̂0 � 1 or n̂ � 1, as "�R�1��R�2� �

"�R�2��R�1� � 1. As for ordinary tensor product algebras,
because of the trivial algebra isomorphisms 1	M̂0 
 M̂0,
M̂	 1
 M̂, one can simplify the notation by dropping the
units, i.e. denote m̂	 1 and 1	m̂0, respectively by m̂, m̂0,
whereby the only novelty of (8) remains concentrated in
the nontrivial ‘‘cross’’ commutation relation

 m̂ 0n̂ � �R�2��̂ n̂��R�1��̂m̂0�:

Similarly, we can simplify the notation denoting the sides
of (10) as m ? m0 and replacing the previous relation by
m0 ? n � �R�2��̂n� ? �R�1��̂m0�.

Choosing as M̂, M̂0 two copies of the �-algebra of
functions Â on the Moyal-Weyl noncommutative space,

calling x̂, ŷ the respective sets of coordinates, and noting
that the action of the translation generators on the coordi-
nates is given by

 P��̂x̂� � P��̂ŷ� � i���;

we find

 x̂ �ŷ� � �R�2��̂ŷ���R�1��̂x̂�� � ŷ�x̂� � i���:

These are also automatically compatible with the
�-structure (a straightforward check, beside a consequence
of R�	� �R21 �R�1), and with setting x̂ � ŷ. More
generally, applying the above rule iteratively, the braided
tensor product of n copies of Â and the ?-tensor product
of n copies of A� will be isomorphic H-module
�-algebras Ân, An

�, respectively, generated by real vari-
ables x̂�i and x�i , i � 1; 2; . . . ; n, fulfilling the commutation
relations

 �x̂�i ; x̂
�
j � � i��� , �x�i ?; x�j � � i���: (11)

This formula summarizes all the commutation relations
defining Ân 
An

�: for i � j these are the defining com-
mutation relations of the ith copy, for i � j these are
consequences of the braided tensor (or ?-tensor) product
between the ith and the jth copy. Summing up, the algebra
An

� is obtained by endowing the vector space underlying
the n-fold tensor product An of A with a new product, the
?-product, related to the product in An by formula (2) for
any a; b 2An. This encodes both the usual ?-product
within each copy of A, and the ?-tensor product of
[27,30]. More explicitly, on analytic functions a, b (2)
reads

 a�xi� ? b�xj� � exp
�
i
2
@xi�@xj

�
a�xi�b�xj�; (12)

and must be followed by the identification xi � xj after the
action of the bi-pseudodifferential operator exp�i2@xi�@xj�
if i � j.

Strictly speaking, the definitions (2) and (3) or (12) make
sense if we choose a, b in a suitable subspace A0 A
ensuring that the involved power series in ��� is termwise
well defined and converges. One such subspace can be
looked for within the space of (analytic) functions that
are the Fourier transforms ĝ of functions g with compact
support. The determination of the largest possible A0 is a
delicate issue, about which little is known (see [31] and
references therein). Anyway for field-theoretic purposes it
would not be enough to work with A0, and it is much
better to define the ?-product as the integral with a non-
local kernel

 a�xi� ? b�xj� �
Z
d4h

Z
d4kei�h�xi�k�xj��h�k=2�� �a�h� �b�k�;

(13)
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where � denotes the anti-Fourier transform. This is well

defined if a; b 2 L1�R4� \ dL1�R4�, can be defined even if
a, b are distributions, and is designed so as to have the
series (2) as a formal power expansion; see [31] for the
conditions under which the latter is in fact an asymptotic
expansion. More generally, one should adopt as proper
definition of the action of F , �F and of derived operators
like �� 	 id�F the corresponding nonlocal integral opera-
tors. They also fulfill the cocycle condition F 12�� 	
id�F � F 23�id 	��F , ensuring the associativity of the
?-product.

We now define an alternative set of real generators of
An

� (or, correspondingly, of Ân):

 	�i :� x�i�1 � x
�
i ; i � 1; . . . ; n� 1;

X� :�
Xn
i�1

aix
�
i ;

(14)

where ai are real numbers such that
P
iai � 1 (in particular

one could choose X� � x�j , for some special j). It is
immediate to verify that:

(1) All 	�i are invariant under translations, (whereas X�

is not):

 P��̂	�i � 0; P��̂X� � i���: (15)

(2) X� generate a copy A�;X of Moyal-Weyl noncom-
mutative space, whereas the ?-product with 	�i (or
any function thereof) reduces to the ordinary prod-
uct

 	�i ? b � 	�i b � b ? 	�i ; b 2An
�; (16)

implying that the 	�i are ?-central in An
� (i.e.

?-commute with everything),

 �	�i ?;A
n
�� � 0: (17)

Thus the central �-subalgebra An�1
�;	 generated by

the 	�i reduces to the ordinary tensor product alge-
bra of n� 1 copies of the undeformed A [because
of the trivial action (15) of the P� contained in the
twist F � exp�i2 �

��P� 	 P�� and in R � F�2 on
the tensor factors], whereas An

� reduces to the
tensor product algebra An

� �An�1
�;	 	A�;X.

Moreover, the 	�i have the same spectral decompo-
sition on the whole R as classical variables 	�; in
particular, 0 is in their spectrum.

(3) An�1
�;	 , A�;X are actually H-module subalgebras,

and

 g�̂�a ? b� � �g�1��a� ? �g�2��̂b�;

a 2An�1
�;	 ; b 2An

�; g 2 H;
(18)

implying in particular g�̂a � g�a, i.e. on An�1
�;	

the H-action is undeformed. In fact the Leibniz rule
reduces to the undeformed one whenever a twist leg
acts on a, again because of the trivial action �15�1 of
the P�’s contained in �F . The previous relation
holds also without the two ?-products, by (16).

