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We investigate the properties of multiparticle states in deformed special relativity (DSR). Starting from
the Lagrangian formalism with an energy dependent metric, the conserved Noether current can be derived
which is additive in the usual way. The integrated Noether current had previously been discarded as a
conserved quantity, because it was correctly realized that it does no longer obey the DSR transformations.
We identify the reason for this mismatch in the fact that DSR depends only on the extensive quantity of
total four momentum instead of the energy-momentum densities as would be appropriate for a field theory.
We argue that the reason for the failure of DSR to reproduce the standard transformation behavior in the
well established limits is due to the missing sensitivity to the volume inside which energy is accumulated.
We show that the soccer-ball problem is absent if one formulates DSR instead for the field densities. As a
consequence, estimates for predicted effects have to be corrected by many orders of magnitude. Further,
we derive that the modified quantum field theory implies a locality bound.
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I. INTRODUCTION

The phenomenology of quantum gravity has received
increased attention during the last years. In the absence of a
testable theory quantum gravity, predictions based on ef-
fective models have been studied which use only some few
well motivated assumptions. One such assumption is the
presence of a regulator in the ultraviolet, or the existence of
a maximal energy scale, respectively. The requirement that
Lorentz transformations in momentum space have this
scale as a second invariant leads to a class of deformations
of special relativity (DSR). As one of the most general
expectations arising from a theory of quantum gravity,
these modified Lorentz transformations have been studied
extensively [1–14].

However, despite the fact that it is possible to use kine-
matic arguments to predict threshold corrections, a fully
consistent quantum field theory with DSR is still not
available. Though there are notable attempts [15–19],
one has faced serious conceptual problems in the formu-
lation of a field theory, such as the proper definition of
conserved quantities in interactions, and the transformation
of multiparticle states, also known as the soccer-ball
problem.

In this paper, we argue that the reason for this mismatch
lies in the investigation of extensive quantities like total
energy and momentum, rather then intensive quantities like
energy- and momentum densities which would be appro-
priate for a field theory. Originally, DSR was formulated
[1,2] as a (classical) theory for a point particle, and it has
been shown [20,21] that DSR can be understood as a
deformation of the momentum space that belongs to the
point particle. However, DSR—through the very introduc-
tion of a minimal length—implies a generalized uncer-
tainty principle [22–26], which forbids it to localize a

particle to a point. Therefore, already this formulation
must be interpreted as a theory for an energy distribution
with maximally possible localization, and the momentum
space properties for space-time points inside this space-
time volume.

If one wants to construct a field theory that consistently
incorporates DSR, the transformation behavior for a clas-
sical particle with four momentum p can not independently
be transferred to each of the single field’s modes, since
superposition of these modes implies that the properties at
a point in space-time—and therefore the momentum space
at this point—depend not only on the single mode but on
the energy density of all the present excitations.

Once one realizes that the quantity to be bounded by the
Planck scale should not be the total energy of a system, but
rather its energy density, the soccer-ball problem vanishes
and multiparticle states transform appropriately. Unfor-
tunately, the energy density of all experimentally acces-
sible objects is far too small to make any quantum gravi-
tational effects of this kind important. Thus, if one
formulates the quantum field theory with DSR, the so far
proposed predictions are unobservable.

This paper is organized as follows. In the next section we
introduce the notation. In Sec. III we briefly recall the
problem of multiparticle states and examine its cause.
Section IV summarizes the quantum field theory formalism
previously used in Refs. [15,16,22]. In the following
Sec. V, we investigate the soccer-ball problem and show
how it can be resolved. Predictions are revisited in Sec. VI.
The discussion and the conclusions can be found in
Sec. VII.

Throughout this paper we use the convention @ � c � 1,
such that the Planck mass is the inverse of the Planck
length mp � 1=lp. Bold faced quantities p, q are four
vectors. Capital Latin indices label particles. Small Greek
indices, and small Latin indices from the beginning of the
alphabet run from 0 to 3 and label space-time coordinates.*Electronic address: sabine@perimeterinstitute.ca
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Quantities with small Greek indices transform under stan-
dard Lorentz transformation; quantities with small Latin
indices from the beginning of the alphabet transform under
the deformed transformations. The indices k and p refer to
the wave vector and momentum, respectively.

