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We study the Casimir piston for massless scalar fields obeying Dirichlet boundary conditions in a three-
dimensional cavity with sides of arbitrary lengths a, b, and c where a is the plate separation. We obtain an
exact expression for the Casimir force on the piston valid for any values of the three lengths. As in the
electromagnetic case with perfect-conductor conditions, we find that the Casimir force is negative
(attractive) regardless of the values of a, b, and c. Though cases exist where the interior contributes a
positive (repulsive) Casimir force, the total Casimir force on the piston is negative when the exterior
contribution is included. We also obtain an alternative expression for the Casimir force that is useful
computationally when the plate separation a is large.
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I. INTRODUCTION

Two years ago, in an interesting paper [1], the Casimir
piston was studied for a two-dimensional scalar field obey-
ing Dirichlet boundary conditions on a rectangular region.
Among other things, it was shown that the Casimir force on
the piston is always attractive (negative) regardless of the
ratio of the two sides. In this paper, we study the three-
dimensional Casimir piston for massless scalar fields. A
Casimir piston in three dimensions is depicted in Fig. 1. We
choose the base to be a b� c rectangular region and a to be
the plate separation (the distance from the base to the
piston). The piston divides the volume into two regions.
We refer to region I as the interior and region II as the
exterior. Both regions contribute to the Casimir force on
the piston. The Casimir piston therefore modifies some
previous standard Casimir results [2] where the effects of
the exterior region are not included.

The Casimir piston for the electromagnetic field with
perfect-conductor conditions in a three-dimensional rect-
angular cavity (box) was studied recently [3] and it was
shown that the Casimir force on the piston is again attrac-
tive (in contrast to results without exterior region where the
force could be positive). The piston for perfect-conductor
conditions including the effects of temperature was studied
further in [4–6] where among other things, the long and
short distance behavior of the free energy was investigated.
A theorem was obtained in [7], where it was shown that the
Casimir force between two bodies related by reflection is
always attractive, independent of the exact form of the
bodies or dielectric properties. This theorem was then
generalized further in [8] where it was shown that reflec-
tion positivity implies that the force between any mirror
pair of charge-conjugate probes of the quantum vacuum is
attractive. Attraction does not occur in all Casimir piston
scenarios. In a recent paper [9], the Casimir piston for a
weakly reflecting dielectric was considered and it was

shown that though attraction occurred for small plate sepa-
ration, this could switch to repulsion for sufficiently large
separation. Moreover, for thick enough material, the force
remained attractive for all plate separations in agreement
with the results in [3]. Two recent preprints [10,11] also
discuss scenarios where repulsive Casimir forces in pistons
can be achieved.

For the case of a massless scalar field in a three-
dimensional cavity, approximate expressions for the
Casimir force were obtained valid for small plate separa-
tion [3]. In this paper, we consider the general case of
arbitrary lengths. We present exact expressions for the
Casimir force on a piston due to a massless scalar field
obeying Dirichlet boundary conditions in a three-
dimensional box with sides of arbitrary lengths a, b, and
c. We find that the Casimir force on the piston is negative
and runs from �1 (in the limit a! 0) to 0 (in the limit
a! 1). For small plate separation a, we recover the
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FIG. 1 (color online). Casimir piston in three dimensions.*Electronic address: aedery@ubishops.ca
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results found in [3]. We also obtain an exact alternative
expression for the Casimir force that is useful computa-
tionally when the plate separation is large. We focus our
attention on Dirichlet instead of Neumann boundary con-
ditions because it is the more interesting case of the two. It
is clear that Neumann boundary conditions will yield a
negative Casimir force since the contribution from both the
interior and exterior are negative. It is not a priori obvious
that in the Dirichlet case the Casimir force will be negative
because there exists values of the ratios a=c and b=cwhere
the interior contributes a positive (repulsive) Casimir force.
It is therefore interesting to see that in such cases the
exterior contributes a negative force of larger magnitude
with the important consequence that the total Casimir force
is negative. It is worth mentioning that the study of mass-
less scalar fields is not only of theoretical interest but has
direct relevance to physical systems such as Bose-Einstein
condensates [12–14].