Summing up, any coordinate difference like 	�i can be
treated as a classical, commutative variable. Any x�i is a
combination of n� 1 ?-commutative variables 	�i and 1
?-noncommutative one X�; or equivalently can be ob-
tained from the zero 4-vector and n� 1 ?-commutative
4-vectors by the global ‘‘noncommutative translation’’ X,
e.g. if X :� x1 then

 xi �
Xi�1

j�1

	j � X:

Of course, all the previous statements [with the exception
of (16)] can be formulated in the isomorphic setting re-
moving all ?’s, putting a ^ over any coordinate and replac-
ing A�, �?, An

�, An�1
�;	 , A�;X with the isomorphic

objects Â, �̂, Ân, Ân�1
	 , ÂX. The result for X̂ is like

the ‘‘quantum shift operator’’ of [22].
Remark 1.— One immediate consequence is that on any

irreducible representation ?-multiplication by a space-time
coordinate difference x� y equals multiplication by x� y,
which is either a spacelike, a null, or a timelike 4-vector, in
the usual sense.

Remark 2.— Relation (18) holds also for an infinitesimal
general coordinate transformation, i.e. if g is an element of
the (deformed) UEA U�? [27,30] of the Lie algebra of
general vector fields on the Moyal-Weyl NC space.

We recall that the differential calculus over Rn remains
unchanged under deformation of this space into a Moyal-
Weyl NC space. This is true also if we consider the
differential calculus on the larger algebra An

� (or the
isomorphic Ân), and follows again from (2) and (3) and
the fact that P� have trivial action on the derivatives.
Explicitly,

 @x�i ? x
�
j � ����

i
j � x

�
j ? @x�i ; �@x�i

?; @x�j � � 0 (19)

with self-explaining notation. Since the presence of the ?
product has no effect on the action of the derivatives on
An

�, in the sequel we shall drop it.
Given two sets x, y of coordinates, integrating over some

x� both sides of the identity

 g�y� ? f�x� � �R�2��̂f�x�� ? �R�1��̂g�y��

� exp��i���@x�@y��f�x� ? g�y�;

we see that any integration
R
dx� commutes with g�y�? if

f rapidly decreases at infinity; in fact, if we define the
?-product by the integral (13) we realize that

 

Z
dx�g�y� ? f�x� � g�y� ?

Z
dx�f�x� (20)
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is true also for f; g 2 L1�R4� \ dL1�R4� or even some dis-
tributions, as on commutative space [of course, since the
rhs (20) is independent of x�, terms with ���@y� will be
ineffective and disappear, as if it were ��� � 0 for all �].
Therefore, for our purposes we can consider integration
over any set of coordinates as an operation commuting
with ?-products.

III. GENERAL CONSEQUENCES FOR MANY-
PARTICLE QM

In configuration space the Hamiltonian of an isolated
system of n nonrelativistic (for simplicity spinless) parti-
cles

 H �H0�
X
i<j

Vij�jxi�xjj�; H0 :��
Xn
i�1

@
2

2mi
r2

xi (21)

involves only derivatives and relative coordinates 	.
Denoting as X the coordinates of the center of mass, as
M the total mass of the system, the kinetic part H0 can be
written as the sum of �@2r2

X=2M and a second order
differential operator in the 	-derivatives only. As a con-
sequence, the dynamics of the center of mass is free. This
means that an orthogonal basis of eigenfunctions of H is
fexp�ik �X� j�	�g, where  j are eigenfunctions of the rest
Hamiltonian H	 :� H� @

2r2
X=2M, depending on the 	

and 	 derivatives only.
Going to the noncommutative Euclidean space (the time

remaining commutative) brings no change: the deformed
Hamiltonian H? � H? can be still split into a free part
�@2r2

X=2M? for the center-of-mass degrees of freedom
and an interacting part H	? depending only on the relative
coordinates, and both parts act on the vector space under-
lying both An

� and An (and therefore also on the subspace
consisting of square-integrable wave functions) exactly as
their undeformed counterparts, implying that fexp�ik �
X� J�	�g is also an orthonormal basis of eigenfunctions
of H? with the same eigenvalues. As a result, the deformed
dynamics coincides with the undeformed one.

Assume now that the particles are identical. If the space
is commutative, a wave function ��x1; . . . ;xn� completely
(anti)symmetric under particles’ permutations can be de-
composed as � �

P
IJ�IJ�I
J in any tensor product

basis f�I�X�
J�	�g, where 
J�	� are completely (anti)-
symmetric [�I�X� are automatically completely symmet-
ric]. These symmetries are preserved by the dynamical
evolution, since this is ruled by the completely symmetric
evolution operator U�t� t0� � exp�� i

@
H0�t� t0��, where

H0 � H�
P
iVe�xi� is the total Hamiltonian with Vij � V

and Ve the external potential (if the system is not isolated).
For the same reason this is true both in the Schrödinger and
in the Heisenberg picture, which are related by the unitary
transformation U�t� t0�, and also in the interaction pic-
ture, which is related to the Schrödinger by the completely
symmetric evolution operator U0�t� t0� �

exp�� i
@
H0�t� t0��. All the corresponding deformed state-

ments remain true, as H0? � H0? and H0? � H0? are also
completely symmetric.