II. DEFORMED SPECIAL RELATIVITY

With use of the notation introduced in Ref. [15,16,22],
the quantity p � �E; p� transforms as a standard Lorentz
vector, and is distinguished from k � �!; k�, which obeys
the modified transformation that is nonlinear in k. The
former quantity p can always be introduced, the im-
portant step is eventually its physical interpretation. In
the standard DSR formalism, p is often referred to as the
pseudomomentum.

A general relation between p and k can be of the form

 k � F�p� � �Ef�p�; pg�p��; (1)

with the inverse p � F�1�k�, that we will denote for better
readability as F�1�k� � G�k�. As examined in Ref. [22]
these theories can, but need not necessarily have an energy
dependent speed of light. An obvious requirement is that
the function F reduce to multiplication with @ in the limit
of energies being small with respect to the Planck scale. In
order to implement a maximum energy scale, either one or
all components of k should be bounded by mp. In these
theories, one has a modified dispersion relation (MDR) of
the form G�k�2 � m2.

It is now straightforward to derive the transformation
that maps k! k0 when applying a Lorentz-boost, and
which respects the invariance of the modified dispersion
relation. One just keeps in mind that the relation for p is the
standard relation p2 � E2 � p02 � E02, from which one
finds the standard Lorentz transformation in momentum
space. We will denote these standard transformations with
p0 � L�p�. Then one gets the modified Lorentz transfor-
mations acting on k by requiring

 k 0 � F�p0� � F�L�p�� � F�L�G�k���: (2)

We will denote these transformations as k0 � ~L�k�. The
transformations Eqs. (2) will be nonlinear in �!; k� since F
is. By construction, implemented upper bounds on one or
all components of k are respected. For special choices of F
one finds the DSR transformations used in the literature.
An explicit example [10] is f�E� � g�E� � 1=�1�
E=mp�, for which one has the transformations

 

!0 �
��!� vk�

1�!=mp � ��!� vk�=mp
;

k0 �
��k� v

c2 !�

1�!=mp � ��!� vk�=mp
:

(3)

One can understand DSR as a theory with a curved
momentum space. In fact, if one integrates over all possible
values of k, and rewrites the integration into momentum
space one finds

 

Z
d4k �

Z
d4p

��������
@F
@p

��������; (4)

where the quantity under the right integral is the Jacobian
determinant. This can be read as a curved momentum
space with an energy dependend metric [27–29] g and
j@F=@pj �

�������
�g
p

. The most extensively investigated ge-
ometry is that of de Sitter space [20,21]. For the cases
investigated in Refs. [15,16,22], the geometry is confor-
mally flat [30].

However, one should keep in mind that here we have
considered single particles, and the momentum space we
were referring to was the momentum space of that particle,
not a global property. In fact, if one considers a field theory,
every point of our space-time manifold should have a
corresponding momentum space, and its properties can in
principle be a function of the space-time coordinates [31].
In the limit where quantum gravitational effects are negli-
gible, one would expect to a flat momentum space to be a
very good approximation, and to recover the standard
transformation laws of special relativity.

III. MULTIPARTICLE STATES

So far we have considered only one particle. The ques-
tion how to generalize the formalism of DSR to multi-
particle states is essential if one wants to formulate a
quantum field theory. The missing description of multi-
particle systems is an huge obstacle on the way to formu-
late the principles of the theory, and to recover the limiting
cases of the standard model and special relativity. Though
large progress has been made regarding the solution of this
problem [18,27,32–34], the issue is still not completely
settled and open questions remain [12,35,36].