The Casimir energy can be viewed as the energy with
boundary conditions (a sum over discrete modes) minus
the energy without boundary conditions (a volume integral
over continuous modes). The sum over the discrete modes
can typically be decomposed into a volume divergent term
(the continuum part that can be subtracted), a surface
divergent term, and a finite part. In previous setups without
region II, finite results were obtained by throwing out the
surface divergent term. Though the finite results agreed
with the zeta function regularization technique, there is
nothing that can physically justify throwing out the surface
term. It yields a cutoff dependent Casimir force that cannot
be removed via a renormalization of the physical parame-
ters of the theory [15–17]. The agreement between the zeta
function regularization and cutoff technique (with surface
term thrown out) occurs because the zeta function tech-
nique in effect renormalizes the surface term to zero. The
Casimir piston resolves this issue satisfactorily by having
the exterior and interior contributions to the surface diver-
gence cancel. This has been demonstrated in Refs. [1,3],
and we assume this cancellation to hold here. One can
simply calculate the Casimir force F1 and F2 on the piston
due to region I and II, respectively, without including the
cutoff dependent terms. The total Casimir force on the
piston can then be obtained by adding F1 and F2. One
must just keep in mind that F1 and F2 actually have cutoff
dependent terms but that they cancel when the two are
added.

There are two positive aspects to the Casimir piston: the
exterior is now included in the calculation of the Casimir
force (we add F2 to F1) and the surface divergence is
handled via a cancellation procedure instead of simply
throwing it out.

We work in units where @ � c � 1 (c is the speed of
light). Note that from now on, when the variable c appears
in the text, it always refers to one of the lengths of the base
(see Fig. 1).

II. CASIMIR PISTON IN THREE DIMENSIONS:
EXACT RESULTS

The Casimir energy ED for massless scalar fields in a
d-dimensional box of arbitrary lengths L1; . . . ; Ld obeying
Dirichlet boundary conditions can be conveniently ex-
pressed as an analytical part—composed of Riemann
zeta and gamma functions—plus a sum of over Bessel
functions (Eq. (A12); see Appendix A and Refs. [18,19]):

 ED �
�

2d�1

Xd�1

j�0

��1�d�j�d�1
k1;...;kj

�Lk1
. . .Lkj

�Ld�
j�1

�

�
�
�
j� 2

2

�
���j�4�=2��j� 2� � Rj

��
; (2.1)

where Rj represents the sum over modified Bessel func-
tions K�:

 Rj �
X1
n�1

X1
li��1
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0 2n�j�1�=2

�
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K�j�1�=2

�
2�n

����������������������������������������������������
�‘1

Lk1
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�2 � � � � � �‘j

Lkj
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�2

r �

��‘1
Lk1

Ld
�2 � � � � � �‘j

Lkj
Ld
�2	�j�1�=4

:

(2.2)

The prime in the sum for Rj means that the case where all
‘’s are simultaneously zero is excluded. Note that Rj is a
function of the ratios of the lengths. In (2.1), there is an
implicit summation over the integers ki. The symbol
�d�1
k1;...;kj

is defined as

 �d�1
k1;...;kj

�

�
1 if k1 < k2 < . . .< kj; 1 
 kj 
 d� 1
0 otherwise:

(2.3)

The above symbol apparently does not have a name and we
refer to it as the ordered symbol in Appendix A. The
ordered symbol ensures that the implicit sum over the ki
in (2.1) is over all distinct sets fk1; . . . ; kjg, where the ki are
integers that can run from 1 to d� 1 inclusively under the
constraint that k1 < k2 < � � �< kj. The superscript d� 1
specifies the maximum value of kj. For example, if j � 2
and d � 4 then �d�1

k1;...;kj
� �3

k1;k2
and the nonzero terms are

�1;2, �1;3, and �2;3. This means the summation is over
fk1; k2g � �1; 2�, (1, 3), and (2, 3). Note that the implicit
summation over ki is also performed in Rj since Rj �
Rj�Lk1

=Ld; . . . ; Lkj=Ld�. For the special case of j � 0, Rj
is defined to be zero and �d�1

k1;...;kj
and Lkj are defined to be

identically one so that �d�1
k1;...;kj

Lk1
...Lkj

�Ld�j�1 � 1=Ld for j � 0.

From (2.1) we can readily obtain the Dirichlet Casimir
energy in three dimensions (d � 3):
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 ED � �
�2

1440

L1L2

L3
3

�
��3�

32�L2
3

�L1 � L2� �
�

96L3
� R�L1; L2; L3�; (2.4)

where R is a function of L1, L2, and L3 and represents the sums over Rj’s i.e.
 