The action of the Galilei Lie algebra G,1 and therefore
also of its universal enveloping algebra UG, maps AX !
AX, An�1

	 !An�1
	 preserving these complete (anti)-

symmetries, hence amounts to a change of the coefficients
�IJ. Interpreting �, �I�X�, 
J�	� as elements, respec-
tively, of An

�, A�;X, An�1
�;	 , the same will be true of the

action of the twisted Galilei UEA H, as the latter maps
A�;X !A�;X, An�1

�;	 ! An�1
�;	 , by (18). Therefore there is

no incompatibility between the standard complete (anti)-
symmetry conditions on a wave function ��x1; . . . ;xn�
and the action of H. Consequently, the standard Bose,
Fermi (and similarly anyon, in 2 space dimensions) statis-
tics are compatible with twisted Galilei symmetry (in first
quantization). This agrees with the general (and physically
reassuring) results of Ref. [32], where it was shown (by a
unitary equivalence in a n particle, abstract Hilbert space
formalism) that covariance under a noncocommutative
Hopf algebra obtained by twisting from a cocommutative
one is compatible with usual statistics.

IV. GENERAL CONSEQUENCES FOR QFT

In the field-operator approach quantization of fields on
Minkowski space obeys a set of general conditions, the
Wightman axioms [33], which (as done e.g. in Ref. [34])
can be divided into a subset (in the sequel labeled by QM)
encoding the quantum mechanical interpretation of the
theory, its symmetry under space-time translations and
stability, and a subset (in the sequel labeled by R) encoding
the relativistic properties (full Lorentz covariance and
locality). We now try to translate this into a field quantiza-
tion procedure on a Moyal-Weyl noncommutative space

1We recall that G is generated by H0 (kinetic term in the
Hamiltonian: generates time translations of a free system), m
(mass: is central), Pa (momentum components: generate space
translations), La (angular momentum components: generate
rotations), Ka (generate boosts), with a � 1, 2, 3, where the
only nontrivial commutation relations are

 �Ka; Pb� � im@�ab; �Ka;H0� � i@Pa;

�La; Lb� � i�abc@Lc; �La; Pb� � i�abc@Pc;

�La;Kb� � i�abc@Kc:

(22)

The generators are realized as the differential operators H0 �
�@r2=2m, Pa � �i@@a, La � �i@�abcxb@c, Ka �
mxa � i@t@a in the configuration space of each single particle.
Hence the observable Ka � tPa gives the mass times the space
coordinate xa of the particle. The coproducts are defined by the
fact that these generators are primitive. The coproducts of m, H0,
Pa, La, respectively, give the addition laws for the total mass, the
total kinetic energy, the total momentum, and the total angular
momentum of the system, whereas the coproduct of Ka � tPa

gives the total mass times the space coordinate Xa of the center
of mass of the system.
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keeping the QM conditions, ‘‘fully’’ twisting Poincaré
covariance and being ready to weaken locality if necessary.

QM1 (Hilbert space structure).—The states are de-
scribed by vectors of a (separable) Hilbert space H .

QM2 (Energy-momentum spectral condition).—The
group of space-time translations T 
 R4 is a symmetry
of the theory and is represented on H by strongly con-
tinuous unitary operators U�a�, a 2 R4: the fields trans-
form according to (30) with unit A, U�A�, ��A�. The
spectrum of the generators P� is contained in the closed
forward cone �V� � fp�: p2 � 0; p0 � 0g. There is a vac-
uum state �0, with the property of being the unique
Poincaré invariant state (uniqueness of the vacuum).

QM3 (Field operators).—The theory is formulated in
terms of fields (in the Heisenberg representation) ’��x�,
� � 1; . . . ; N, that are operator (on H ) valued tempered
distributions on Minkowski space, with �0 a cyclic vector
for the fields, i.e. by applying polynomials of the (smeared)
fields to �0 one gets a set D0 dense in H .

By taking vacuum expectation values (v.e.v.) of
?-products of fields one can introduce different kinds of
n-point functions, that will be (mere) distributions:
Wightman functions

 W �1;...;�n�x1; . . . ; xn� � ��0; ’
�1�x1� ? . . .

? ’�n�xn��0�; (23)

where �1; . . . ; �n enumerate possible different field spe-
cies and/or SL�2;C�-tensor (spinor, vector,. . .) compo-
nents, or (their linear combinations) Green’s functions

 G�1;...;�n�x1; . . . ; xn� � ��0; T�’�1�x1� ? . . .

? ’�n�xn���0�; (24)

or retarded functions, etc. In the second definition there
appears the time ordering T, but there is in fact no ambi-
guity in defining T as on commutative Minkowski space,2

 

T�’�1�x1� ? ’
�2�x2� ? . . . ? ’�n�xn��

� ’�1�x1� ? ’
�2�x2� ? . . . ? ’�n�xn�

� #�x0
1 � x

0
2� . . .#�x0

n�1 � x
0
n�

� ’�2�x2� ? ’�1�x1� ? ’�3�x3� . . .

� ’�n�xn�#�x
0
2 � x

0
1� . . .� #�x0

n�1 � x
0
n� � . . . ; (25)

as this definition involves multiplication by the ?-central
#�x0

i � x
0
j � (# denotes the Heaviside function). [The ?’s

preceding all # can be and have been dropped, by (16).]
Arguing as in [33] for ordinary QFT, exactly the same

properties follow from QM1-3 (alone). Applying a pure
translation, from QM2 we find that Wightman and Green’s

functions are translation invariant and therefore may de-
pend only on the commutative space-time variables 	�i :

 W �1;...;�n�x1; . . . ; xn� � W�1;...;�n�	1; . . . ; 	n�1�; (26)

 G �1;...;�n�x1; . . . ; xn� � G�1;...;�n�	1; . . . ; 	n�1�: (27)

Moreover, from QM3, QM2, QM1 it, respectively, follows
W1.—W �1;...;�n�x1; . . . ; xn� are tempered distributions

depending only on the 	i.
W2 (Spectral condition).—The support of the Fourier

transform ~W of W is contained in the product of forward
cones, i.e.