In particular, one wants to construct a conserved quan-
tity for bound states and interactions. Let us consider a two
particle system with pA, pB, or kA, kB respectively, and ask
for the conserved quantity q. The most obvious choice is

 q � pA � pB; (5)

which transforms as a usual Lorentz vector, and is the way
pursued in Ref. [15,16,22]. However, this option is admit-
tedly not very exciting, and it has been pointed out [37] that
in fact within DSR the construction of a conserved quantity
seems to be not uniquely defined. The next obvious choice
that one would take is

 q � kA � kB: (6)

However, if one requires q to obey the same deformed
transformations as kA and kB, then this quantity does not
transform properly. Since the transformations ~L are not
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linear, one has

 q 0 � ~L�q� � ~L�kA � kB� � ~L�kA� � ~L�kB�

� k0A � k0B: (7)

Note that this arises from the fact that the transformation
acting on the kA (kB) is a function of kA (kB) only and not
of the total conserved quantity. Since the transformation
behavior reflects the properties of the curved momentum
space of the particle with energy k, this means that these
momentum spaces are independent of each other. This is a
justified expectation if the particle’s energies are suffi-
ciently localized, as not to influence each other. This is
appropriate for point particles, but will definitely not be the
case for plane waves.

One could of course just define the transformation be-
havior of q to be equal to that of kA � kB. But then, the
transformation of the conserved charge q would depend on
the decomposition into the added quantities and not be
unique. That is, another decomposition into q �
kC � kD would lead to a different transformation behav-
ior. Though this seems unintuitive, and we will not further
examine this transformation law, we would like to point out
that this possibility remains an option.

When one discards the addition law (6), one is then lead
to the conclusion that the quantity k has to obey a modified
addition law, which we will denote with �, and which is
given by

 k A � kB � F�pA � pB�: (8)

In such a way, one can define

 q � kA � kB; (9)

which transforms appropriately under applying the trans-
formation (2)

 q 0 � F�L�pA � pB�� � F�p0A � p0B�: (10)

If one considers an interaction of the type A� B! C, and
identifies the energy of the particle c with the above
defined quantity q one obtains the conservation law

 0 � q� kA � kB: (11)

This conservation law deviates from the standard prescrip-
tion due to the modified addition law. This gives rise to the
predicted threshold modifications. In case one considers
more than three particles, one has more choices for the
nonlinear addition [37]. Note that kA is an element of
particle A’s phase space, whereas kB belongs to particle
B’s space. The addition therefore is not performed inside
the single particle phase space, but instead defines a struc-
ture on the multiparticle phase space.

However, with the prescription Eq. (8) one runs into
another problem. By construction, the function F creates

an upper bound on k. Unfortunately, we know that bound
systems of elementary particles can very well exceed the
Planck mass, and this DSR formalism therefore can not
apply for them. The reason for this mismatch, also known
as the soccer-ball problem, is the nonlinearity of the trans-
formations, which should be suppressed when the number
of constituents grows.

One should also note that the addition law has been
chosen and not been derived, which means it is an addi-
tional assumption of DSR.

IV. TOWARDS A FIELD THEORY

One way or the other, if DSR is a well defined symmetry
principle, it should be possible to just derive the conserved
quantity for multiparticle states, and resolve the soccer-ball
problem. Indeed, this is straightforward to do, as has been
shown e.g. in Ref. [16].

In the following we will use the formalism with an
energy dependent metric g���k� that has been introduced
and worked out in Ref. [16,29]. The momentum is denoted
by pi and transforms under the usual Lorentz transforma-
tion. The wave vector is obtained by converting the index
with an energy dependent field that we will denote with h.
Since the relation between both momentum and wave
vector depends on the energy, the transformation of the
wave vector will no longer be the standard Lorentz trans-
formation. One also notices that the volume element in
momentum space becomes energy dependent as previously
mentioned [compare to Eq. (4)].

Under quantization, the metric becomes an operator
g���@�. The energy dependence of the metric can be
interpreted as a backreaction effect on the propagating
particle: If the energy density in a space-time region
reaches the Planckian regime, then the particle will signifi-
cantly disturb the background it propagates in. In the limit
where the metric approaches that of flat Minkowski space
one recovers standard special relativity.

