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We study Cerenkov radiation from moving straight strings which slide with respect to each other in
such a way that the projected intersection point moves faster than light. To calculate this effect we develop
classical perturbation theory for the system of Nambu-Goto strings interacting with the dilaton, two-form,
and gravity fields. In the first order, one encounters divergent self-action terms which are eliminated by
classical renormalization of the string tension. Cerenkov radiation arises in the second order. It is
generated by an effective source which contains contributions localized on the string world sheets and
bulk contributions quadratic in the first-order fields. In the ultrarelativistic limit radiation exhibits angular
peaking on the Cerenkov cone in the forward direction of the fast string in the rest frame of another. The
radiation spectrum then extends up to high frequencies proportional to the square of the Lorentz factor of
the relative velocity. Gravitational radiation is absent since the 1� 2 space-time transverse to the straight
string does not allow for gravitons. A rough estimate of the Cerenkov radiation in the cosmological cosmic
strings network is presented.
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I. INTRODUCTION

During the past few years the hypothesis of cosmic
strings received new impetus from superstring theory.
Although perturbative superstrings in ten dimensions are
too heavy to be admitted as cosmic strings, it was realized
that there are various possibilities for geometry of string
compactifications to accommodate four-dimensional
strings with much lower tensions. Copious production of
cosmic strings is typical [1,2] for the brane inflation sce-
nario [3], in which the period of inflation is associated with
the collision of branes. This scenario provides an accept-
able model of inflation and predicts creation of cosmic
superstrings consistent with the current cosmic microwave
background (CMB) data. These strings typically have
lower tensions than the usual grand unified theory (GUT)
cosmic strings and thus they are not the main players in the
formation of cosmic structures, but their observational
signatures could provide a direct confirmation of the string
theory. This stimulated a detailed study of creation and
evolution of the cosmic superstring network within the
KKLMMT model [4], racetrack inflation [5], and other
particular scenarios [6–8] (for recent reviews see [9–
13]). One particular feature of the warped IIB compactifi-
cations involved in these considerations is the prediction of
two types of cosmic strings: F-strings (fundamental) and
D-strings (Dirichlet) with different tensions �F, �D [14–
17]. F- and D-strings may also form the so-called p, q
composites [18] and provide for triple junctions [19] with
new exotic observational predictions. Typical values of the
dimensionless parameter G� are in the interval
�10�11–10�7�. Another new feature is that cosmic super-
strings generically have lower reconnection probabilities
lying in the range P� �10�3–1�. This changes the cosmo-
logical evolution of the string network [20–24] leading, in
particular, to enhancement of the fraction of straight
strings.

The evolution and possible observational signatures of
the strings crucially depend on radiation processes. In fact,
it was recognized long ago that oscillating loops of cosmic
strings generate large output of gravitational waves [25–
28] at the level accessible for current and future detectors.
Global strings produce massless axions [28–33] which
become massive at a later stage of expansion, creating an
observational constraint on the axion mass. In the models
containing the massless dilaton (like cosmic superstrings),
the dilaton radiation from strings may also constrain the
string tension parameter G� [34–36].

The main mechanisms of radiation in the string network
which have been explored so far were radiation from
smoothly oscillating string loops and radiation from kinks
and cusps formed on them. It was tacitly assumed that
straight unexcited long strings do not radiate. Meanwhile,
interaction of long strings via massless fields gives rise to
another radiation mechanism of Cerenkov nature. When
two straight nonexcited Nambu-Goto strings interacting at
a distance via the dilaton, two-form, and gravity slide with
respect to each other, they get deformed in the vicinity of
the point of their minimal separation. This point can
propagate with a faster-than light velocity, provided the
inclination angle between the strings is sufficiently small.
(For the strictly parallel strings this velocity is infinite for
any relative string speed.) In this case, the propagating
deformation, together with the associated field tensions,
becomes the source of Cerenkov radiation, which is the
effect of the second order in the interaction of the string
with massless fields. This mechanism was suggested in
[37] for gravitationally interacting strings, but it turned
out that, although the effect is kinematically allowed, the
corresponding amplitude is zero on the mass shell of the
graviton. The reason is that the 1� 2 space-time orthogo-
nal to the straight string does not allow for gravitons.
(However, gravitons are produced at the quantum level in
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the string recombination and annihilation [38].) But the
Cerenkov mechanism works for other possible string mass-
less excitations leading, e.g., to electromagnetic radiation
from superconducting strings [39] or emission of axions.
The latter effect was recently studied in detail in the flat
space-time [40]. It was found that, although being of the
second order in the axion coupling constant, it still gives a
considerable contribution to the total cosmological axion
production by the string network.

Cerenkov radiation from straight strings is similar to
bremsstrahlung of point charges in electrodynamics.
Moreover, the system of parallel strings interacting via a
two-form field in D space-time dimensions is exactly
equivalent to the system of point charges interacting with
the vector field in �D� 1�-dimensional space-time. A dis-
tinction of the Cerenkov mechanism of dissipation in the
cosmic string network from conventional radiation via
formation of loops can be understood as follows.
Formation of loops from initially disconnected straight
strings is effected via direct contact interaction of inter-
secting strings. In our case the long-range interaction of
strings via massless fields which can be potentially radi-
ated underlies the formation of the superluminal radiation
source. Cerenkov radiation is a higher-order effect and thus
potentially smaller. But it works for a wider set of initial
data in the string network (nonzero impact parameters of
colliding strings) than that corresponding to intercommut-
ing strings. Also, as we will show here, Cerenkov radiation
is strongly enhanced in the case of relativistic velocities. So
it can still be nonsmall in the cosmological setting. The
detailed cosmological applications remain outside the
scope of the present paper, but we give the rough estimates
of the dilaton and two-form field backgrounds generated
via the Cerenkov mechanism in the evolving string
network.

In this paper we consider Cerenkov radiation of moving
straight strings interacting with three massless fields: dila-
ton, antisymmetric second rank tensor (NS-NS or RR two-
forms), and gravity. To facilitate construction of the solu-
tion of the coupled system of the Nambu-Goto and the field
equations in the second order, we introduce a diagram-
matic representation similar to Feynman graphs. In the
first-order approximation one encounters divergencies
which are cured by classical renormalization of the string
tension. Then the effective sources of the dilaton and two-
form radiation are constructed and the radiation rates are
calculated.

The plan of the paper is as follows. In Sec. II we give the
general setting of the problem and introduce graphic rep-
resentations for classical vertices corresponding to inter-
actions of strings with the dilaton, two-form, and gravity
fields and to interactions between the fields. Section III
contains the formulation of the perturbation approach and
an explicit construction of the second-order equations. In
Sec. IV we reproduce in our framework the main features

of classical renormalization for strings (in the lowest order
of perturbation theory): elimination of scalar and two-form
divergences via renormalization of the string tension, and
the absence of gravitational divergency. In Sec. V the first-
order deformations of the string world sheets due to inter-
action via the dilaton, two-form, and linearized gravity are
considered. The main calculation is presented in Sec. VI
where we construct radiation generating currents by com-
puting the source terms in the wave equations of the second
order. These include the world-sheet local terms and the
bulk terms which correspond to multiple second-order
graphs including all relevant elementary vertices.
Radiation rates for the dilaton and the two-form fields
are computed in Sec. VII and analyzed in detail in the
case of ultrarelativistic velocities. Finally, in Sec. VIII we
present rough cosmological estimates and summarize our
results in Sec. IX.

II. ACTION AND EQUATIONS OF MOTION

We consider a pair n � 1, 2 of straight Nambu-Goto
strings described by the world sheets

 x� � X�n ��an�; � � 0; 1; 2; 3;

�a � ��; ��; a � 0; 1:
(1)

Strings interact via the gravitational g�� � ��� � h��, the
dilaton ��x�, and the two-form (axion) B���x�. Using the
Polyakov form for the string action, we present the total
action in the form

 S � �
XZ ��

2
X�a X�bg���

ab ��������
��
p

e2��

� 2	fX�a X�b

abB��

�
d2��

Z �
2@��@��g��

�
1

6
H���H

���e�4�� �
R

16	G

� �������
�g
p

d4x; (2)

where the sum is taken over n � 1, 2 (the corresponding
index is omitted for brevity). Our signature choice is
mostly minus for the space-time metric, and ��;�� for
the world sheets. The Levi-Cività symbol is 
01 � �
10 �
1, �ab is the metric on the world sheet, and the lower Latin
indices mean partial derivatives with respect to the world-
sheet coordinates X�a � @aX

�. The action contains four
parameters: the string tension �, the Newton constant G,
the dilaton coupling �, and the two-form coupling f. The
antisymmetric three-form field strength is defined as

 H��� � @�B�� � @�B�� � @�B��: (3)

Variation of the action (2) with respect to X� leads to the
equations of motion for strings,

 @a��X
�
bg���

ab ��������
��
p

e2�� � 4	fX�b

abB���

� X�aX�b@�

�
�
2
g���ab

��������
��
p

e2�� � 2	f
abB��

�
: (4)
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The coordinate derivatives on the right-hand side apply to
the metric, dilaton, and two-form fields; their values are
taken on the world sheet. The derivatives with respect to
the world-sheet coordinates �a on the left-hand side apply
both to the world-sheet quantities X���a�, �ab and to the
metric, dilaton, and two-form fields, e.g., for the metric

 @ag�� � X�a@�g��; (5)

and similarly for �, B��. In this formalism �ab is an
independent variable; variation of the action with respect
to �ab gives the constraint equation

 �X�a X�b �
1
2�ab�

cdX�c X�d�g�� � 0; (6)

whose solution defines �ab as the induced metric on the
world sheet:

 �ab � X�a X�bg��: (7)

Consider now the field equations. Variation over� gives
the dilaton equation

 @��g
��@��

�������
�g
p

� �
�
6
H2e�4��

� �
X��

4

Z
X�a X�bg���

ab ��������
��
p

e2��4�x

� X��; ���d2�; (8)

where the sum in the source term is taken over the con-
tribution of two strings. The equation for the two-form field
reads
 

@��H
���e�4�� �������

�g
p

� � �
X

2	f
Z
X�aX

�
b


ab

� 4�x� X��; ���d2�: (9)

We also have the Bianchi identity

 r	�H���
 � 0; (10)

where alternation over indices has to be performed and the
derivative can be equivalently treated as a covariant deri-
vation with respect to g�� or a partial derivative.