 

~W �1;...;�n�q1; . . . ; qn�1� � 0; if 9j: qj 6� �V�: (28)

W3 (Hermiticity and Positivity).—The transformation
properties of Wightman functions under complex conjuga-
tion follow from

 ��0; ’
�1�x1� ? . . . ? ’�n�xn��0�

� ��0; ’
�ny�x1� ? . . . ? ’�1y�xn��0�:

In particular, if all fields are Hermitian scalar then

W �x1; . . . ; xn� �W �xn; . . . ; x1�. For any terminating se-
quence f � �f0; f1; . . . fN�, fj 2 S�R4�j one has3

 X
j;k

Z
dxdy �fj�xj; . . . ; x1�fk�y1; . . . ; yk�

�W �x1; . . . ; xj; y1; . . . ; yk�� � 0: (29)

We now recall the ordinary relativistic conditions on
QFT:

R1 (Lorentz Covariance).—The universal covering
group SL�2;C� of the restricted Lorentz group is a sym-
metry of the theory and is represented on H by (strongly
continuous) unitary operators U�A�. The fields transform
covariantly under the inhomogeneous SL�2;C� (i.e. gener-
alized Poincaré) transformations U�a; A� � U�a�U�A�:

 U�a;A�’��x�U�a;A��1 � S��A
�1�’���A�x� a�; (30)

with S a finite dimensional representation of SL�2;C� and
��A� the Lorentz transformation associated to A 2
SL�2;C�.

R2 (Microcausality or locality).—The fields either com-
mute or anticommute at spacelike separated points

 �’��x�; ’�y��� � 0; for �x� y�2 < 0: (31)

As a consequence of QM2, R1 in QFT on commutative
Minkowski space one finds

2In the standard approach [6,35,36] this was found to be safe
and unambiguous only in the case of space-time commutativity
(�0i � 0), which gives commuting time variables x0

i , so that time
ordering commutes with the ?-product.

3This is the transcription of positivity of the norm of any state
of the form

 �f � f0�0 � ’�f1��0 � ’�f
�1�
2 �’�f

�2�
2 ��0 � . . . ;

where f � �f0; f1; . . . fN�, fj �
Qj
k�1 f

�k�
j �xk�.
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W4 (Lorentz Covariance of Wightman functions).—

 W �1...�n���A�x1; . . . ;��A�xn�

� S�1
1
�A� . . . S�nn�A�W

1...n�x1; . . . ; xn�: (32)

Wightman functions of scalar fields are Lorentz invariant.
(Similarly for Green functions).

In order to translate R1 into a corresponding condition
R1? in the twisted Hopf algebra setting we could go either
to the infinitesimal formulation (i.e. first to P , and then
deform to H), or to the dual functions-on-the-group Hopf
algebra. We do not attempt this here, because it would be
rather technical (especially translating the strong continu-
ity requirement), and moreover some subtlety might be
hidden in the interplay of active (or system) and passive (or
coordinates) twisted Poincaré transformations appearing at
the two sides of (30). We content ourselves with requiring
the deformed analog of W4, which should follow from R1?
however this will look like, namely, that Wightman (and
Green) functions transform under a twisted version of (32),
in particular, are invariant if all involved fields are scalar.
On the other hand, as these functions should be built only
in terms of the 	�i and of ordinary SL�2;C� tensors, like
@x�i , the isotropic tensor ��� , spinors, � matrices, etc.,
which are all annihilated by the action of P�, the action
of the twist ‘‘legs’’ F �1�, F �2� should be trivial and the
transformation properties under the Lorentz generators
should remain undeformed: so these functions should ad-
mit exactly the same decomposition in Lorentz tensors as in
the undeformed case (in particular should be invariant if
all fields are scalar fields). Therefore, deferring the for-
mulation of R1? to possible future works, here we shall
require W4 also in the deformed case as a temporary
substitute of R1.

As for R2, it is natural to ask whether in the deformed
theory one can adopt the twisted version

R2? (Microcausality or locality).—The fields either
?-commute or ?-anticommute at spacelike separated
points4

 �’��x� ?; ’�y��� � 0; for �x� y�2 < 0 (33)

and whether there are also viable alternatives. That the
conditions QM1-3, W4, R2 are independent and compat-
ible can be proved arguing along the lines [33]; in particu-
lar, compatibility is proved by showing that they can be
fulfilled by free fields (see next section). We thus find, in
particular, that the noncommutativity structure of a Moyal-
Weyl space is compatible with locality R2?. Whether rea-
sonable weakenings of R2? exist is in fact an open question
also in the ordinary theory. Phenomenology suggests that
the rhs of (31) should at least rapidly decrease with in-
creasing spacelike distances, if it is not zero. On the other

hand, the same results as in [37,38] should apply, namely,
requiring that the rhs of (31) is zero only in some spacelike
separated open subsets (see [38], or Theorem 4-1 in [33]),
or is a c number decreasing faster than an exponential with
spacelike distances [37], are actually only apparent weak-
enings, in that they imply again R2.

As consequences of R2? one again finds [33]
W5 (Local commutativity conditions).—If �xj �

xj�1�
2 < 0 then

 W �1...�n�x1; . . . ; xj; xj�1; . . . ; xn�

� �W �1...�j�1�j...�n�x1; . . . ; xj�1; xj; . . . ; xn�; (34)

the sign is negative if ’�j , ’�j�1 ?-anticommute, and is
positive otherwise.

W6 (Cluster property).—For any spacelike vector a and
for �! 1

 W �1...�n�x1; . . . ; xj; xj�1 � �a; . . . ; xn � �a�

!W �1...�j�x1; . . . ; xj�W
�j�1...�n�xj�1; . . . ; xn� (35)

(convergence is in the distributional sense); this is true also
with permuted coordinates.

In the proof of W6 the uniqueness of the invariant state
�0 plays an essential role.