R�L1; L2; L3� �
�

16L2
3

�L1R1�L1=L3� � L2R1�L2=L3�	

�
�L1L2

16L3
3

R2�L1=L3; L2=L3�; (2.5)

where R1�L1=L3� means that R1 is a function of L1=L3. The functions R1 and R2 are sums over modified Bessel functions
given by (2.2) i.e.
 

R1�L1=L3� �
X1
n�1

X1
‘�1

4n
�‘

L3

L1
K1

�
2�n‘

L1

L3

�
;

R2�L1=L3; L2=L3� �
X1
n�1

X1
‘1;‘2��1

0
2n3=2K3=2

�
2�n

������������������������������������
�‘1

L1

L3
�2 � �‘2

L2

L3
�2

q �

���‘1
L1

L3
�2 � �‘2

L2

L3
�2	3=4

:

(2.6)

The Casimir energy does not depend on which sides are
labeled L1, L2, and L3. Expression (2.4) for the Casimir
energy is therefore invariant under permutations of the
labels L1, L2, and L3 and we are free to label the three
sides as we wish. For the Casimir piston depicted in Fig. 1,
there are two regions to consider. In region I, the three sides
are a, b, and c and we label them L1 � c, L2 � b, and
L3 � a. In region II, the three sides are s� a, c, and b and
we label them L1 � s� a, L2 � c, and L3 � b. The
Dirichlet Casimir energy in region I and II is obtained by

substituting the corresponding lengths in (2.4):
 

ED1 � �
�2

1440

bc

a3 �
��3�

32�a2 �b� c� �
�

96a
� R�c; b; a�;

ED2 � �
�2

1440

�s� a�c

b3 �
��3�

32�b2 �s� a� c�

�
�

96b
� R�s� a; c; b�: (2.7)

The function R�c; b; a� is obtained from (2.5) and (2.6):

 R�c; b; a� �
�

16a2 �cR1�c=a� � bR1�b=a�	 �
�cb

16a3 R2�c=a; b=a�

�
1

4a

X1
n�1

X1
‘�1

n
‘
�K1�2�n‘c=a� � K1�2�n‘b=a�	 �

bc

8a3

X1
n�1

X1
‘1;‘2��1

0
n3=2K3=2

�
2�n

����������������������������
�‘1c
a �

2 � �‘2b
a �

2
q �

��‘1c
a �

2 � �‘2b
a �

2	3=4
; (2.8)

where the prime in the sum means that the case ‘1 � ‘2 � 0 is excluded from the sum.1 The Casimir force on the piston is
obtained by taking the derivative with respect to the plate separation a and then taking the limit s! 1:

 F � �
@
@a
�ED1 � ED2� � �

�2bc

480a4 �
��3��b� c�

16�a3 �
�

96a2 �
�2c

1440b3 �
��3�

32�b2 � R
0�c; b; a� � lim

s!1
R0�s� a; c; b�:

(2.9)

We now evaluate the last two terms in (2.9). R0�c; b; a� � @
@a R�c; b; a� can readily be obtained by taking the derivative of

(2.8) with respect to a:
 

R0�c; b; a� �
1

4a

X1
n�1

X1
‘�1

n
‘

�
K01�2�n‘c=a� � K

0
1�2�n‘b=a� �

1

a
K1�2�n‘c=a� �

1

a
K1�2�n‘b=a�

�

�
bc

8a3=2

X1
n�1

X1
‘1;‘2��1

0

8><
>:

3n3=2K3=2

�
2�n
a

�������������������������
‘2

1c
2 � ‘2

2b
2

q �

2a�‘2
1c

2 � ‘2
2b

2�3=4
�

n3=2K03=2

�
2�n
a

�������������������������
‘2

1c
2 � ‘2

2b
2

q �

�‘2
1c

2 � ‘2
2b

2�3=4

9>=
>;; (2.10)

1Only the case when ‘1 and ‘2 are simultaneously zero is to be excluded. In particular, one can have ‘1 � 0 when ‘2 � 0 and vice
versa.
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where a prime on the Bessel functions denotes derivative with respect to the plate separation a. The last term in (2.9) can be
written as
 

lim
s!1

R0�s� a; c; b� � lim
s!1

@
@a
R�s� a; c; b� � � lim

u!1

@
@u
R�u; c; b�

� � lim
u!1

@
@u

8><
>:

1

4b

X1
n�1

X1
‘�1

n
‘
�K1�2�n‘u=b� � K1�2�n‘c=b�	

�
uc

8b3

X1
n�1

X1
‘1;‘2��1

0
n3=2K3=2

�
2�n

����������������������������
�‘1u
b �

2 � �‘2c
b �

2
q �

��‘1u
b �

2 � �‘2c
b �

2	3=4

9>=
>;; (2.11)

where the substitution u � s� a was made and R�u; c; b�
was obtained from (2.8) by substituting the appropriate
lengths. The modified Bessel functions and their deriva-
tives decrease exponentially fast so that the only term in
(2.11) that survives is the case ‘1 � 0 in the double sum.
With ‘1 � 0, the remaining sum over ‘2 does not include
zero and can be replaced by twice the sum from 1 to 1.
One therefore obtains

 lim
s!1

R0�s� a; c; b� �
c

4b3

X1
n�1

X1
‘�1

�
nb
‘c

�
3=2
K3=2�2�n‘c=b�:

(2.12)

After substituting (2.12) into (2.9), the Casimir force on
the piston is
 

F � �
�2bc

480a4 �
��3��b� c�

16�a3 �
�

96a2 � R
0�c; b; a�

�
�2c

1440b3 �
��3�

32�b2

�
c

4b3

X1
n�1

X1
‘�1

�
nb
‘c

�
3=2
K3=2�2�n‘c=b�: (2.13)

Equation (2.13) is an exact expression for the Casimir force
on the piston for Dirichlet boundary conditions. No ap-
proximations have been made. With R0�c; b; a� given by
(2.10), one can calculate exactly the force for any values of
a, b, and c. Note that the second and third rows in (2.13)
have no dependence on a and corresponds to the contribu-
tion from region II. If we set b � c and take the small a
limit (a� b), we recover the expression for the Casimir
force obtained in [3]. In this limit R0�c; b; a� is exponen-
tially suppressed (exactly zero in the limit a! 0) and with
b � c, the second row in (2.13) yields 0:004 831 546=c2 in
agreement with Dirichlet results in [3].

When a is sufficiently large, R0�c; b; a� dominates over
the other a-dependent terms in (2.13). In fact, in the limit
a! 1, the other a-dependent terms vanish while
R0�c; b; a� reduces to a finite function of b and c.
Therefore, a full analysis of the Casimir force on the
piston—one that goes beyond small values of a—requires
one to have the exact expression (2.10) for R0�c; b; a�.

In (2.13), the first and second row are the contributions
from region I and II, respectively:
 

F1 � �
�2bc

480a4 �
��3��b� c�

16�a3 �
�

96a2 � R
0�c; b; a� and

F2 � �
�2

1440

c

b3 �
��3�

32�b2

�
c

4b3

X1
n�1

X1
‘�1

�
nb
‘c

�
3=2
K3=2�2�n‘c=b�: (2.14)

To compute F1 and F2 we specify the two ratios a=c and
b=c and express results in units of 1=c2. Let us look at the
case of the cube: a=c � 1 and b=c � 1. Using (2.10), we
obtain R0�c; b; a� � �0:000 214 214. The last term in
F2—the sum over the Bessel function—yields
�0:000 271 643. The remaining analytical terms in F1

and F2 can easily be evaluated. F1 and F2 for the case of
the cube is given by

 F1cube
� �:005 458 275� 0:000 214 214

� �0:005 244 061;

F2cube
� 0:005 103 189� 0:000 271 643 � 0:004 831 546:

(2.15)

We see that the Casimir force from region I is attractive and
the force from region II is repulsive. Clearly, region II
weakens significantly the total Casimir force. However,
F2 is not large enough to reverse the sign and the
Casimir force remains attractive:

 Fcube � F1 � F2 � �0:000 412 515: (2.16)

The force F1 can actually be positive (repulsive) [20].
For example, if a=c � 0:1 and b=c � 0:1 then F1 �
�3:805 530 76. However, the force due to the second
region is then negative and larger in magnitude: F2 �
�5:658 183 84. Adding the contribution from region II
therefore causes a reversal of sign to take place. Though
F1 is positive, the total Casimir force, F � F1 � F2, is
negative and equal to �1:852 653 08.