Finally, for the metric we have the Einstein equations

 R�� �
1
2g��R � 8	G�T

�

�� � T
B

�� � T
st

���; (11)

where the source terms read

 T
st �� �

X
�
Z
X�a X�b�

ab ��������
��
p

e2�� 
4�x� X��; ����������

�g
p d2�;

(12)

 T
� �� � 4�@��@��� 1

2g
���5��2�; (13)

 T
B �� � �H�

��H
��� � 1

6H
2g���e�4��: (14)

The total system of equations consists of two equations for

strings of the type (4) and the field equations (8), (9), and
(11). It describes classically the motion of the strings
mutually interacting via the dilaton, two-form, and gravi-
tational fields, and evolution of the generated fields. This
system can be solved iteratively in terms of the coupling
constants �, f, G. To facilitate this construction, it is
convenient to introduce a classical analog of the
Feynman graphs, denoting the string by a bold solid line,
the dilaton by a solid line, the two-form by a dashed line,
and the graviton by wavy lines (Fig. 1). Simple analysis of
the equations reveals that we have vertices involving linear
and nonlinear string-field interactions, as well as three-leg
and multileg interactions of fields between themselves.

III. PERTURBATION THEORY

We construct an iterative solution of the coupled string-
field system expanding the string world-sheet mapping
functions X�n ��a�, n � 1, 2, and the field variables in terms
of the coupling constants �, f, G:

 X� � X
0 �
� X

1 �
� . . . ; � � �

1

��
2

� . . . ;

B�� � B
1

�� � B
2

�� � . . . ; h�� � h
1

�� � h
2

�� � . . . :

(15)

Here the expansions of X�n start from zero order, while
those of the field variables start from the first-order terms;
that is, we assume that there are no background dilaton,
two-form, or gravitational fields. Zero-order mapping
functions describe the straight infinite uniformly moving
strings,

 

Strings
Graviton

Dilaton
Axion

a b c d

k k

e f g

h i j

FIG. 1. Vertices associated with the action (2): graphs a, b, c
are string-dilaton, string–two-form and string-graviton vertices
of the lowest order; graph d depicts higher-order string-dilaton-
graviton vertices (for all k � 1, k0 � 1); graphs e, f, g are
lowest-order field interactions present in the action (2); and
graphs h, i, j are multigraviton vertices accompanying the
lowest-order ones.
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 X
0 �

n � d�n � u
�
n �� ��

n �: (16)

Here ��
n is the unit spacelike constant vectors along the

strings, and u�n are the unit timelike constant vectors—-
four-velocities of the strings. The corresponding three-
dimensional velocities are orthogonal to the strings. The
constant vectors d�n can be regarded as impact parameters
for two strings with respect to the chosen frame. In the zero
order the space-time metric is flat, and the corresponding
world-sheet metrics are also Minkowskian �ab �
diag�1;�1� in view of the normalization assumed,

 ��n�n� � �����
n ��

n � �1; �unun� � 1;

��nun� � 0:
(17)

It is convenient the choose the Lorentz frame in which the
first string is at rest and is stretched along the z axis:

 u�1 � 	1; 0; 0; 0
; ��
1 � 	0; 0; 0; 1
: (18)

The second string is assumed to move in the plane x2, x3

with the velocity v orthogonal to the string itself:

 u�2 � �	1; 0;�v cos�; v sin�
;

��
2 � 	0; 0; sin�; cos�
;

(19)

where � � �1� v2��1=2. In such a configuration the
strings never intersect each other, always remaining in
the parallel planes. Apart from the orthogonality condi-
tions (17), four other scalar products are

 �u1; u2� � �; ��1;�2� � � cos�;

�u1;�2� � 0; �u2;�1� � �v� sin�;
(20)

note that u1 and �2 are orthogonal. We also choose both
impact parameters d�n to be orthogonal to u�n and ��

n and
aligned with the axis x1, the distance between the planes
being d � d2 � d1. The angle of inclination � of the
second string with respect to the first one can be written
in a Lorentz-invariant form,

 � � arccos���1�2�: (21)

Similarly, the invariant expression for the relative velocity
of the strings is

 v � �1� �u1u2�
�2�1=2: (22)

With this parametrization of the unperturbed world sheets,
the projected intersection point (the point of the minimal
separation between the strings) moves with the velocity

 vp �
v

sin�
� �u1u2�

�1

�
�u1u2�

2 � 1

1� ��1�2�
2

�
1=2

(23)

along the x3 axis. This motion is not associated with
propagation of any signal, so the velocity vp may be
arbitrary, in particular, superluminal vp > 1. The case of
parallel strings corresponds to vp � 1.

Note that the above introduced parameters (21) and (22)
are not invariant under reparametrizations of the world
sheets [40]. The quantity which is invariant under the
volume preserving reparametrizations is

 � � det�X�1aX
�
2b���� � � cos�: (24)

The superluminal regime corresponds to � > 1.
The expansions (15) are substituted into the system of

equations (4), (8), (9), and (11) which has to be solved
iteratively. The zero-order differential operator in the dila-
ton equation (4) is the flat-space D’Alembert operator � �

����@�@�. Similarly, choosing the Lorentz gauge for the
two-form and the metric perturbations

 @�B
�� � 0; @� 

�� � 0;  �� � h�� � 1
2�

��h;

(25)

where h � h��, we get the linear D’Alembert equations for
the first-order two-form and the gravitational field as well.
Because of linearity of the field equations, the first-order
dilaton, two-form, and metric perturbations can be pre-
sented as the sums of the separate contributions due to
two strings,

 �
1

� �
1

1 ��
1

2; B
1 ��
� B

1 ��

1 � B
1 ��

2 ;

h
1 ��
� h

1 ��

1 � h
1 ��

2 :
(26)

Here each term with n � 1, 2 satisfies the individual
D’Alembert equation with the source labeled by the same
index n:

 ��
1

n � 4	J
0

n; (27)

 �B
1 ��

n � 4	J
0��

n ; (28)

 �h
1 ��

n � 4	�
0��
n : (29)

The coupling constants are included into the source terms,
while zero indices in the sources indicate that they are
computed using the zero-order approximations for the
string mapping functions. The source terms thus read

 J
0

n �
��
8	

Z
4�x� X

0

n��; ���d
2�; (30)

 J
0 ��
n �

f
2

Z
V��n 4�x� X

0

��;���d2�; (31)

 J
0 ��
n � 4G�n

Z
W��
n 4�x� X

0

n��; ���d2�; (32)

where the following antisymmetric and symmetric tensors
are introduced:

 V��n � 
abX
0 �

bnX
0 �

bn � u�n ��
n � u�n��

n ; (33)
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 U��
n � �abX

0 �

anX
0 �

bn � u�n u�n � ��
n ��

n;

U��
n ��� � Un � 2;

(34)

 W��
n � U��

n �
1
2�

��Un: (35)

Now consider the perturbations of the string world
sheets induced metrics (index n is omitted)

 �ab � �ab � �
1

ab; (36)

where in the general gauge the first-order correction reads

 �
1

ab � X
0 �

a X
0 �

bh
1

�� � 2X
0 �

a X
1 �

b���: (37)

However, to be able to disentangle the higher-order per-
turbed equations one has to get rid of the second term in

(37) proportional to X
1 �

. Using the space-time and the
world-sheet diffeomorphism invariance, we can impose
the gauge condition

 X
0 �
a X

1 �

b��� � 0; (38)

in which case the perturbed induced metric will contain
only the zero-order string mapping functions:

 �
1

ab � X
0 �

a X
0 �

bh
1

��; �
1
� U��h

1

��: (39)

The first-order perturbations of the mapping functions

X
1 �

describing deformations of the flat world sheets satisfy
the equations following from Eq. (4):
 

��ab@aX
1 �

b��� ��@a

�
X
0 �

b

��
h
1

�� �
1

2
����

1
�
�ab

� ����
1 ab

�
� 2�����

ab�
�
� 4	f
abX

0 �

b@aB
1 ��

� 2��@��
1

�
�
2
U��@�h

1

�� � 2	fV��@�B
1

�� � 0;

(40)

where raising of the world-sheet indices is performed by
the Minkowski metric:

 �
1 ab � �

1

cd�
ac�bd; �

1
� �

1

cd�
cd: (41)

Differentiating the field variables along the world sheet
according to the rules

 @a�
1

� X
0 �
@��

1

; @aB
1

�� � X
0 �

a@�B
1

��;

@ah
1

�� � X
0 �

a@�h
1

��;
(42)

we can rewrite the above equation as

 ��ab@a@bX
1 �
� F�

��� � F
�
�B� � F

�
�h�; (43)

where the forces due to the dilaton, two-form, and graviton

are introduced:

 F�
��� � ���U@��

1

� 2U��@��
1

�; (44)

 F�
�B� � 2	fV��H

1 �

��; (45)
 

F�
�h� � �	h

1

��;��U��U�� � 1
2U

��U���

�U���h
1 ��;�

� 1
2h

1 ��;�
�
: (46)

In these equations the indices labeling the strings are not
shown, but it is understood that for each string we have to
take into account on the right-hand side both the self-force
terms arising from the fields due to the same string and the
mutual interaction terms coming from the partner string.