The relation between the formerly introduced quantities
of the particle is given by

 pi � hi��k�k�; (12)

 g���k� � �ijhi��k�hj��k�; (13)

where � is the Minkowski metric. The dispersion relation
reads simply �ijpipj � 0, or, more intuitively

 k�g���k�k� � 0: (14)

We will in the following refer to the dispersion relation
being a modified dispersion relation (MDR) if

 ���k�k� � 0: (15)

Note, that this need not necessarily be the case for all
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equations of the form (14). For example, when the energy
dependent metric is conformally flat and of the form g�� �
a�k���� with some scaling function a, then the dispersion
relation (14) implies the standard dispersion relation.

We can write the relation in the general form pi � Gi�k�
with

 Gi�k� � �i�k� �
X1
l�1

A�2l�1�
i�1�2...�2l�1

m2l
p

k�1
k�2

. . . k�2l�1
;

where it is taken into account that p is odd in k. A is a
rank-2l� 1 tensor with dimensionless coefficients that are
constant with respect to space-time coordinates. Here, it
was assumed that mp sets the scale for the higher order
terms.

Under quantization, the local quantity k will be trans-
lated into a partial derivate. One now wants to proceed
from a single-k mode

 vk � eik�x� (16)

to a field and to the operator k̂� � �i@�. The correspond-
ing momentum operator p̂ should have the property

 p̂ ivk � pivk � Gi�k�vk; (17)

which is fulfilled by

 p̂ i � Gi��i@�; (18)

since every derivation results in just another factor k. It is
therefore convenient to define the higher order operator

 �i � iGi��i@�: (19)

SinceG is even in k, this operator’s expansion has only real
coefficients that are up to signs those of Gi. Note that �i

commutes with @�. A theory of this structure will usually
involve higher order derivatives in the spacelike as well as
in the timelike coordinates that require initial conditions.
One thus expects the theory to have a rather complicated
canonical structure, and to display inherently nonlocal
features. In particular the equal time commutation relations
will be examined in Sec. V.

From the above one can further define the operator ~�
which generates the wave function that corresponds to the
MDR Eq. (14)

 

~� � g���@��@�@� � �ij�i�j: (20)

This modified D’Alembert operator plays the role of the
propagator in the quantized theory. Normalized solutions
to the wave equation Eq. (30) can be found in the set of
modes

 vp�x� �
1������������������

�2��32E
p exp�ik�x

��; (21)

which solve the equation of motion when p fulfills the
usual dispersion relation, or k fulfills the MDR, respec-
tively [38]. Alternatively, one can consider an expansion in
k space with vk �

����������
E=!

p
vp. The solutions Eq. (21) form

an orthonormal set with respect to the new derivative

 

Z
d3xv	p�x��

0
$

vp0 �x� � ��k� k0� � ��p� p0�
��������
@G
@k

��������:
(22)

It is important to note that this complete set of orthonormal
eigenfunctions of the momentum operator in the coordi-
nate representation are not also a complete set of eigen-
functions of the coordinate operator in the momentum
representation, as it usually is the case. In k space, the
modes are normalized with respect to the usual scalar
product. Both descriptions are equivalent. The use of
which is more suitable depends on the quantity one wants
to investigate. In case the standard momentum is p, it is
more appropriate to express everything in p space. In the
standard DSR, one would instead want to formulate every-
thing in the modified quantity k.

The field expansion in terms of the set of solutions reads

 	�x� �
Z

d3p
��������
@F
@p

��������
vp�x�ap � v	p�x�ayp�; (23)

which yields the operators through forming the scalar
product

 ap �
Z

dx3v	p�x��0
$

	�x�; (24)

 ayp �
Z

dx3	�x��0
$

vp�x�: (25)

These fulfill the commutation relation [15]

 
ap; a
y
p0 � � ��p� p0�

��������
@G
@k

��������: (26)

It is convenient to use the higher order operator �i in the
setup of a field theory, instead if having to deal with an
explicit infinite sum. Note, that this sum actually has to be
infinite when the relation pi � Gi�k� has an asymptotic
limit as one needs for an UV-regulator. Such asymptotic
behavior can never be achieved with a finite power series.