Summarizing, we end up with a QFT framework on
these NC spaces with QM1-3, W4, R2? or alternatively
with exactly the same constraints W1-6 on Wightman
functions as in ordinary QFT on Minkowski space.
Reasoning as described in [33,39,40], one should be able
to prove the same, other well-known fundamental results in
ordinary QFT:

(1) That Wightman functions are boundary values

 W�1...�n�	1; . . . ; 	n�1�

� lim
�1;...;�n�1!0

W�1...�n��1; . . . ; �n�1�

of holomorphic functions W��1; . . . ; �n�1� in the
complex variables �i � 	i � i�i, the domain of
holomorphy being f�1; . . . ; �n�1j�j 2 V�g.

(2) The analogs of the spin-statistics and CPT
theorems.

(3) That the cluster property W6 implies (Haag-Ruelle
theory) the existence of asymptotic (free) fields and,
under the assumption of asymptotic completeness
(H �H in �H out), of a unitary S matrix. This
allows to derive [41] the Lehmann-Symanzik-
Zimmermann (LSZ) [42] formulation of QFT, and
subsequently dispersion relations for scattering am-
plitudes, etc.

(4) That the Wightman functions have an analytic con-
tinuation to the so-called Euclidean points, thus
allowing to derive the existence and the general
properties of Euclidean QFT with the analog of
Schwinger functions.

4As already noted, spacelike separation is well defined, so that
the latter condition makes sense.
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We stress that these results should hold for all ���, and
not only if �0i � 0 as in the approach e.g. of [23,43].

V. FREE FIELDS

As in ordinary QFT, things become much more definite
for free fields. By (19), the kinetic differential operators
(D’Alambertian, Dirac operator, etc.) remain undeformed,
therefore so will remain the free field equations and the
consequent constraints on Wightman, Green’s functions,
and on the field commutation relations. For simplicity we
stick to the case of a free Hermitian scalar field ’0�x� of
mass m:

 ��x �m
2�’0 � 0: (36)

In momentum space this becomes �p2 �m2�~’�p� � 0, so
the spectrum is contained in (the two sheets of) the hyper-
boloid p2 � m2. We can therefore Fourier decompose
’0�x� into a positive and a negative frequency part in a
(twisted) Lorentz invariant way,
 

’0�x� � ’�0 �x� � ’
�
0 �x�;

’�0 �x� :�
Z
d��p�e�ip�xap;

’�0 �x� :�
Z
d��p�aypeip�x � �’�0 �x��

y;

(37)

where d��p� � ��p2 �m2�#�p0�d4p � dp0��p0 �

!p�d3p=2!p is the invariant measure (!p :�
������������������
p2 �m2

p
).

From (36) it immediately follows ��	 �m2�W�	� � 0 or
equivalently �p2 �m2� ~W�p� � 0 in momentum space,
whence the Fourier decomposition

 W�x� y� �
Z
d��p��w��p�e�ip��x�y� � w��p�eip��x�y��:

On the other hand, using QM1-3 one finds first’�0 �x��0 �
0, i.e. ap�0 � 0, then

 W�x� y� � ��0; ’0�x� ? ’0�y��0�

� ��0; ’
�
0 �x� ? ’

�
0 �y��0�;

showing that x (respectively y) is associated only to the
positive (respectively negative) frequencies, i.e. w��p� has
to vanish, and w��p� has to be positive. But by W4 w��p�
has to be Lorentz invariant, i.e. constant, so we conclude
that up to a positive factor W is given by

 W�x� y� � �iF��x� y�;

F��	� :� i
Z d��p�

�2��3
e�ip�	;

(38)

and therefore coincides with the undeformed counterpart.
Moreover,

 ��0; apa
y
q�0� � 2!p�3�p� q� (39)

as in the undeformed case. The 2-point Green’s function is
now immediately obtained as the time-ordered combina-
tion of W�x� y� and W�y� x�:

 G �x; y� :� ��0; T�’0�x� ? ’0�y���0� � G�x� y�;

G�	� :� �i�#�	0�F��	� � #��	0�F���	��

�
Z d4p

�2��4
e�ip�	

p2 �m2 � i�
;

(40)

and therefore coincides with (the undeformed) Feynman’s
propagator. Note that (38)–(40) are independent of R2? or
any other assumption about the field commutation rela-
tions, which we have not used in the proof.

On the other hand, if one postulates all the axioms of the
preceding section (including R2?) and reasons as in the
proof of the Jost-Schroer theorem, Thm 4-155 in [33], one
proves up to a positive factor the free field commutation
relation
 

�’0�x� ?; ’0�y�� � iF�x� y�;

F�	� :� F���	� � F��	�;

(41)

which coincides with the undeformed one. Incidentally, this
can be proved also from just the free field equation and the
assumption that the commutator is a (twisted, and therefore
also untwisted) Poincaré invariant c number (see e.g. [44],
page 178–179). Applying @y0 to (41) and then setting y0 �

x0 [as already noted, this is compatible with (11)] one finds
the canonical commutation relation

 �’0�x0;x� ?; _’0�x0; y�� � i�3�x� y�: (42)

As a consequence of (41), also the n-point Wightman
functions coincide with the undeformed ones, i.e. vanish if
n is odd and are the sum of products of two point functions
(this is the so-called factorization) if n is even. This of
course agrees with the cluster property W6.

Free fields fulfilling (41) can be obtained from (37)
plugging creation, annihilation operators fulfilling commu-
tation relations deformed so as to compensate the space-
time noncommutativity. The first possibility6 is to require

5More precisely, as it is done after the proof that (36) follows
from (38).