Consider now the second-order field equations.
Expanding the equations (8)–(11) to the next order and
imposing again the Lorentz gauge for the two-form and the
linearized gravity, one obtains the D’Alembert equations
for the second-order fields with the source terms involving
contributions due to deformations of the string world
sheets (local terms) as well as the quadratic combinations
of the first-order fields (bulk terms). The dilaton equation,
taking into account (39), will read
 

��
2

� 4	J
1

�
��
4

XZ
	U���h

1

�� � 2�����
1

� � 4X
1 �
@�


� 4	x� X
0

��; ��
d2��
�
6
H

1 ���
H

1

���

� @�

��
h
1 ��
�

1

2
���h

1
�
@��

1
�
; (47)

where the partial derivative operator acts on the delta
function. Note that the first-order terms in the second line
are multiplied by the dilaton coupling constant and thus
give the same order quantities as the products of two first-
order field quantities.

The equation for the second-order two-form field is
 

�B
2 ��
� 4	J

1��

� 2	f
XZ

�2
abX
0 	�

a X
1 �


b 
4	x� X

0

��; ��


� V��X
1 �
@�

4	x� X
0

��; ��
�d2�

� @�

��
1

2
h
1

� 4��
1
�
H

1 ���
�
; (48)

where alternation over indices includes the factor 1=2.
The situation is slightly more complicated for the gravi-

ton. To obtain an equation for the second-order gravita-
tional perturbation, one has to take into account the
quadratic terms in the Einstein equations. In the gauge

 @� �� � 0

CERENKOV RADIATION FROM MOVING STRAIGHT STRINGS PHYSICAL REVIEW D 75, 105013 (2007)

105013-5



one has the following expansion of the Einstein tensor up
to the second order:

 R�� �
1
2g��R �

1
2� �� �

1
2S���h

1

���; (49)

where  �� contains the first and the second-order quanti-
ties, and the quadratic term reads
 

S�� � 	@�h���@�h�� � @bh��� �
1
2@�h

��@�h��

� 1
2h��@�@

�h� h���@�@�h�� � @�@�h��

� @�@�h�� � @�@�h��� �
1
2����2h

��@�@�h��

� @�h��@�h
�� � 3

2@�h��@
�h���
: (50)

Extracting the second-order terms, we obtain from Eq. (11)

 � 
2

�� � 16	G�
1

��; (51)

where the source term reads
 

�
1

�� �
�
2

XZ
�2X

0 a

�� �U��X
1 �
@��4�x� X

0

��; ���d2�

�
�
4

XZ
	�U��U�� � 2U�

�U�
��h

1

��

�U���4��
1

� h
1

�
4�x� X
0

��;���d2�

�G�1S���h
1

��� � 2@��
1

@��
1

� ���@��
1

@��
1

�
1

2
H

1

��� �
1

12
���H

1

���H
1 ���

: (52)

All source terms in the second-order field equations have
similar structure. Note the presence of the derivatives from
delta functions in the string world-sheet contributions.

It is worth noting that the second-order dilaton, two-
form, and gravity fields already cannot be presented as a
sum of terms due to separate strings, but rather look as
generated by the collective sources. These sources contain
contributions not only from the perturbed world sheets, but
also the bulk contributions which are not associated with
separate strings. As we will see later, these sources may
have superluminal nature, in which case the Cerenkov
radiation will appear.

IV. RENORMALIZATION

The action of the proper fields upon the source string is
described by the self-action terms in Eq. (43) correspond-
ing to the graphs shown in Fig. 2. The dilaton and the two-
form lead to divergences while the contribution from the
linearized gravity vanishes. Divergent terms can be ab-
sorbed by renormalization of the string tension parameter
� [41,42]. We consider renormalization in the first order of
the perturbation theory. Linearizing the string part of the
action (2), one can split it into the sum

 S � Sst � S� � SB � Sh; (53)

where Sst is the Polyakov action with the bare tension
parameter,

 Sst � �
�0

2

Z
X�a X�b����

abd2�; (54)

and three other terms describe the interaction with the
dilaton, the two-form, and the linearized gravity:

 S� � ��0�
Z
�X�a X�b����

abd2�; (55)

 SB � �2	f
Z
B��X

�
c X�d


cdd2�; (56)

 Sh � �
�0

2

Z
X�a X�b�

abh��d2�: (57)

Since we are working in the lowest order of the perturba-
tion theory, the mapping functions X� here are quantities
of zero order. In obtaining the last formula we used the
following expansion:

 �ab
��������
��
p

� �ab � h���
1
2X

�
c X�c�ab � X�aX�b� � � � � :

(58)

Consider the first-order dilaton field on the world sheet of
the source string

 ���; �� �
��0

8	2

Z eiq��d
��X���;����qu��q��

q2 d4q; (59)

where qu � q�u�, q� � q��� are the flat-space scalar
products, and q2 � q�q

�. Because of the delta functions,
the scalar product in the exponential is constant:

 q�X���; �� � �qd� � �qu��� �q��� � �qd� � const;

(60)

so the integrand does not depend on � and �. The integral
diverges as

 I � �
Z �qu��q��

q2 d4q � 2	
Z 1

0

dq?
q?

(61)

where we used the frame (18) and introduced polar coor-
dinates in the 2-plane orthogonal to u� and ��:

 q2 � �qu�2 � �q��2 � q2
1 � q

2
2; q2

1 � q
2
2 � q2

?:

(62)

The integral logarithmically diverges at both ends. With
the infrared (IR) and ultraviolet (UV) cutoff parameters

 

a b c

FIG. 2. Graphs describing self-interaction due to dilaton (a),
two-form (b), and linearized gravity (c). The contributions from
a and b are divergent and have different signs. The contribution
of c is zero.
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qmin
? , qmax

? , one can write

 I � 2	 ln
qmax
?

qmin
?

: (63)

Substituting this into Eq. (59) and further into (55) we find
the regularized dilaton part of the action:

 Sreg
� �

�2
0�

2

4	
ln
qmax
?

qmin
?

Z
X�a X�b����

abd2�: (64)

Since the functional is the same as the bare action func-
tional Sst, one can absorb divergencies by renormalization
of �0.

Similarly, the first-order two-form field on the world
sheet of the source string reads

 B����; �� �
f

2	

Z eiq��d
��X���;���V���qu��q��

q2 d4q:

(65)

This integral also diverges as (63). In view of the relation

 V��V�� � �U��; (66)

one can see that the action (56) also has the functional form
of (54), namely,

 Sreg
B � �2	f2 ln

qmax
?

qmin
?

Z
X�a X�b����

abd2�: (67)

Finally, for the graviton h����; �� on the world sheet we
have the divergent integral
 

h����; �� �
4G�
	

Z eiq��d
��X���;���W���qu��q��

q2 d4q

� �8G�W�� ln
qmax
?

qmin
?

; (68)

where W�� is given by Eq. (35). However, substituting this
into (57) one obtains zero in view of the identity

 W��U�� � 0: (69)

Therefore, gravitational interaction of the strings does not
lead to classical divergences in the lowest order of the
perturbation theory. This result conforms with previous
results [43,44] obtained with different tools.

Collecting the above formulas, we see that to remove
self-interaction divergences one has merely to replace the
tension parameter in the action (54) as follows:

 �0 �

�
�2

0�
2

2	
� 4	f2

�
ln
qmax
?

qmin
?

� �: (70)

Divergences due to the dilaton and the two-form have
opposite signs. This reflects the fact that the scalar inter-
action is attractive, while interaction via the two-form is
repulsive. If the Bogomolny-Prasad-Sommerfield (BPS)
relation between the dilaton and the two-form couplings
is satisfied,

 

�2�2

2	
� 4	f2; (71)

the divergent terms mutually cancel, and there is no renor-
malization at all, � � �0 (for earlier work on this subject
see Refs. [41– 46]). Note that our dilaton coupling constant
has dimension of length; the usual dimensionless constant
�� (quantity of the order of unity) is related to it as

 �2 � G ��2: (72)

It has to be noted that renormalization can be performed
in a simple way only at the linearized level. When all
nonlinearities are taken into account, classical renormaliz-
ability of the bosonic string theory interacting with gravity
is lost. In this paper we will be restricted by the second-
order calculation of radiation which involves only on-shell
second-order quantities. These are unaffected by the
higher-order renormalization effects. So, in what follows,
we will use the value for the string tension renormalized in
the first order, and thus omit all self-interaction terms.

V. PERTURBATIONS OF THE STRING WORLD
SHEETS

Now consider the first-order perturbations of the map-
ping functions X�n ��; ��, n � 1, 2 caused by mutual inter-
actions. We have to substitute into each string equation of
motion (4) the first-order fields generated by another string.
It is convenient to use the following index convention: n �
1, 2; n0 � 1, 2; n � n0. The total perturbation thus splits
into three terms due to the dilaton, two-form, and graviton
exchange:

 X
1 �
n � X

��

n � X
B �

n � X
h �

n ; (73)

as shown in Fig. 3. Let us start with the dilaton exchange
contribution [Fig. 3(a)]. The corresponding world-sheet

perturbation X
1 �

n ��; �� is the solution of the two-
dimensional D’Alembert equation [following from
Eqs. (43) and (44)]:

 �@2
� � @2

��X
��

n � �2�	�U
� ��

@� � @���
1 �

n �x�

x�X

0

n��;��
;

(74)

where the dilaton field generated by the string n0 is taken
on the world sheet of the string n:
 

@��
1

nj
x�X

0

n��;��
�

��

8	2i

Z eiq��d
�
n0
�X�n ��;����qun0 ��q�n0 �

q2 � 2i
q0

� q�d4q: (75)

Substituting (75) into (74) one can obtain the solution by
dividing the right-hand side by the two-dimensional
D’Alembert operator as follows:
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 X�n X
� �

n ��; �� � i
�2�

�2	�2
Z �n0 	q

� � ��
n �q�n� � u

�
n �qun�
e

�iq�X
0 �

n ��;��

q2	�qun�
2 � �q�n�

2

d4q; (76)

where

 �n0 � eiqdn0�qun0 ��q�n0 �: (77)

Note that the delta functions in the integrand have support
outside both the light cone q2 � 0 and the surface
�qun�2 � �q�n�

2 (except for the trivial point q� � 0), so
the integral is finite.