For the following analysis it is important to note that the
higher order operator �i fulfills the property

 	i��i � � ���i	i� � total divergence; (27)

which has been derived in Ref. [16]. As an simple example
we will work with a massless scalar field. The action for the
scalar field [39] takes the form

S. HOSSENFELDER PHYSICAL REVIEW D 75, 105005 (2007)

105005-4



 S �
Z

d4x
���
g
p

L: (28)

with

 L � 1
2�@�	��g

��@�	�: (29)

Using Eq. (27), one then derives the equations from the
usual variational principle to the correct form

 g��@�@�	 � 0: (30)

The calculus with the higher order operator �i effectively
summarizes the explicit dealing with the infinite series.
These higher order derivative theories have been examined
in Ref. [18], where also the conserved Noether currents
have been derived and an explicit expression for the
energy-momentum tensor can be found. For our purposes
it is sufficient to note that the Noether current is a bilinear
form in the fields derivatives. If one inserts the field ex-
pansion, integrates it over space and takes the vacuum
expectation value, one obtains (after normal ordering) the
conserved quantity

 q� �
Z
d3xh0j: T�0: j0i; (31)

which is conserved with respect to the time derivative, and
whose 0-component can be identified as the total energy E.
If one inserts a superposition of two plane waves with k1

and k2, one finds that it is additive, since the mixing terms
in the bilinear form do not contribute when the volume
integration is performed. With this result from Ref. [18] the
soccer-ball problem is absent. Because of the standard
additivity, this expression for the total energy reduces to
the usual expression already when the energy of each
constituent is � mp. In this case however, one has not
only solved the multiparticle problem, but also removed
the threshold modifications. In fact, this result in incom-
patible with the DSR interpretation in which the physically
relevant and conserved quantity is obtained through a
modified addition law.

As we had noticed before, this conserved quantity can
then no longer be subject to the DSR transformation, the
reason for which we can now identify. The above exami-
nation shows us very nicely where the problem stems from.
It arises from the fact that the relation between the usual
and the deformed quantity h is a function only of the one
mode it acts on, and so is the metric. If we apply it to the
field’s expansion, each term under the integral acquires a
different transformation law, and we are back to the prob-
lem (7).

In general relativity however, the metric is a function not
of the energy of a single mode, but of the energy-
momentum tensor of the whole quantum field. In a theory
of quantum gravity, the metric g would become an opera-
tor, and the action would be a functional of g coupled to the
quantum field 	. When applying the variational principle,
both are treated as independent variables. Variation with

respect to the field 	 results in the field’s equations of
motion; variation with respect to the metric should result in
a quantum version of Einstein’s field equations. From
dimensional arguments, and to recover the classical limit,
the source term in the latter equations should be the field’s
density, and not a global charge.

In lack of the full theory of quantum gravity, the here
investigated approach can be understood as an educated
guess for the arising metric. Instead of deriving it, we
required it to reproduce the existence of a minimal length
which captures one of the best known, and most widely
examined, properties of gravitational effects in the
Planckian regime. This metric then can be inserted in the
field equations for 	 which makes them nonlinear.
Nevertheless, the conjectured metric operator should be a
function of the field’s densities, and instead of it being a
function of k only, it should be of the form g���@	@	�.
Moreover, it follows from this that the relation between the
momentum p and the wave vector k of a single mode
therefore does not only depend on the mode’s properties,
but on the energy density of the whole field and Eq. (12)
should correctly read

 pi � hi��@	@	�k�: (32)

In contrast to the single particles that were considered for
the construction of the original DSR transformations, plane
waves do overlap each other. The transformations acting on
one wave will therefore be sensitive to the energy content
of the other waves, all of which taken together determine
the structure of the momentum space bundle over the
space-time. Up to dimensional factors, the standard DSR
approach remains applicable for a single mode, in which
case the energy density is proportional to the mode’s
frequency.

V. THE SOCCER-BALL PROBLEM

One of the truly surprising features of DSR is that a
particle of a very tiny mass compared to the Planck scale
can perceive DSR effects that are argued to be caused by
quantum gravity. Naively, one would expect quantum
gravitational effects to become important only when the
curvature of the background is non-negligible. This is
usually not the case for particles we observe.