The expression for the Casimir force on the piston,
Eq. (2.13), is valid for any positive values of a, b, and c
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but is most useful computationally when the plate separa-
tion a is the smallest of the three lengths. The ratios b=a
and c=a are then greater than or equal to one (we are also
free to label the sides of the base such that c  b so that
c=b is also greater than or equal to one). The sums over the
Bessel functions and their derivatives in (2.10) then con-

verge exponentially fast yielding accurate and quick re-
sults. In Appendix B we derive an alternative expression
Falt for the Casimir force on the piston that is useful
computationally when the plate separation a is not the
smallest of the three lengths. The alternative expression
is given by (B7):

 Falt � �
1

4b

X1
n�1

X1
‘�1

n
‘
K01�2�n‘a=b� �

@
@a

2
64 ac

4b3

X1
n�1

X1
‘1�1

X1
‘2��1

n3=2K3=2

�
2�n

����������������������������
�‘1a
b �

2 � �‘2c
b �

2
q �

��‘1a
b �

2 � �‘2c
b �

2	3=4

3
75; (2.17)

where the prime above the modified Bessel function
K1 implies partial derivative with respect to a:
K01�2�n‘a=b� �

@
@a K1�2�n‘a=b�. As before, we are free

to label the base such that c  b. If the plate separation a is
not the smallest length, it follows that a  b and the above
sums over Bessel functions and their derivatives converge
exponentially fast. Both expressions, (2.13) and (2.17),
yield the same value for the Casimir force. However,
computationally, expression (2.13) is better to use if a is
the smallest length and the alternative expression (2.17) is
better to use otherwise.

For a given value of b and c, the Casimir force F on the
piston ranges from �1 to zero corresponding to the two
extreme limits of the plate separation a i.e.

 lim
a!0

F � �1 and lim
a!1

F � 0: (2.18)

The first limit in (2.18) follows readily if one uses expres-
sion (2.13) for the Casimir force. In the limit a! 0, the
�1=a4 term dominates and goes to �1 (note that
lima!0R0�c; b; a� � 0). The second limit in (2.18) follows
readily if one uses the alternative expression Falt given by
(2.17). In the limit a! 1, Falt is clearly zero since the
Bessel functions and their derivatives decrease exponen-

tially fast to zero as already mentioned at the end of
Appendix B. One can also understand this latter result
intuitively: as a! 1, region I becomes equivalent to
region II and the forces from each region balance each
other out i.e. lima!1F1 � �F2.

A plot of the Casimir force F versus a=c is shown in
Fig. 2 for the case b=c � 1 (the force is in units of 1=c2).
The Casimir force is negative, has a large magnitude at
small values of a=c, and decreases rapidly in magnitude
towards zero as a=c increases in agreement with the two
limits given by (2.18). One obtains a similar plot for any
value of b=c. A 3D plot of F versus a=c and b=c is shown
in Fig. 3. The Casimir force is negative throughout and a
slice taken at any value of b=c yields a similar profile to the
2D plot in Fig. 2 with the magnitude of the force shifting to
greater values as b=c increases. For any given slice, the
Casimir force lies between the two limits given by (2.18).

 

FIG. 2. Casimir force F versus a=c for the case b=c � 1 where
a is the plate separation and b and c are the sides of the base. The
force is in units of 1=c2. The force is large and negative at small
values of a=c and remains negative with its magnitude decreas-
ing quickly to zero as a=c increases. One obtains a similar plot
for any value of b=c (see the 3D plot Fig. 3).

 

FIG. 3 (color online). 3D plot of Casimir force F versus a=c
and b=c. The force is in units of 1=c2. For a given b=c, the
profile is the same as in the 2D plot: the force is large and
negative at small values of a=c and remains negative with its
magnitude decreasing quickly to zero as a=c increases. The
value of b=c shifts the magnitude of the force towards larger
values as it increases.
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APPENDIX A: EXPLICIT EXPRESSION FOR
DIRICHLET CASIMIR ENERGY FOR A
d-DIMENSIONAL BOX WITH SIDES OF

ARBITRARY LENGTHS

In this appendix, we derive the explicit formula (2.1) for
the Casimir energy of massless scalar fields confined to a
d-dimensional box of arbitrary lengths for Dirichlet bound-
ary conditions. We begin by stating explicit formulas for
the d-dimensional Casimir energy obeying periodic bound-
ary conditions. The second step is to express the Dirichlet
energy as a sum over the periodic energy [18,19].2 The
third step is to perform explicitly this sum to obtain the
compact expression (A12) for the Dirichlet energy.