Consider now the two-form interaction [Fig. 3(b)]. We
have to solve the equation

 �@2
� � @2

��X
B �

n � 2	fV��n H�
1 �

��j
x�X

0

n��;��
; (78)

where the three-form is

 H�
1 �

��jx�X
0

n��;��
�

f
2	i

Z �n0qf�V
��g
n0 e

�iq�X
0 �

n ��;��

q2 � 2i
q0 d4q;

(79)

where curly brackets fg denote the cyclic permutation of
indices. Again, dividing by the operator �@2

� � @
2
�� one

obtains

 X
B �
n ��; �� � i

f2

�

Z �n0Vn��q
f�V��gn0 e�iq�X

0 �

n ��;��

q2	�qun�
2 � �q�n�

2

d4q:

(80)

Similarly, the gravitational contribution is described by
the equation

 

�@2
� � @

2
��X

h �

n �
�
2
U��
n 	@�h

1

�� � 2@�h
1 �

�

�U��
n �@�h

1

�� � 2@�h
1

���

x�X

0

n��;��
; (81)

where the variation h
1

�� is generated by the partner string
n0:

 h
1

��j
x�X

0

n��;��
�

4�G
	

Z �n0Wn0��e
�iq�X

0 �

n ��;��

q2 � 2i
q0 d4q: (82)

Solving this equation, one finds

 X
h �
n ��;�� � i

2�G
	

Z �n0Un��	q�W
��
n0 � 2W��

n0 q
� �U��

n �q�W
��
n0 � 2q�W�

n0��
e
�iq�X

0 �

n ��;��

q2	�qu1�
2 � �q�1�

2

d4q: (83)

It can be checked that the gauge condition (38) imposed
in the beginning of the calculation holds indeed for each of
the three separate contributions to the perturbed mapping
functions.

VI. EFFECTIVE SOURCES OF RADIATION

The first-order fields �
1

, B
1 ��

, h
1 ��

do not contain the
radiative parts. Consider, e.g., the Fourier transform of the
dilaton:

 ��k� �
Z
��x�eikxd4x: (84)

The retarded and advanced solutions of the first-order wave
equation (27) will read

 �
1 
n �k� � 2	2��

�kun��k�n�

k2  2i
k0 eikdn : (85)

The radiative part

 �
1 rad
n �k� �

1
2��

1 �

n �k��
1 �

n �

� �i	3���kun��k�n��k
2�eikdn (86)

is the distribution having support only at the trivial point
k� � 0 in the momentum space. Thus, to investigate ra-
diation, we have to pass to the second order of the pertur-
bation theory. The problem reduces to the construction of
the source terms in the wave equations of the second order.

A. Dilaton

Consider the second-order dilaton equation (47) in more
detail. The current on the right-hand side contains the
contributions localized on the string world sheets [the
upper line in (47)] and the bulk contributions coming
from the products of the first-order dilaton, two-form,
and graviton fields (the lower line). The former contains
the sum over the strings which can be understood as
follows. One has to take the perturbations of the world-
sheet mapping functions X�n for each string n � 1, 2 due to
the first-order field generated by the partner string n � 2,

 

n

n
a

n

n
b

n

n
c

FIG. 3. Deformations of the string world sheets due to inter-
actions via the dilaton (a), two-form (b), and linearized gravity
(c). n � 1, 2; n0 � 1, 2; n � n0.
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1, respectively. These contributions are depicted by the
graphs an; bn; cn; n � 1; 2 in Fig. 4. The external dilaton
leg corresponds to the emitted dilaton with the momentum
k� (in our classical treatment to the Fourier transform of
the current); thus the terms in the sum in (47) with n � 1
are given by the graphs a1, b1, c1 and those with n � 2 by
the graphs a2, b2, c2. Other upper line terms must be
treated in a similar way: one has to take U��

n for each n �
1, 2 and multiply by the graviton and dilaton perturbations
caused by the other string n � 2, 1. These are depicted by
the graphs dn; en; n � 1; 2. In this way the self-action of
the fields upon the string will be excluded.

On the contrary, the terms in the lower line of Eq. (47)
are nonlocal and not pairwise. Here the self-action terms
also have to be excluded, so we take in the quadratic terms
only the products of the first-order fields generated by
different strings.

Consider first the contributions described by graphs a1,
b1, c1 (dilaton emission from the first string line). The
corresponding current reads

 J
st

1�x� � �
��
8	

Z
X
1 �

1 @�
4	x� X

0

1��; ��
d
2�; (87)

where the perturbation of the mapping function of the first

string X
1 �

1 is caused by the first-order dilaton, two-form,
and graviton fields generated by the second string.
Substituting the corresponding terms into (87) we obtain,
after some rearrangements,

 X
1 �

1 ��; �� � i
Z Q�

1 �qu2��q�2�e
iq�d2�d1�u1���1��

q2	�qu1�
2 � �q�1�

2

d4q:

(88)

The vector Q�
1 is the sum of three terms according to the

decomposition described above:

 Q�
1 �

�2�

�2	�2
D�

1 �
2f2

�
Y�1 �

2�G
	

Z�1 ; (89)

where the dilaton exchange contribution is

 D�
1 � q� � ��

1 �q�1� � u
�
1 �qu1�; (90)

the two-form contribution is
 

Y�1 � q�	�u1u2���1�2� � ��1u2��u1�2�


���
2 	�qu1��u2�1� � ��1q��u1u2�


� u�2 	�u1�2���1q� � �qu1���1�2�
; (91)

and the graviton contribution is
 

Z�1 � q�	�u1u2�
2 � ��1�2�

2 � �u1�2�
2 � �u2�1�

2 � 2


� 	u�1 �qu1� � ��
1 �q�1�
	�u1u2�

2 � ��1�2�
2

� �u1�2�
2 � �u2�1�

2 � 2
 � 2	u�1 �q�1�

� ��
1 �qu1�
	�u1u2��u2�1� � ��1�2��u1�2�


� 2u�2 	�u1u2��qu1� � ��1u2��q�1�


� 2��
2 	�u1�2��qu1� � ��1�2��q�1�
: (92)

Consider the Fourier transform

 J�k� �
Z
J�x�eikxd4x (93)

with k2 � 0 (on-shell condition for the massless particle).
Substituting the above expressions and integrating over the
world sheet of the first string, one obtains two more delta
functions:
 Z

ei�k�q��u1���1��d�d�� �2	�2	�k� q�u1
	�k� q��1
;

(94)

so we will totally have the product of four delta functions in
the integrand:

 �1�q; k� � �qu1��q�1�	�k� q�u2
	�k� q��2
:

(95)

Now consider the contribution J2�k� coming from the
second string (the graphs a2, b2, c2 in Fig. 4). Obviously
it can be obtained from the previous result by interchang-
ing indices 1$ 2 elsewhere. In this case we will get the

 

1

2
a1 b1 c1

1

2
a2 b2 c2

1

2
d1 e1

1

2
d2 e2

1

2
f g h

FIG. 4. The diagrams contributing to dilaton radiation in the
second order of the perturbation theory: a1, b1, c1 correspond to
deformation of the first string, and a2, b2, c2 to deformation of
the second one; graphs d, e stand for contact terms. Diagram f
corresponds to the product of (first-order) two-form fields gen-
erated by the first and the second string; graphs g, h correspond
to mixed graviton-dilaton contributions.
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product of the  functions in the form

 �2�q; k� � �qu2��q�2�	�k� q�u1
	�k� q��1
:

(96)

It is convenient to cast this second integral into the same
form as the previous one. For this it is sufficient to shift the
integration variable in J2�k� as follows: q� ! k� � q�.
Since �1�q; k� � �2�k� q; k�, we will get the same prod-
uct of the  functions, so finally we can present the total
contribution of the first six graphs as follows:

 J
st

�k� � J
st

1�k� � J
st

2�k�

�
Z

��q; k�
�
�
st

1�q�

q2 �
�
st

2�k� q�

�k� q�2

�
d4q; (97)

where

 ��q; k� � ei�d1k�q�d2�d1���1�q; k�; (98)

and

 

�
st

1�q� �
�

	�q�1�
2 � �qu1�

2


�
�2�2

8	
�kD1� � 	f

2�kY1�

�G�2�kZ1�

�
: (99)

To get the function �
st

2 from �
st

1 one merely has to inter-
change the indices 1, 2 labeling vectors in the scalar
products, changing simultaneously q� ! �k� q��.

The contributions of the next four graphs, d1, d2, e1, e2,
are computed similarly. The resulting ‘‘contact’’ term in
the source can be presented again in the form (97) with
equal contributions from two strings,

 

�
ct

1�q� � �
ct

2�q�

�
�3�2

8	
�G�2�	�u1u2�

2 � ��1�2�
2

� �u1�2�
2 � �u2�1�

2 � 2
: (100)

Now consider the bulk terms [bulk terms in (47)] which
are due to nonlinear field interactions—dilaton–two-form
and dilaton-graviton. Their contribution is illustrated by
graphs f and en, the second being pairwise. In quantum
theory terms they can be interpreted as the coalescence of
two virtual axions into the on-shell dilaton, and the coales-
cence of the off-shell dilaton and graviton into the on-shell
dilaton. We have to compute the Fourier transform of the
bulk current,
 

J
b

�x� �
�

24	
H

1

���H
1
���

�
1

4	
@�

��
h
1 ��
�

1

2
���h

1
�
@��

1
�
: (101)

Here, in the products H
1

���H
1 ���

and �
1

h
1

��, we have to
substitute one field generated by the first string and another
by the second one.