6In this and other proofs one has to use the following proper-
ties of exponentials. Recalling the Baker-Campbell-Hausdorff
formula eAeB � eA�B�C (with C :� �A; B�=2 commuting with
A, B) one finds

 eip�x ? eiq�y � eip�x�iq�y��i=2�p�q ) eip�x ? eiq�y

� eiq�y ? eip�xe�ip�q;

eip�x ? e�ip�y � eip��x�y�;
the last follows from the first and p�p � 0. These relations hold,
in particular, for y � x. More generally, by iteration of the
previous result one finds

 eip1�x1 ? eip2�x2 ? . . . ? eipn�xn � exp
�
i
Xn
j�1

pj � xj �
i
2

X
j<k

pj�pk

�
;

(43)
which holds also if xj � xk for some j, k.
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 aypa
y
q � eip�

0qayqa
y
p; apaq � eip�

0qaqap;

apayq � e�ip�
0qayqap � 2!p�3�p� q�;

�ap; f�x�� � �ayp; f�x�� � 0; �0 � �

(44)

(where p�q :� p��
��q� for any 4-vectors p, q, and any

f 2A), as adopted e.g. in [17,19,20,24] [see also the
bibliographical notes after (47)]. In the sequel we wish to
consider and compare also other choices of the parameters
�0��. The choice �0 � 0 gives the canonical commutation
relations (CCR), assumed in most of the literature, explic-
itly [1] or implicitly, either in the operator (e.g. apparently
in [22,23,25,43]), or in the path-integral approach to quan-
tization (see e.g. [2–4] and most references therein). Note
that the last term in the third equation is fixed by (39).
Correspondingly, one finds the field ?-commutation rela-
tions

 ’0�x� ? ’0�y� � ei@x����
0�@y’0�x� ? ’0�y� � iF�x� y�;

(45)

which are nonlocal unless �0 � �. As said, the authors of
[17,19,20,24] adopt �0 � �. In [24] commutation relations
of the form (41) are proposed in a 1� 1-dimensional
model in order to close the chiral current algebra; in [17]
(41) are proposed in any dimension, although only for
scalar fields and for �0i � 0; whereas the authors of
[19,20] find nonlocal relations [see formula (3.23) in
[20]] similar to (45), because they do not perform the
?-product between functions of different sets x, y of
coordinates.

Let us consider two typical contributions to the 4-point
Wightman function:
 

W �x1; x2; x3; x4� � W�x1 � x2�W�x3 � x4�

� ei@x2
����0�@x3W�x1 � x3�

�W�x2 � x4� � . . .

The first term on the rhs comes from the v.e.v.’s of’0�x1� ?
’0�x2� and ’0�x3� ? ’0�x4�; it is Lorentz invariant by (38)
and factorized. The second, nonlocal term comes from the
v.e.v.’s of ’0�x1� ? ’0�x3� and of ’0�x2� ? ’0�x4�, after
using (45) to commute ’0�x2�, ’0�x3�. Only if �0 � � it
is Lorentz invariant and factorizes into W�x1 � x3�W�x2 �
x4�. As it depends only on x1 � x3, x2 � x4, it is invariant
under the replacements �x1; x2; x3; x4� ! �x1; x2 �
�a; x3; x4 � �a�, even in the limit �! 1 By taking a
spacelike, we conclude that if �0 � � W violates W4
and W6, as expected.

We present a second way to realize (41), which at first
sight might appear ‘‘exotic,’’ but we are going to theoreti-
cally motivate elsewhere. It follows from assuming non-
trivial transformation laws P��ayp � p�a

y
p,

P��ap � �p�ap and extending the ?-product law (2)
also to ap, ayp. It amounts to choosing �0 � �� in (44)

[inserting for uniformity of notation a ? symbol in each
product, also in (37)] and to adding nontrivial commutation
relations between the ap, ayp, and functions, in particular,
exponentials, of the form

 ayp ? a
y
q � e�ip�qayq ? a

y
p;

ap ? aq � e�ip�qaq ? ap;

ap ? ayq � eip�qayq ? ap � 2!p�
3�p� q�;

ap ? eiq�x � e�ip�qeiq�x ? ap;

ayp ? eiq�x � eip�qeiq�x ? ayp:

(46)

As a consequence, �’0�x�
?
; f�y�� � 0. In other words, the

first three relations in (46) define an example of a general
deformed Heisenberg algebra [45]

 

aq ? ap � Rqprs as ? ar; ayp ? a
y
q � Rsrpqa

y
r ? a

y
s ;

ap ? ayq � �pq � R
rp
qsa

y
r ? as (47)

covariant under a triangular Hopf algebra H. Here the R
matrix is the universal R in the infinite-dimensional rep-
resentation of H spanned by the basis of vectors ayp, the
(on-shell) 4-momenta p, q, r, s playing the role of (con-
tinuous) indices, and �pq � 2!p�

3�p� q� is Dirac’s delta
(up to normalization). [The first three relations in (44) also
can be considered of the form (47) after a replacement �!
��0]. Such ap, ayp can be realized [45] as the composite of
operators cp, cyp fulfilling the ordinary CCR (for the case at
hand of the �-deformed Poincaré this has been done also in
[18]), so that they act on the same (undeformed) Fock
space. In doing so one finds that the action of P� can be
realized as a commutator with the operator ~P� �R
d��p�cypcp �

R
d��p�aypap.