The Casimir energy for massless scalar fields in a
d-dimensional box of arbitrary lengths L1; . . . ; Ld and
periodic boundary conditions can be explicitly expressed
as an analytical part—composed of Riemann zeta and
gamma functions—plus a sum of over Bessel functions
[18]:
 

EpL1 ;...;Ld
�d� � ��

Xd�1

j�0

L1 . . .Lj
�Lj�1�

j�1

�

�
�
�
j� 2

2

�
���j�4�=2��j� 2� � Rj

�

�
��
6L1
�
��3�
2�

L1

L2
2

�
�2

90

L1L2

L3
3

� � � �

� R1
�L1

L2
2

� R2
�L1L2

L3
3

� � � � ; (A1)

where Rj represents the sum over modified Bessel func-
tions K�:

 Rj �
X1
n�1

X1
li��1
i�1;...;j

0 2n�j�1�=2

�

�

K�j�1�=2

�
2�n

�������������������������������������������������������
�‘1

L1

Lj�1
�2 � � � � � �‘j

Lj
Lj�1
�2

r �

��‘1
L1

Lj�1
�2 � � � � � �‘j

Lj
Lj�1
�2	�j�1�=4

:

(A2)

The prime in the above sum means that the case where all
‘’s are zero is excluded. Note that for j � 0 one sets Rj to

zero and Lj identically to one so that L1...Lj
�Lj�1�

j�1 is equal to

1=L1 for j � 0. Note also that Rj is a function of ratios of

lengths i.e. Rj � Rj�L1=Lj�1; . . . ; Lj=Lj�1�. The notation
EpL1 ;...;Ld

�d� is a compact way of saying that the Casimir

energy Ep is a function of the dimension d and the lengths
L1; . . . ; Ld.

Our goal is to obtain a similar explicit expression for the
case of Dirichlet boundary conditions. We begin by noting
that the Dirichlet case can be expressed as a sum over the
periodic Casimir energies Ep (see [18,19]):

 ED �
1

2d�1

Xd
m�1

��1�d�m
X

fk1 ;...;kmg
k1<k2<���<km

km
d

EpLk1
;...;Lkm
�m�: (A3)

The sum over the ki’s is over all sets fk1; . . . ; kmg, where
the ki are integers that can run from 1 to a maximum value
of d under the constraint that k1 < k2 < � � �< km. To
specify that d is the maximum value we write km 
 d
under the sum in (A3). EpLk1

;...;Lkm
�m� is the periodic energy

(A1) replacing d by m and L1 by Lk1
, L2 by Lk2

, etc. Note
that the replacement L1 by Lk1

, etc. must also be performed
inside Rj given by (A2). The above notation for the sum
over ki is cumbersome. It is convenient to introduce a
symbol �dk1;...;km

defined by

 �dk1;...;km
�

�
1 if k1 < k2 < . . .< km; 1 
 ki 
 d
0 otherwise:

The superscript d specifies the dimension which is the
maximum value of km. The above defined symbol appar-
ently does not have a name and for simplicity we shall refer
to it as the ordered symbol. Equation (A3) can now be
conveniently expressed with the ordered symbol:

 ED �
1

2d�1

Xd
m�1

��1�d�m�dk1;...;km
EpLk1

;...;Lkm
�m�; (A5)

where implicit summation over the ki’s is assumed. After
substituting (A1) into (A5) one obtains

 ED �
��

2d�1

Xd
m�1

��1�d�m�dk1;...;km

�Xm�1

j�0

Lk1
. . .Lkj

�Lkj�1
�j�1

�

�
�
�
j� 2

2

�
���j�4�=2��j� 2� � Rj�

�
; (A6)

where Rj is the function (A2) with L1 replaced by Lk1
, L2

by Lk2
, etc. For simplicity we define

 fjk1 ;...;kj�1
�
Lk1

. . .Lkj
�Lkj�1

�j�1

�
�
�
j� 2

2

�
���j�4�=2��j� 2� � Rj

�

(A7)

and rewrite (A6) as

2[18] uses a multidimensional cutoff technique and [19] uses
the Epstein zeta function [21] technique. This technique has been
developed extensively over the years [19–38] and there are some
excellent books on the subject [39–41].
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 ED �
��

2d�1

Xd
m�1

Xm�1

j�0

��1�d�m�dk1;...;km
fjk1 ;...;kj�1

�
�

2d�1

Xd�1

j�0

Xd
m�j�1

��1�d�m�1�dk1;::;km
fjk1 ;...;kj�1

; (A8)

where we have rewritten the limits on each sum. We can
decompose �dk1;...;km

into a sum of two terms: �d�1
k1;...;km�1;d

�

�d�1
k1;...;km

. The first term, �d�1
k1;...;km�1;d

, means that km is set to

its maximum value of d and the sum is now over the
remaining ki’s with km�1 having a maximum possible
value of d� 1. With km � d in the first term, the maxi-
mum possible value of km in the second term is d� 1
(hence the superscript d� 1 in the second term). Note
that for the special case m � d, the above decomposition
yields only one term not two terms i.e. �dk1;...;kd

�

�d�1
k1;...;kd�1;d

� 0 since kd can only be equal to d.
With this decomposition the sum over m becomes

 Xd
m�j�1

��1�d�m�1�dk1;...;km
�

Xd
m�j�1

��1�d�m�1��d�1
k1;...;km�1;d

� �d�1
k1;...;km

	

� ��1�d�j��d�1
k1;...;kj;d

� ��d�1
k1;...;kj�1

� �d�1
k1;...;kj�1;d

� � ��d�1
k1;...;kj�2

� �d�1
k1;...;kj�2;d

�

� . . . ��1�d�j��d�1
k1;...;kd�1

� �d�1
k1;...;kd�1;d

�	: (A9)

The two terms inside each pair of round brackets in (A9)
have opposite signs and cancel each other3 so that the sum
over m reduces to only the first term

 

Xd
m�j�1

��1�d�m�1�dk1;...;km
� ��1�d�j�d�1

k1;...;kj;d
: (A10)

The Dirichlet Casimir energy is obtained by substituting
(A10) in (A8):

 ED �
�

2d�1

Xd�1

j�0

��1�d�j�d�1
k1;...;kj;d

fjk1 ;...;kj�1

�
�

2d�1

Xd�1

j�0

��1�d�j�d�1
k1;...;kj

fjk1 ;...;kj;d
: (A11)

The function fjk1 ;...;kj ;d
is obtained by setting kj�1 equal to d

in (A7). We finally obtain our explicit expression for the
Dirichlet Casimir energy

 ED �
�

2d�1

Xd�1

j�0

��1�d�j�d�1
k1;...;kj

�Lk1
. . .Lkj

�Ld�
j�1

�

�
�
�
j� 2

2

�
���j�4�=2��j� 2� � Rj�

�
; (A12)

where Rj is given by (A2) with L1 ! Lk1
, Lj�1 ! Lkj�1

�
Ld i.e.

 Rj �
X1
n�1

X1
li��1
i�1;...;j

0 2n�j�1�=2

�

�

K�j�1�=2

�
2�n

����������������������������������������������������
�‘1

Lk1

Ld
�2 � � � � � �‘j

Lkj
Ld
�2

r �

��‘1
Lk1

Ld
�2 � � � � � �‘j

Lkj
Ld
�2	�j�1�=4

:

(A13)

For the case j � 0, Rj is zero and �d�1
k1;...;kj

and Lkj are
defined as unity.

APPENDIX B: ALTERNATIVE EXPRESSION FOR
CASIMIR FORCE ON THE PISTON

One can derive an alternative expression for the Casimir
force F on the piston by labeling the lengths L1, L2, and L3

differently. We are free to label the lengths in any way we
want since the Casimir energy is invariant under permuta-
tions of L1, L2, and L3. In region I, the three lengths are a,
b, and c and we label them now L1 � a, L2 � c, and L3 �
b. In region II, the three lengths are s� a, b, and c and we
label them now L1 � s� a, L2 � c, and L3 � b. The
Dirichlet Casimir energy in region I and II is then obtained
via (2.4)

 

ED1 � �
�2

1440

ac

b3 �
��3�

32�b2 �a� c� �
�

96b
� R�a; c; b�;

ED2 � �
�2

1440

�s� a�c

b3 �
��3�

32�b2 �s� a� c�

�
�

96b
� R�s� a; c; b�; (B1)

where R�a; c; b� and R�s� a; c; b� are defined via (2.5) and
(2.6). The Casimir force F1 due to region I and F2 due to
region II (with s! 1) are