In spite of the different appearance of the bulk terms as
compared to the world-sheet terms, one can cast them into
the unique form (97) as well. Consider the corresponding
transformations for the first term in (101) depicted by the
graph f in Fig. 4. The first-order quantities to be substituted
here read

 H
1 ���
n �x� �

f
2i	

Z �nq
f�V��gn e�iqx

q2 d4q: (102)

(We can omit the 
-term in the denominator indicating the
position of the pole since the resulting integral does not
depend on its shift from the real axis.) Now let us calculate
the contraction

 

Z
eikxH

1

���H
1 ���

d4x � ��2	f�2
Z �1�q��2�q

0�qf�V1��gq
0f�V��g2 ei�k�q�q

0�x

q2q02
d4q

� ��2	f�2
Z �1�q��2�k� q�qf�V1��g�k� q�

f�V��g2 ei�k�q�q
0�x

q2�k� q�2
d4q: (103)

We are interested in the on-shell value of k�, i.e. k2 � 0. In
this case one can write

 

1

q2�k� q�2
�

�
1

�q� k�2
�

1

q2

�
1

2kq
: (104)

Using this relation one can cast the above contraction into
the form (97) with the convention that the argument q� is
used for the n � 1 terms, and �k� q�� for the n � 2 terms.

Performing similar calculations for the graphs g1, g2 and
combining with the above, we obtain the total bulk term in

the form (97) with � � �
b

:

 �
b

1 � 	f2�
�
�Y1k�
�kq�

� �u1u2���1�2� � ��1u2��u1�2�

�

��2�G
�ku2�

2 � �k�2�
2 � �ku1�

2 � �k�1�
2

�kq�
;

(105)

with the rule of getting �
b

2 from �
b

1 the same as before. In
obtaining this expression we have used the delta functions
in the integrand, fixing �qu1� � �q�1� � 0 and �qu2� �
�ku2�, �q�1� � �k�1�.
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B. Two-form

The source term in Eq. (8) for the second-order two-
form field can be presented as the sum of the ten graphs
shown in Fig. 5. Here we have string contributions corre-
sponding to exchange by the dilaton, two-form, and gravi-
ton, the bulk terms describing coalescence of virtual quanta
to the on-shell axion, but no contact term because of the
absence of multileg vertices associated with the two-form.
The string terms an, bn, cn are computed as the Fourier
transform of the currents
 

J
st��
n �x� � f

Z �
X
0 �

naX
1 �

nb
ab �
1

2
V��n X

1 �

n@�

�

� 4	x� Xn��; ��
d2�; (106)

where perturbations of the mapping functions X�n , n � 1, 2
are generated by the partner string n � 2, 1, respectively.
Using the same rearrangements as before, we obtain

 J
st ���k� � J

st��
1 �k� � J

st��
2 �k�

�
Z

��q; k�
�

�
st ��

1 �q�

q2 �
�
st ��

2 �k� q�

�k� q�2

�
d4q;

(107)

where
 

�
st ��

1 �q� � �
1

	�q�1�
2 � �qu1�

2


�
8	2 f

3

�

�
�q�1�u

	�
1 Y

�

1

� �qu1��
	�
1 Y

�

1 �

1

2
V��1 �Y1k�

�

�
1

2
�2f�

�
�q�1�u

	�
1 D

�

1 � �qu1��

	�
1 D

�

1

�
1

2
V��1 �D1k�

�
� 8	f�G��q�1�u

	�
1 Z

�

1

� �qu1��
	�
1

�
Z�
1 �

1

2
V��1 �Z1k�

��
; (108)

and to get the second string term we must interchange
indices 1$ 2 and momenta q� $ k� � q�.

The bulk terms dn, en are the Fourier transform of the
bulk current

 J
f

�x��� �
1

4	
@�

�
H

1 �

��

�
4��

1

�
1

2
h
1
��
; (109)

where again we have to take the products of fields gener-
ated by different strings. The result can be cast into the
form (107) with
 

�
b ��

1 � �
8	f�G
�kq�

	V��1 �kq� � �q
	�u�
1 ���1q�

� �q	���

1 ��u1q� � V

��
2 �kq� � �q

	�u�
2 ���2k�

� �q	���

2 ��u2k��
 �

f�2�
2�kq�

	V��1 �kq��

� �q	�u�
1 ���1q� � �q
	���


1 ��u1q�

� V��2 �kq� � �q
	�u�
2 ���2k� � �q

	����

2 �u2k�
;

(110)

with the same rule for the second string term as in (108).

C. Graviton

The source (52) in the second-order graviton equation
can be treated along the same lines. It includes contribu-
tions of the 13 graphs shown in Fig. 6. It turns out, however,

 

1

2
a1 b1 c1

1

2
a2 b2 c2

1

2
d e f h

FIG. 5. The second-order amplitudes of the two-form emis-
sion. Graphs a, b, c show contributions from deformations of the
string world sheets, and graphs d, e, f, h the quadratic bulk
terms.
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1

2
a2 b2 c2

1

2
d1 e1

1

2
d2 e2

1

2
f g h

FIG. 6. The second-order amplitudes of the graviton emission.
The sum of all graphs is zero on the graviton mass shell.
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that the projection of the total on-shell (k2 � 0) current
onto the graviton transverse polarization states gives zero.
The reason lies in the dimensionality of the space trans-
verse to the string: the configuration of the parallel strings
is reduced to that of point particles in the 1� 2 theory,
where there are no on-shell transverse gravitational degrees
of freedom. As it was shown in [37], the transformation to
the parallel string configuration is always possible for a
superluminal moving intersecting string. So there is no
gravitational radiation in this case and we do not give the
details of the calculation here.

VII. RADIATION

Total radiation four-momentum loss can be presented in
a standard way through the on-shell Fourier transform of
the source current, the vector k� � �!;k�, ! � jkj play-
ing the role of the radiation four-momentum. In the case of
the dilaton one obtains the following explicitly Lorentz-
covariant expression:

 P�
��� �

16

	

Z
k�

k0

jk0j
jJ����k�j

2�k2�d4k; (111)

and similarly for the two-form,

 P�
�B� �

1

	

Z
k�

k0

jk0j
jJ���k�j2�k2�d4k: (112)

Alternatively, the latter quantity can be presented as a
square of the polarization projection of the current.
Indeed, in three space dimensions the two-form field prop-
agating along the wave vector k has a unique polarization
state,

 eij �
1���
2
p �e�i e

’
j � e

’
i e

�
j �; i; j � 1; 2; 3; (113)

where e� and e’ are two unit vectors orthogonal to k and to
each other:

 e ’ � e� � 0; k � e’ � k � e� � 0: (114)

Using antisymmetry and transversality of the two-form
current k�J���k� � 0, and the completeness condition

 e�i e
�
j � e

’
i e

’
j � ij � kikj=!

2; (115)

one finds

 P�
�B� �

1

	

Z
k�

k0

jk0j
jJij
�B��k�eijj

2�k2�d4k: (116)

Integrating over k0, we finally obtain

 P�
��� �

16

	

Z k�

jkj
jJ����k�j2d3k; (117)

 P�
�B� �

1

	

Z k�

jkj
jJ�B��k�j2d3k; (118)

where

 J�B��k� � Jij
�B��k�eij (119)

with k0 � jkj. In what follows we shall use the parametri-
zation of three-vectors by the spherical angles: k �
!	sin� cos’; sin� sin’; cos�
, e’ � 	� sin’; cos’; 0
,
e� � 	cos� cos’; cos� sin’;� sin�
.

A. Cerenkov condition

With our conventions, the radiation amplitudes associ-
ated with the first string contain the integral

 I1�
Z �qu2��q�2�	�k�q�u1
	�k�q��1
f�q�eiqd

q2 d4q;

(120)

where d� � d�2 � d
�
1 , and f�q� is some regular function of

q. In the Lorentz frame where u�1 � �1; 0; 0; 0�, ��
1 �

�0; 0; 0; 1�, u�2 � ��1; 0;�v cos�; v sin��, ��
2 �

�0; 0; sin�; cos��, one can integrate over q0 using

 	�k� q�u1
 � �q0 �!�: (121)

Two other  functions,

 �qu2� � ��1�!� qyv cos�� qzv sin��; (122)

 �q�2� � ��1�qy sin�� qzv cos��; (123)

can be used to fix the values of qy, qz:

 qy � �
! cos�
v

; qz �
! sin�
v

: (124)

The remaining  function

 	�k� q��1
 � �kz � qz� � 
�
kz �

! sin�
v

�
(125)

no longer depends on q, but rather restricts the value of the
wave vector of radiation kz:

 kz �
! sin�
v

� vp: (126)

This is Cerenkov’s condition for an emitted massless wave.
Indeed, in our frame an effective source of radiation is
moving along the z axis with the velocity vp; thus the
quantity

 cos� �
kz
!
�

1

vp
(127)

defines Cerenkov’s angle of emission if vp > 1, i.e. the
source is superluminal. Thus, radiation arises if the string
relative velocity v and the inclination angle � satisfy the
Cerenkov condition

 sin�< v: (128)

Given v, this condition will always be satisfied for suffi-
ciently small �. In particular, it is identically fulfilled for
� � 0, i.e. for parallel strings. Moreover, it can be shown
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that, if vp > 1, the Lorentz frame and the world-sheet
coordinates �n, �n always exist such that two strings
look parallel [37]. In the frame where the first string is at
rest and stretched along the z axis, an effective source
moves in the z direction, and radiation will be emitted
along the Cerenkov cone around the z axis with an angle

 �C � arccos
v

sin�
: (129)

The remaining integral over qx in (120) can be evaluated
using contour integration. With our choice of coordinates,
the scalar product q�d� � �qxd, so we have the integral
over qx,

 I1 �
Z e�iqxdf�qx�dqx

q2
x � p2 �

	
p
f��ip�e��d; (130)

where

 p �
����������������������������
q2
y � q2

z � q2
0

q
�

!
�v

: (131)