As historical remarks we add that, up to normalization of
R, and with p; q; r; s 2 f1; . . . ; Ng, relations (47) are also
identical to the ones defining the older q-deformed
Heisenberg algebras of [46,47], based on a quasitriangular
R in (only) the fundamental representation of H �
Uqsu�N�; allowing a different (possibly infinite-
dimensional) representation has been considered in [48]
for the Uqsu�2�-covariant quantization of fields on the
q-deformed fuzzy sphere. Going further back in the past,
(46) and (47) are reminiscent of the Zamoldchikov-
Faddeev [49,50] algebra, generated by deformed crea-
tion/annihilation operators of scattering states of some
completely integrable 1� 1-dimensional QFT; there again
the indices are discrete, but the R matrix depends on a
(continuous) spectral parameter, the rapidity of the parti-
cles. In [51] the Zamoldchikov-Faddeev creation/annihila-
tion operators have been realized as acting on the
(undeformed) Fock space.
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VI. THEORETICAL DEVELOPMENTS—
PERTURBATIVE EXPANSION FOR INTERACTING

QFT

Normal ordering should be a An
�-bilinear map of the

field algebra into itself, such that any normal-ordered ex-
pression has a trivial v.e.v., in particular :1: � 0. Applying
it to the sides of (44) we find that it is consistent to define

 : apaq: � apaq; :aypaq: � aypaq;

:aypa
y
q : � aypa

y
q ; :apayq : � ayqape�ip�

0q:
(48)

The phase7 in the last relation is to account for �44�3 and
:1: � 0. More generally, it is consistent to define normal
ordering on any monomial in ap, ayq as a map which
reorders all ap to the right of all ayq introducing a factor
e�ip�

0q for each flip ap $ ayq . For �0 � 0 one finds the
undeformed definition. Using An

�-bilinearity normal or-
dering is extended to fields.

We first consider the assumptions leading to (41),
namely (44) or (46). One finds that exactly as in the
undeformed case it maps each monomial M in the fields
(and their derivatives) into itself minus all lower degree
monomials obtained by taking v.e.v.’s of pairs of fields
appearing in M, e.g.
 

:’0�x�: � ’0�x�;

:’0�x� ? ’0�y�: � ’0�x� ? ’0�y� � ��0; ’0�x�

� ?’0�y��0�;

:’0�x� ? ’0�y� ? ’0�z�: � ’0�x� ? ’0�y� ? ’0�z�

� ��0; ’0�x� ? ’0�y��0�’0�z�

� ��0; ’0�x� ? ’0�z��0�’0�y�

� ’0�x���0; ’0�y�

� ?’0�z��0� . . . (49)

By construction ��0; :M:�0� � 0. These are well-defined
operators also in the limit of coinciding coordinates (e.g.

y! x). The above substractions amount to flipping step by
step each ’�0 �x� to the right of each ’�0 �y�. For instance on
’"0�x�’

�
0 �y� ("; � 2 f�;�g) normal ordering acts as the

identity unless " � � and � � �, whereas

 :’�0 �x� ? ’
�
0 �y�: � ’�0 �y� ? ’

�
0 �x�:

As a consequence we find that for any monomial M0

obtained from M by permutation of the field factors :M: �
:M0:, for instance

 :’0�x� ? ’0�y�: � :’0�y� ? ’0�x�: . . . (50)

Moreover, as ’0�x� is Hermitian, any normal-ordered
monomial :’0�x1� ? . . . ? ’0�xn�: is (a fortiori for coincid-
ing coordinates). Summing up, under these assumptions
normal ordering (49) and its properties are written in terms
of the fields exactly as in the undeformed setting (apart
from the occurrence of the ?-product symbol). Since the
same occurs with time ordering (25), another straightfor-
ward consequence is that the same Wick theorem will hold:

 

T�’0�x� ? ’0�y�� � :’0�x� ? ’0�y�:

� ��0; T�’0�x� ? ’0�y���0�;

T�’0�x� ? ’0�y� ? ’0�z�� � :’0�x� ? ’0�y� ? ’0�z�:

� ��0; T�’0�x� ? ’0�y���0�:

� ’0�z�:� ��0; T�’0�x�

� ?’0�z���0�:’0�y�:

� ��0; T�’0�y� ? ’0�z���0�:

� ’0�z�: . . .

Let us apply now time-ordered perturbation theory to an
interacting field. We use the Gell-Mann-Low formula (rig-
orously valid under the assumption of asymptotic com-
pleteness, H �H in �H out)

 G�x1; . . . ; xn� �
��0; Tf’0�x1� ? . . . ? ’0�xn� ? exp��i�

R
dy0HI�y0��g�0�

��0; T exp��i
R
dy0HI�y0���0�

: (51)

Here ’0 denotes the free ‘‘in’’ field, i.e. the incoming field
in the interaction representation, and HI�x0� is the interac-
tion Hamiltonian in the interaction representation. The
derivation of (51) is heuristic and goes as on commutative
space. It involves unitary evolution operators of the form

 U�x0; y0� � lim
N!1

YN�1
 

m�0

exp
�
�
i
@

�

N
HI

�
y0 ��

m
N

��

� T exp
�
�
i
@

Z x0

y0
dtHI�t�

�
;

where � � x0 � y0 > 0 and again T always uses ?-central
time coordinate differences as arguments of the Heaviside
function. For the sake of definiteness we choose

7The authors of [19] omit this phase. However, their conclu-
sions about the S matrix being undeformed remain valid, as the
effect of this phase disappears when exploiting global energy-
momentum conservation.
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 HI�x
0� � �

Z
d3x:’?m0 �x�:?;

’?m0 �x� � ’0�x� ? . . . ? ’0�x�|���������������{z���������������}
m times

:
(52)

This is a well-defined, Hermitian [by (50)] operator, with
zero v.e.v. Expanding the exponential the generic term of
order O��h� in the numerator of (51) will be the v.e.v.