3In the first pair of round brackets �d�1
k1 ;...;kj�1

cancels with
��d�1

k1 ;...;kj�1 ;d
. The fact that kj�2 is equal to d in the latter term

is irrelevant since the summation over fjk1 ;...;kj�1
in (A8) stops at

kj�1 for a given j. Therefore �d�1
k1;...;kj�1;d

is equivalent to �d�1
k1 ;...;kj�1

.
The same logic applies to the terms inside the other round
brackets.
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 F1 � �
@
@a
ED1 �

�2

1440

c

b3 �
��3�

32�b2 � R
0�a; c; b�;

F2 � lim
s!1
�

@
@a
ED2

� �
�2

1440

c

b3 �
��3�

32�b2 � lim
s!1

R0�s� a; c; b�:

(B2)

The total Casimir force F � F1 � F2 on the piston is then
simply

 F � �R0�a; c; b� � lim
s!1

R0�s� a; c; b�; (B3)

where the prime denotes derivative with respect to the plate
separation a. Note that the analytical terms—the Riemann
zeta and gamma terms—have canceled. This is also what
occurs in the two-dimensional Casimir piston (see [1]).
The second term in (B3) has already been obtained and is
given by (2.12). The function R�a; c; b� can be obtained
from the function R�c; b; a� given by (2.8) by replacing c
with a, b, with c and a with b i.e.

 R�a; c; b� �
1

4b

X1
n�1

X1
‘�1

n
‘
�K1�2�n‘a=b� � K1�2�n‘c=b�	 �

ac

8b3

X1
n�1

X1
‘1;‘2��1

0
n3=2K3=2

�
2�n

����������������������������
�‘1a
b �

2 � �‘2c
b �

2
q �

��‘1a
b �

2 � �‘2c
b �

2	3=4
: (B4)

The derivative of R�a; c; b� with respect to the plate separation a is

 R0�a; c; b� �
1

4b

X1
n�1

X1
‘�1

n
‘
K01�2�n‘a=b� �

@
@a

2
664 ac8b3

X1
n�1

X1
‘1;‘2��1

0
n3=2K3=2

�
2�n

����������������������������
�‘1a
b �

2 � �‘2c
b �

2
q �

��‘1a
b �

2 � �‘2c
b �

2	3=4

3
775: (B5)

With R0�a; c; b� given by (B5) and lims!1R
0�s� a; c; b� given by (2.12), the Casimir force (B3) yields

 

F � �
1

4b

X1
n�1

X1
‘�1

n
‘
K01�2�n‘a=b� �

@
@a

2
664 ac8b3

X1
n�1

X1
‘1;‘2��1

0
n3=2K3=2

�
2�n

����������������������������
�‘1a
b �

2 � �‘2c
b �

2
q �

��‘1a
b �

2 � �‘2c
b �

2	3=4

3
775

�
c

4b3

X1
n�1

X1
‘2�1

n3=2K3=2�2�n‘2c=b�

�‘2c
b �

3=2
: (B6)

The above expression has three terms and it can be simplified by noticing that the ‘1 � 0 case in the second term cancels
out with the last term. The Casimir force on the piston reduces to the following final expression:

 Falt � �
1

4b

X1
n�1

X1
‘�1

n
‘
K01�2�n‘a=b� �

@
@a

2
664 ac4b3

X1
n�1

X1
‘1�1

X1
‘2��1

n3=2K3=2

�
2�n

����������������������������
�‘1a
b �

2 � �‘2c
b �

2
q �

��‘1a
b �

2 � �‘2c
b �

2	3=4

3
775: (B7)

The above is our alternative expression for the Casimir
force on the piston. It is valid for any positive values of a,
b, and c but it is especially useful computationally when a
is not the smallest of the three lengths. We are free to label
the base such that c  b. If a is not the smallest length,
then the ratios a=b and c=b are both greater than or equal to
one. This ensures that the sums over the Bessel functions

and their derivatives in (B7) will converge exponentially
fast making computations easy and accurate. Note that the
sum over ‘1 and the sum over ‘ in (B7) do not include zero.
Therefore as a increases the Bessel functions and their
derivatives will always decrease exponentially and reach
zero in the limit a! 1. The Casimir force on the piston is
therefore zero in the limit a! 1.
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