For the second term in (97) containing the pole �k� q��2,
one obtains the same fixed values of q0, qy, qz, but the
integration over qx gives the value

 qx � kx �
!�
iv
; � � cos�� v sin� sin�: (132)

Summarizing the above results, we obtain
 Z ��1�q�

q2 �
�2�k� q�

�k� q�2

�
eikd1�iqd2d4q

� 	E1�1�q1� � �����2E2�2�k� q2�


� �cos�� cos�C�; (133)

where

 E1 � eikd1�!d=�v��; E2 � eikd2�!d�=v; (134)

and the following complex vectors are introduced:

 q�1 �
!
v
	v;�i=�;� cos�; sin�
; (135)

 k� � q�2 �
!�
v
	0; i; 1; 0
: (136)

The presence of the delta function on the right-hand side
of (133) means that the total radiation loss is infinite. This
could be expected since we deal with the stationary motion
of an infinitely long string. So it is natural to consider the
radiation loss per unit length of the string at rest.
Redefining the currents as

 J�k� � I�k��cos�� cos�C�; (137)

and using the identity

 2�cos�� cos�C� �
L!
2	

�cos�� cos�C�; (138)

where L is the normalization length, we find

 P �
��� � L�1P�

���

�
8

	2

Z
k�jI����k�j2�cos�� cos�C�d3k; (139)

 P �
�B� � L�1P�

�B�

�
1

2	2

Z
k�jI�B��k�j2�cos�� cos�C�d

3k: (140)

B. Relativistic peaking and spectrum enhancement

According to (133), there is a frequency cutoff due to
exponential factors (134). Actually, the amplitude is the
superposition of two terms which can be associated with
contributions of two strings (this can not be taken literally:
in the second order of the perturbation theory the superpo-
sition principle does not hold). Two terms exhibit different
frequency cutoffs. The first string term has a cutoff

 ! &
v�
d
; (141)

which does not depend on the radiation angle, while the
second one exhibits a ’-dependent cutoff:

 ! &
v
d�
�

v
d�cos�� v sin� sin’�

: (142)

This means that the angular distribution of radiation on the
Cerenkov cone is anisotropic. This feature becomes espe-
cially pronounced in the ultrarelativistic case.

In view of the identity

 cos 2� � v2sin2�� ��2; (143)

which holds on the radiation cone, in the ultrarelativistic
limit �! 1 the quantity � has a sharp minimum at ’ �
�	=2 corresponding to the direction of the moving string
in the rest frame of the first string:

 � �
1

2�2 cos�
�1� �2�2 cos�2�; (144)

where � � 	=2� ’� 1. Because of the factor ��2 in
the second term in (119) the Cerenkov radiation is peaked
around the direction ’ � �	=2 within the narrow angular
region

 � & ��1: (145)

Moreover, the frequency range associated with the second
terms is substantially larger in the ultrarelativistic limit
than that associated with the first term. Indeed, if � �
� cos�� 1, one has

 � �
1

2��
�1� �2�2�; (146)

so the frequency range extends up to the frequency
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 ! &
��
d

(147)

in the angular region (145). Therefore, radiation exhibits
relativistic peaking in the forward direction in the same
way as radiation of the ultrarelativistic particle. This could

be expected, since relativistic peaking has a purely kine-
matical nature.

C. Dilaton radiation

Collecting the world-sheet contributions to radiation
amplitudes we obtain, after integration over q,

 

I
st

�k� � I
ct

�k� �
�

!2

�
�2�2

8

�
E1

�
1�

i cos�� � sin�
�v sin�

�
�

E2

�2�2

�
ie�i’

�v sin�
� 2��

��
� 	2f2

�
E1

sin�� i� cos’
�v sin�

�
E2

�2�2

�v sin�� i�e�i’

�v sin�

�
��2G	

�
E1	�� sin’� i cos�� � �v sin�
 �

E2

�2�2 ie
i’
�
�v sin�

�
: (148)

Here the first term corresponds to the dilaton exchange, the
second term to the two-form, and the last term to the
graviton exchange. The bulk contribution after integration
reads
 

I
b

�k� �
	2f2�
��

	E1����� 1� i�v sin� cos’�

� iE2�v sin�ei�
 �
G�2	
��

	E1��v sin�� � sin�

� i cos�� � E2iei�
2��v sin�: (150)

Consider first the Cerenkov threshold v � sin�, when the
radiation cone shrinks to �C � 0. This corresponds to � �
1, � � 1=�. Since in this limit kd � 0, the exponents
become equal, E1 � E2, and the bulk term vanishes. The
graviton contribution to (148) vanishes too, while the
dilaton and two-form contributions differ only by the co-
efficients. The total radiation amplitude at the threshold
will be given by

 Ithr�k� �
�

8!2 E1�3�2�2 � 8	2f2�: (151)

Integrating the expression (139) for� � 0 (the energy loss
rate) over the angles in d3k � !2d!d cos�d’, we obtain
the infrared-divergent integral over frequencies.
Introducing the inverse correlation distance � as an infra-
red cutoff parameter, one finds

 P thr �
�2

4	
�3�2�2 � 8	2f2�2

Z 1
��1

d!
!

exp
�
�2

!d
v�

�
:

(152)

In the BPS limit (71) one has

 P thr �
�4�6

	

Z 1
��1

d!
!

exp
�
�2

!d
v�

�
: (153)

Integrating this over frequencies we obtain the total radia-
tion rate in terms of the integral exponential function (see
the Appendix):

 P thr �
�4�6

	
Ei
�
1;

2d
v��

�
: (154)

For small impact parameters, d� v��, this expression
can be approximated by the logarithm

 P �
�4�6

	
ln
�
v��

2deC

�
; (155)

where C is the Euler constant, eC � 1:781 072 418. For
large impact parameters, d� v��, radiation exponen-
tially falls off:

 Ei
�

1;
2d
v��

�
�

2d
v��

exp
�
�

2d
v��

�
: (156)

For � � 0 the radiation amplitudes are more compli-
cated. Note that in our reference frame the first string is at
rest while the second one is moving. For this reason the
radiation amplitudes are not symmetric with respect to two
strings. As it was observed in the previous section, in the
ultrarelativistic case the frequency range associated with
the factor E2 is much larger than that with E1, and in this
limit the E2 terms are dominant. Collecting the dominant
terms, we obtain for the total amplitude of the dilaton
emission in the ultrarelativistic case
 

I�k� �
�E2

�2�2!2

�
�2�2

8

�
ie�i�

�v sin�
� 2��

�

� 	2f2

�
1�

i cos�e�i�

v sin�
� i��2v sin�ei�

�

��2G	i�v sin��1� 2����ei�
�
: (157)

Substituting this into (139) and taking into account the
angular peaking near � � �	=2, we obtain the spectral-
angular distribution of radiation per unit length in the
vicinity of this direction:

 

dP
d!d�

�
32�2�2

!
��1 ��2�

2�2�2

�1� �2�2�4

� exp
�
�
!d�1� �2�2�

��

�
; (158)

where
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 �1 � 4G�2�2 � 	f2�;

�2 � 2G�2�2 � 	f2��
�2�2

4	
:

(159)

Dividing by ! we will also get the number of emitted
dilatons,

 

dN
d!d�

�
1

!
dP
d!d�

: (160)

Note that the graviton, axion, and dilaton exchange terms
entering into the above expressions for the parameters �1;2

exhibit different behavior in the invariant Lorentz factor �,
the dominant for large � being the gravitational term.

The spectrum exhibits an infrared divergence, and in the
forward direction � � 0 it extends up to !�!max, where

 !max �
��
d
: (161)

Integrating over frequencies with the infrared cutoff ��1,
we obtain the angular distribution of radiation:

 

dP
d�
� 32�2�2 ��1 ��2�

2�2�2

�1� �2�2�4
Ei
�
1;
d�1� �2���

���

�
:

(162)

Since the integral exponential function decays exponen-
tially for large values of the argument, the total radiation is
peaked around � � 0 within the angle

 � &
�������
��
p

: (163)

One can also obtain the spectral distribution of radiation by
extending the integration domain over � in (158) to the full
axis in view of the exponential decay of the integrand:

 

dP
d!
� !

dN
d!

2	�2d
3�

	�2
1F1�z� � 2�1�2F2�z�

��2
2F3�z�
; (164)

where z � !d
�� and the functions Fi are expressed in terms

of the probability integral (A4):
 

F1�z� � �8z2 � 16z� 30�
e�z������
	z
p

�

�
8z2 � 12z� 18�

15

z

�
erfc�

���
z
p
�;

F2�z� � ��8z2 � 8z� 6�
e�z������
	z
p

�

�
8z2 � 12z� 6�

3

z

�
erfc�

���
z
p
�;

F3�z� � �8z
2 � 32z� 6�

e�z������
	z
p

�

�
8z2 � 36z� 18�

3

z

�
erfc�

���
z
p
�: (165)

For small frequencies, !� ��=d, these functions grows

as

 F1�z� �
15

z
; F2�z� �

3

z
; F3�z� �

3

z
; (166)

while for large z they exponentially decay:

 F1�z� �
48e�z��������
	z3

p ; F2�z� � �
57e�z

2
��������
	z5

p ;

F3�z� �
105e�z

2
��������
	z5

p :

(167)

To regularize the infrared divergence one has to introduce
the cutoff length �. After integration over frequencies !
from ��1 to infinity we obtain the total dilaton radiation
rate in the ultrarelativistic limit,

 P �
2	�2�

3
	��2

1f1�y� � 2�1�2f2�y� ��2
2f3�y��
;

(168)

where three new functions are introduced:
 

f1�y� � 5f�y� � erfc�
���
y
p
�

�
8

3
y3 � 6y2 � 18y�

37

2

�

�
e�y

���
y
p

	

�
8

3
y2 �

22

3
y� 23

�
; (169)

 

f2�y� � f�y� � erfc�
���
y
p
�

�
8

3
y3 � 6y2 � 6y�

5

2

�

�
e�y

���
y
p

	

�
8

3
y2 �

14

3
y� 7

�
; (170)

 

f3�y� � f�y� � erfc�
���
y
p
�

�
8

3
y3 � 18y2 � 18y�

1

2

�

�
e�y

���
y
p

	

�
8

3
y2 �

50

3
y� 11

�
; (171)

where

 y �
d

���
; (172)

and the function f�y� is expressed through the generalized
hypergeometric function (A8),

 f�y� � 12

����
y
	

r
2F2

�
1

2
;
1

2
;
3

2
;
3

2
;�y

�
� 3 ln�4yeC�: (173)

For small y these functions grow as

 f1�y� � 15 ln
1

y
; f2;3�y� � 3 ln

1

y
; (174)

while for large y they tend to zero in view of the asymptotic
relation (A11).