 

�h

ih

Z
d4y1 . . .d4yh��0; T�’0�x1� ? . . . ? ’0�xn�

? :’?m0 �y1�: ? . . . ? :’?m0 �yh�:��0�; (53)

where we have also used the property (20) that integration
over any space-time variable commutes with taking
?-products. We proceed to evaluate this expression as in
the undeformed case: applying Wick theorem to the field
monomial and the fact that all normal-ordered field mono-
mials have trivial v.e.v. we end up with exactly the same
sum of terms given by integrals over y-variables, as in the
undeformed case, of products of free propagators (40)
having coordinate differences as arguments. Each of these
terms is represented by a Feynman diagram. So the result
for the generic term (53) will be the same as the unde-
formed one. On the other hand, the generic term of order
O��h� in the denominator of (51) will be a special case of
(53), the one with n � 0. Summing up, the numerator and
denominator of (51), and therefore also the Green functions
(51) coincide with the undeformed ones (at least perturba-
tively). They can be computed by Feynman diagrams with
the undeformed Feynman rules.

In other words, at least perturbatively, this QFT is com-
pletely equivalent to the undeformed counterpart, and
therefore also pathologies like UV-IR mixing disappear.
Thus, also for the interacting theory the ap, ayp and the
space-time noncommutativities somehow compensate
each other.

We now sketch how perturbation theory changes if �0 �

�, starting from normal-ordered field monomials.
Relations (44) lead to a nonlocal (pseudodifferential) op-
erator for each flip of a ’�0 �x� to the right of a ’�0 �y�, e.g.

 :’�0 �x� ? ’
�
0 �y�: � ei@x����

0�@y’�0 �y� ? ’
�
0 �x�;

whereas on ’"0�x�’
�
0 �y� with �"; �� � ��;�� normal or-

dering still acts as the identity. As a consequence, property
(50) and Wick theorem are modified, so are the Feynman
rules, and UV/IR mixing for nonplanar Feynman diagrams
reappears. Just to get a feeling one can consider the �’?4

theory without normal ordering and, as in [8], one finds
UV/IR mixing already in several contributions (of non-
planar tadpole diagram type) to the O��� correction to the
propagator.

VII. FINAL REMARKS AND CONCLUSIONS

There is still no convincing and generally accepted
formulation of QFT on noncommutative spaces, even on
the simplest one, the Moyal-Weyl space. One crucial as-
pect under debate is the form of its covariance under
space(time) symmetry transformations. In this work we
have argued that a Moyal-Weyl deformation of
Minkowski space is compatible with the Wightman axioms
(including locality) and time-ordered perturbation theory,
provided one replaces products of fields by ?-products
(also at different space-time points) and the Lorentz-
covariance axiom (R1) by the appropriate twisted version
R1? (which we have not formulated yet). Both for free and
interacting fields the resulting QFT’s appear physically
equivalent to the undeformed counterparts on commutative
Minkowski space, in that their Wightman and Green’s
functions coincide. This can be understood as a sort of
compensation of the effects of the ap, ayp and of the space-
time noncommutativities, if these are matched to each
other. (To keep the size of this work contained we have
not developed other important aspects, like those men-
tioned at the end of Sec. IV, which we hope to treat soon
elsewhere. For the moment, regarding the question whether
QFT on noncommutative spaces violate standard Bose or
Fermi statistics, as claimed e.g. in [18,20,52], we content
with drawing the reader’s attention to Refs. [32,53].)

The main positive aspect of this outcome is a way to
avoid all the additional complications (nonunitarity, mac-
roscopic violation of causality, UV-IR mixing and subse-
quent nonrenormalizability, change of statistics,. . .)
appeared in other approaches and to end up with a theo-
retically and phenomenologically satisfactory QFT, the
undeformed theory (to the extent the latter can be consid-
ered satisfactory). For the free field this is achieved by
matching the commutation relations of the deformed cre-
ation/annihilation operators to the space-time noncommu-
tativity (however, we have found even two different ways
to realize such a matching).

The related, obvious disappointing aspect is that in this
resulting QFT there appears neither new physics nor a
more satisfactory formulation of the old one (e.g. by an
intrinsic UV regularization), in that all effects of space-
time noncommutativity are confined in an ‘‘unobservable
common noncommutative translation of all reference
frames.’’ This may indicate that Moyal-Weyl deformations
considered in the framework of twisted Poincaré covari-
ance are too trivial for this scope.

As a general remark, we would like to emphasize that
the cluster property W6 is an important test for QFT on
noncommutative as well as on commutative spaces: its
violation implies a macroscopic (and therefore contrasting
with experiments) violation of causality. It is also an easy
theoretical test to carry out on free fields. For the non-
commutative space at hand, our two possible prescriptions
for free fields fulfill the cluster property whereas other
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prescriptions proposed in the literature (�0 � �, see the end
of Sec. V) lead to its violation.

As already noted in the paper, our results have some
overlap or links with those of other works. To this regard
we add some further remarks. At the 21st Nishinomiya-
Yukawa Memorial Symposium on Theoretical Physics
(11–15 Nov. 2006) ‘‘Noncommutative Geometry and
Quantum Space-time in Physics,’’ after presenting our
results, the author of Ref. [17] pointed out his work. We
have realized that there he proposes a quantization proce-
dure for scalar fields and �0i � 0 which finally coincides
with the first of our two proposals and arrives at very
similar conclusions, although the derivation is different
and various steps of it appear to us not completely clear
or justified. In [54] field quantization on the h-deformed
Lobachevsky plane was performed adopting a braided
tensor product among coordinates of different space-time
points, as done here; by a proper treatment the authors
found that the result for the 2-point function also coincides

with the undeformed one. Finally, already in [15,55] Oeckl
used the relation between the deformed and undeformed
covariance to determine a mapping between deformed and
undeformed theories (in the Euclidean formulation of
QFT); in the Moyal-Weyl case this mapping allows [15]
to immediately compute the deformed Green functions in
terms of the undeformed ones (however they do not
coincide).
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