Similar expressions can be obtained for the total number
of dilatons:
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 N �
2	�2d

3�
��2

1F 1�y� � 2�1�2F 2�y� ��2
2F 3�y��;

(175)

where three more functions are introduced:
 

F 1�y� � erfc�
���
y
p
�

�
4y2 � 12y� 39�

15

y

�

�
e�y

	
���
y
p �4y2 � 14y� 30� � 6f�y�; (176)

 

F 2�y� � erfc�
���
y
p
�

�
�4y2 � 12y� 9�

3

y

�

�
e�y

	
���
y
p �4y2 � 10y� 6� � 2f�y�; (177)

 

F 3�y� � erfc�
���
y
p
�

�
4y2 � 36y� 9�

3

y

�

�
e�y

	
���
y
p �4y2 � 34y� 6� � 6f�y�; (178)

tending to zero at infinity, and

 F 1 �
15

y
; F 2;3 �

3

y
(179)

for small y.
As we have noted, in the ultrarelativistic limit the domi-

nant contribution to the radiation amplitude comes from
the graviton exchange term. Leaving only this contribution
we find for the radiation rate

 P ��� � 8
3	G

2�2�4�5g�y�; (180)

where

 

g�y� � 25f�y� � erfc�
���
y
p
�

�
8

3
y3 � 30y2 � 114y�

169

2

�

�
e�y

���
y
p

	

�
8

3
y2 �

94

3
y� 131

�
: (181)

Similarly, for the dilaton number,

 N ��� �
8d
3�
	G2�2�4�4G�y�; (182)

 

G�y� � erfc�
���
y
p
�

�
�4y2 � 60y� 183�

75

y

�

�
e�y

	
���
y
p �4y2 � 62y� 150� � 38f�y�: (183)

The corresponding numerical curves are shown in Figs. 7
and 8. For small y one has

 P ��� � 200	G3 ��2�4�5 ln
�
���

d

�
; (184)

 N ��� � 200	G3 ��2�4�5�; (185)

where we introduced the dimensionless dilaton coupling
constant. These quantities rapidly grow with the increasing
Lorentz factor of the collision � (recall that � � � cos�
where � is the angle between the strings). Thus, Cerenkov
radiation is greatly enhanced for ultrarelativistic velocities.

D. Two-form radiation

After integration over the momentum q, the string con-
tribution to the two-form radiation amplitude (107) takes
the form

 

I
st

�k� �
4
���
2
p
	3f3

��v sin�

�
E1�cos’� i� sin’� �

E2

�2�2 	�iv��
2 sin�� e�i’�

�
�
�2f�	

���
2
p

2�v sin�
�E1�i sin’� � cos’�

�
E2

�2�2 ��e�i’ � iv� sin�� 2�3�v2sin2� cos’�� � 4
���
2
p
	2f�G�v sin�

�
E1�� cos’� i sin’�

�
E2

�2�2 	i�v sin�� �ei’ � 2 cos’��

�
: (186)

The bulk amplitude (107) will read
 

I
b

�k� �
�
�2f�	

���
2
p

2
� 4

���
2
p
	2f�G�v sin�

�

�

�
E1

��
	�1� 2����v sin� cos’� i


�
E2

�
�2v sin� cos’� i��

�
: (187)

Consider first the Cerenkov threshold v � sin�. In the
above expressions the graviton exchange term in the string

term vanishes, and the bulk term is zero. The remaining
string amplitudes due to the dilaton and the two-form
exchange simplify as follows:

 Ithr�k� �
i	f���
2
p
�!2

E1�8	2f2 � 3�2�2�: (188)

Substituting this into (140) and integrating over the angles,
we obtain the spectral distribution of the two-form radia-
tion on the Cerenkov threshold:
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P thr�
	f2

2�2 �8	
2f2�3�2�2�2

Z 1
��1

d!
!

exp
�
�2

!d
v�

�
; (189)

where � is the infrared cutoff frequency. After integration
over frequencies one finds

 P thr �
4�2	�5f6

�2 Ei
�
1;

2d
v��

�
: (190)

For small impact parameters, d� v��, this expression
can be approximated by

 P thr �
4�2	�5f6

�2 ln
�
v��

2deC

�
; (191)

and for d� v�� one can use

 Ei
�

1;
2d
v��

�
�

2d
v��

exp
�
�

2d
v��

�
: (192)

Now consider the case of the arbitrary Cerenkov angles
in the ultrarelativistic limit. Leaving only the relativistic
string contribution, we obtain
 

I�k� �
fE2

�2�2!2

�
4
���
2
p
	3f2

��v sin�
�i�2�v sin�� ie�i��

�
	��2���

2
p

�
�e�i���v sin�

�v sin�
� i�2�2

�

� 4
���
2
p
	2G�	i�1��2� ���v sin�ei�� � i�2�2

��
:

(193)

Substituting this into (140) we obtain the spectral-angular
distribution in the vicinity of � � 	=2,
 

dP
d!d�

� !
dN
d!d�

�
64	4�2f2

!

�
�2
B�1� �

2�2�2 � 4�4�2��h�2 � �D�2

�1� �2�2�4

� exp
�
�
!d�1� �2�2�

��

�
; (194)

where

 �D �
��2

8	2 ; �B �
f2

�
; �h �

G�
	
: (195)

Integrating over the angles we get

 

dP
d!
�

16	5d
3�

	F4�z��
2
B � F2�z���h�

2 � �D�
2
; (196)

 

dN
d!

�
16	5d2f2

3�2�z
	F4�z��2

B � F2�z���h�2 � �D�2
;

(197)
where
 

F4 � �8z2 � 8z� 6�
e�z������
	z
p

� �8z2 � 12z� 6� 3=z�erfc�
���
z
p
�; (198)

and F2 is given by (165). For small and large frequencies
one has

 F4�z� �
3

z
; F4�z� �

12e�z��������
	z3

p ; (199)

respectively. Finally, integrating over frequencies we find
the total two-form radiation rate and the number of axions:

 P �B� �
16	5�f2

3
��2

Bf4�y� � ��h�
2 � �D�

2f2�y��;

(200)
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 N �B� �
16	5df2

3�
��2

BF 4�y� � ��h�2 � �D�2F 2�y��;

(201)
where
 

f4�y� � f�y� � erfc�
���
y
p
�

�
8

3
y3 � 6y2 � 5y�

7

2

�

�
e�y

���
y
p

	

�
8

3
y2 �

14

3
y� 5

�
; (202)

 

F 4�y� � erfc�
���
y
p
�

�
4y2 � 12y� 3�

3

y

�

�
e�y

	
���
y
p �4y2 � 10y� 6� � 2f�y�: (203)

For small y

 F 4 �
3

y
; f4�y� � 3 ln

1

y
; (204)

while for large y both functions tend to zero.
The result of the calculation of the axion Cerenkov

radiation in the flat space-time [40] is reproduced putting
�D � �h � 0. It reads

 P �B�
0 �

16	5�f6

3�2 f4�y�: (205)

In our case the dominant contribution comes form the
graviton exchange. In the BPS limit one has

 �D � �B; �h �
8

��2 �B; (206)

where �� is the dimensionless dilaton coupling constant.
For large � the leading term is

 P �B� �
210	5�5f6

3 ��4�2 f2�y�: (207)

In the most interesting case of small y, when f2 ’ f4, so
the ratio

 

P �B�

P �B�0

�
64�4

��4 (208)

can be large, e.g. for �� � 1 and � � 5, it is equal to 4�
107.

The dominant term for the number of axions is

 N �
210	5�4f6d

3� ��4�2 F 2�y�: (209)

The numerical curves f2�y�, F 2�y� are shown in Figs. 9
and 10. For small y one has

 P �B� �
210	5�5f6

��4�2 ln
�
���

d

�
; (210)

 N �
210	5�5f6�

��4�2 : (211)

VIII. COSMOLOGICAL ESTIMATES

Cosmic strings are formed as a network of long strings
of the size comparable to the horizon size. Colliding strings
intercommute and form closed loops. At some stage the
scale-invariant string network is formed consisting of long
strings and loops which move freely with relativistic ve-
locities. Evolution of cosmic superstring networks was
recently discussed in [20–24]. In many respects cosmic
superstrings are similar to the gauge theory cosmic strings,
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with some distinctions, however. In particular, for gauge
theory strings the probability of the formation of loops P is
of the order of unity, whereas for F-strings P� 10�3 and
for D-strings P� 10�1. The cosmic superstring network
has a scaling solution, and the characteristic scale is pro-
portional to the square root of the reconnection probability.
A typical separation between two long strings is compa-
rable to the horizon size t (we use the standard cosmologi-
cal units), ��t� ’

����
P
p

t. The results of the numerical
simulation show that the network of long strings reaches
an energy density

 �s �
�

Pt2
: (212)

Let us estimate the energy loss of long strings due to
Cerenkov radiation of dilatons and axions. Consider an
ensemble of randomly oriented straight strings moving
chaotically in space. Let us choose one target string be-
tween them and introduce the Lorentz frame where it is at
rest. Other strings will have different orientations and
velocities, and we can characterize them very roughly as
moving in three orthogonal directions with equal probabil-
ity. Since the dependence of the Cerenkov radiation on the
inclination angle � is smooth, we can use for an estimate
the particular result obtained for parallel strings (� � 0)
introducing an effective fraction � of ‘‘almost’’ parallel
strings and taking into account the effect of the angular
spread. Assuming N to be the number of strings in the
normalization volume V � L3, we have to integrate the
radiation energy released, P , in the collision with the
impact parameter d � x over the plane perpendicular to
the target string with the measure N=L2 � 2	xdx. To esti-
mate the radiation power per unit time we then have to
divide the integrand by the impact parameter. Multiplying
this quantity by the total number of strings N to get the
radiation energy released per unit time within the normal-
ization volume, we obtain for the Cerenkov luminosity

 QC �
Z L

0
P�

N

L2

N
V

2	dx: (213)

For BPS strings we use as P the leading relativistic terms
(180) and (207). Taking into account that the string number
density is related to the energy density (212) via

 

N
V
�

�s
�L

; (214)

and assuming for a rough estimate L��� t, where t is
cosmological time, we obtain

 Q���C ’
16

3
	2G3 ��2�4�7�S1�w�

1

Pt3
; (215)

 Q�B�C ’
211	6�7f6�

3 ��4�2 S2�w�
1

Pt3
; (216)

where

 S1�w��
Z w

0
g�y�dy; S2�w��

Z w

0
f2�y�dy; w�

L

�2�
:

(217)

The exact values of these integrals are given in the
Appendix and shown in Figs. 11 and 12. Note that the
realistic value of � is of the order of unity, so applying our
formulas obtained in the limit �� 1 is only an order of
magnitude estimate.

Now we can calculate the energy density "C of
Cerenkov radiation as a function of time in the radiation
dominated universe. The energy density of massless fields
scales with the Hubble parameter H as H�4, so we have to
solve the equation

 

d"C
dt
� �4H"C �QC; (218)

whereH � 1
2t . Thus we obtain for the energy density of the

Cerenkov dilaton and two-form radiation

 "���C ’
16

3
	2G3 ��2�4�7�S1�w�

ln�t=t0�

Pt2
; (219)

 "�B�C ’
211	6�7f6�

3 ��4�2 S2�w�
ln�t=t0�

Pt2
; (220)

where t0 is the initial time of the long string formation.
Finally, using the approximate formulas (A14) and (A15)
valid in the relativistic case, we find

 "���C ’ 800	2G3 ��2�4�5 ln��
ln�t=t0�

Pt2
; (221)
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 "�B�C ’
212	6f6�5 ln��

��4�2

ln�t=t0�

Pt2
: (222)

Comparing the last expression for axions with the flat-
space result [40], we observe an enhancement due to the
higher power of the Lorentz factor and a bigger numerical
coefficient. This difference is due to the fact that here the
main contribution to the first-order interaction between the
strings comes from gravitational force which is propor-
tional to energy. In view of the previous analysis [40] we
can conclude that Cerenkov radiation from long strings is a
non-negligible effect in the cosmic superstring network.
More detailed analysis will be given elsewhere.

IX. CONCLUSION

In this paper we have studied in detail Cerenkov radia-
tion from moving straight strings interacting with the
dilaton, two-form, and gravity fields. Formation of the
faster-than-light sources in the system of randomly ori-
ented moving straight strings is rather generic. As we have
shown, these sources have a collective nature and arise due
to deformations of the string world sheets caused by their
interactions via massless fields. These deformations propa-
gate with superluminal velocities if the inclination angle is
sufficiently small; for parallel strings the source velocity is
infinite. Radiation wave vectors lie on the Cerenkov cone
in the same way as in the case of Cerenkov radiation of
point charges in dielectric media.

One interesting feature related to dimensionality of a
string compared to a point charge is the absence of gravi-
tational radiation in four space-time dimensions. This is
related to the fact that the space transverse to the straight

string is two dimensional, so the emitted massless fields
must live in 1� 2 dimensional space-time rather than in
four dimensional. As it is well known, gravity in 1� 2
dimensions does not contain free gravitons; this is why one
can expect gravitational radiation from straight strings to
vanish. In higher dimensions this objection does not work,
so Cerenkov gravitational radiation can be expected in
space-time dimensions higher than four. In four dimen-
sions the Cerenkov mechanism works for the dilaton and
the two-form field which is equivalent to a pseudoscalar.

To avoid complications due to the possibility of ‘‘physi-
cal’’ string intersections (leading to the well-studied pro-
cesses of intercommutation and formation of loops), we
consider the ‘‘collision’’ of strings moving in parallel
planes. At each instant of time there exists a point of
minimal separation between the strings, and it is this point
which may propagate with the superluminal velocity.
When interaction between the strings via the dilaton,
two-form, and gravity fields is taken into account, strings
get deformed in the vicinity of this point; these deforma-
tions contribute to an effective radiation source. Another
contribution comes from tensions associated with the first-
order fields which give rise to these deformations. The
string deformations give contributions localized on the
world sheets, while the field stresses give bulk contribu-
tions. Both have the same order of magnitude.

Cerenkov radiation from strings has some peculiar fea-
tures in the highly relativistic region. We have shown that
in this case radiation exhibits strong beaming on the
Cerenkov cone in the direction of the fast string in the
rest frame of the target string. The main radiation fre-
quency is proportional to the inverse impact parameter,
but in the ultrarelativistic case the spectrum is enhanced to
high frequencies proportional to the square of the Lorentz
factor of the collision. It is shown that in this limit gravi-
tational interaction between the strings dominates and
gives the main contribution to the effective sources of the
dilaton and two-form radiation.

Cerenkov’s mechanism can be regarded as an analog of
the bremsstrahlung of point charges in electrodynamics,
which gives the main contribution to radiation in plasma.
In the string case, however, there is another radiation
mechanism due to the existence of the internal string
dynamics: radiation from oscillating loops. This effect is
of the first order in couplings between the string and
massless fields. Cerenkov radiation arises only in the sec-
ond order in these coupling, so presumably it is less
important. But as we have shown here, it has a stronger
dependence on the Lorentz factor of the string collision, so
it must become dominant for highly relativistic strings.
Also, in the cosmic string network it is a pairwise effect
which gives the contribution to the radiation loss propor-
tional to the square of the density of strings. Our rough
cosmological estimates indicate that Cerenkov radiation is
indeed a non-negligible effect in the cosmic string context.
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APPENDIX

Here we collect properties of some special functions
used in the main text.

1. Integral exponential function

The definition:

 Ei �1; z� �
Z 1
z

etdt
t
: (A1)

The series expansion:

 Ei �1; z� � �C� lnz� z� z2=2� z3=18� . . . ; (A2)

where C is the Euler constant, eC � 1:781 072 418.
The asymptotic expansion:

 Ei �1; z� �
e�z

z

�
1�

1

z
�

2

z2 � . . . :
�
: (A3)

2. Probability integral

The definition:

 erf �z� �
2����
	
p

Z z

0
e�t

2
dt: (A4)

The series expansion:

 erf �z� �
2z����
	
p �1� z2=3� z4=10� . . .�: (A5)

The asymptotic expansion:

 erfc �z� � 1� erf�z� �
e�z

2

����
	
p

z

�
1�

1

2z2 �
3

4z2 � . . .
�
:

(A6)

In Sec. VII we used the following indefinite integral:

 

Z
erf�

���
z
p
�
dz
z
� 4

����
z
	

r
2F2

�
1

2
;
1

2
;
3

2
;
3

2
;�z

�
; (A7)

where
 

2F2��1; �2;�1; �2; x� �
X1
k�0

�1k; �2k

�1k; �2k

xk

k!
;

�k � ���� 1� � � � ��� k�; . . .

(A8)

is the generalized hypergeometric function. To obtain an
asymptotic behavior of the latter for z! 1, we use the
following identity:

 

Z z

0
lnw

exp��w���������
	w
p dw � lnzerf�

���
z
p
�

� 4

����
z
	

r
2F2

�
1

2
;
1

2
;
3

2
;
3

2
;�z

�
;

(A9)

which can be easily proved by integrating by parts. Then
taking into account the integral

 

Z 1
0

lnw
exp��w���������

	w
p dw � �C� 2 ln2; (A10)

we find that for z!1

 4

����
z
	

r
2F2

�
1

2
;
1

2
;
3

2
;
3

2
;�z

�
� ln�4zeC�: (A11)

Integration of the functions g�y� defined in (181) and f2�y�
defined in (170) over y can be performed analytically:

 

S1�w��
Z w

0
g�y�dy

� 300

����
w
	

r �
2
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�
�

1

2
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1

2
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1

2
;
3

2
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�
�

1

2
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1

2
;
1

2
;
1

2
;�w

��
�75w�1� ln�4weC��
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�
169

2
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2

3
w4�57w2�10w3�

189

8

�
erfc�

����
w
p
�

�
1

12

e�y
���
y
p

����
	
p �8w3�124w2�750w�567��
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8
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(A12)

 

S2�w� �
Z w

0
f2�y�dy
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����
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r �
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�

1

2
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1

2
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1

2
;
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2
;�w

�

�2 F2

�
�

1

2
;�

1

2
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1

2
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1

2
;�w

��
� 3w�1� ln�4weC��
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1

24
�60w� 16w4� 72w2� 48w3� 9�erfc�
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p
�

�
1

24

e�y
���
y
p

����
	
p �16w3� 40w2� 84w� 18� �

3

8
:

(A13)

For small arguments the leading terms are

 S1�w� ’ �75w lnw; (A14)

 S2�w� ’ �3w lnw: (A15)
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