This reflects in the above finding that the relation be-
tween the quantity with the standard properties p and the
modified one k should be a function of the energy-
momentum density rather than the total energy. One should
also keep in mind that under quantization, modifications of
the type k � F�p� lead to a modified commutation relation
[22–26] which results in a generalized uncertainty rela-
tion. This generalized uncertainty makes it impossible to
localize a particle to better precision than a Planck length,
which is what one would expect.

One reproduces the equivalent of the generalized uncer-
tainty for a quantum field theory by considering the com-
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mutator of the field and its conjugated variable. With the
help of the previously defined higher order operator ��,
one can define a conjugated momentum of the field to

 �� � ��	 �
@L

@�@�	�
; (33)

with the identification �0 � �.
From � � �0	�y� with use of the field expansion

Eq. (23) one then finds in the usual way

 


	�x�; �0�y�� � i
Z

d3p
��������
@F
@p

��������
Z

d3p0
��������
@F0

@p0

��������
 2E0vp�x�v

	
p0 �y�
ap; a

y
p0 �: (34)

Using Eq. (26) this reduces to

 
	�x�; ��y�� � i
Z

d3p
��������
@F
@p

��������2Evp�x�v
	
p�y�

� i
Z d3p

�2��3

��������
@F
@p

��������eik�x�y�: (35)

A specifically useful relation from Ref. [40] for k�p� is

 k��p� � ê�
Z p

0
e�
p

02
dp0; (36)

where ê� is the unit vector in � direction, p2 � ~p � ~p and

 � l2p�=4 (the factor �=4 is included to assure, that the
limiting value is indeed 1=lp). Using this example one finds

 
	�x�; ��y�� � i
Z d3p

�2��3
eik�x�y��"p2

: (37)

One sees that a nontrivial dispersion relation with a lower
bound on the wavelength therefore implies a locality bound
similar to that proposed in Refs. [41,42]

 
	�x�; ��y�� � i��x� y�; (38)

which is due to the nontrivial volume element in momen-
tum space. Rewriting the expression into k space, one
realizes that this arises through the finite boundaries.
Such a modification will become important, when x� y�
lp.

It therefore seems inappropriate to consider an inte-
grated quantity that can not be localized to a point particle
by using superpositions, since this is disabled by the very
postulate of a minimal length. Instead, one should consider
the local density of the field, and impose a bound on it. This
is also a more appropriate choice simply because we want
to construct a field theory for DSR.

In the standard DSR approach there is no dependence on
the volume inside which we localize a mode with a given
energy. We can use box modes and shrink the box as small
as possible, that is as small as a Planck volume. This does

not reflect in any way in the transformation properties of
the modes. If one thinks in terms of total energy, then it is
not even clear in which limit an undeformed special rela-
tivity has to be recovered. The limit of a total energy E very
small with respect to the Planck-mass, E � mp (single
particle), as well as very large mp � E (multiparticle)
need to reduce to the standard transformation behavior,
since we have observations in both cases that show no
deviation from special relativity. Instead, the limit that
one would like to take is that of a small energy density
with respect to the Planck scale E=volume� mp=l

3
p. This

means however, that the whole formalism of DSR needs to
be sensitive to the volume in which we localize the energy.

Furthermore, let us recall what we found earlier that
DSR can be understood as a theory with a curved momen-
tum space. For a single particle, we were just concerned
with the particle’s configuration space over the particle’s
world line. As long as the particles are separated from each
other, it is conceivable to treat their momentum spaces as
independent. In the case of superpositions of modes how-
ever, the properties of the momentum spaces over the
space-time in which the field extends should depend on
all of the modes that contribute to the field’s composition.

We are therefore lead to the conclusion that the quantity
to be bounded in DSR should not be the energy of a
particle, but rather the energy density of a matter field.

One sees now easily that the soccer-ball problem arises
from the fact that the DSR formalism does not forbid us to
consider multiparticle systems inside a region of space-
time possibly as small as l3p, but with an unlimited total
energy of the particles. However, when we go from a
microscopic system to a macroscopic system in a sequence
like quark! proton! nucleus! atom! soccer-ball,
then the number of constituents grows, and so does the
total energy, but the energy density usually drops.
Consequently, one would expect gravitational effects to
become less important. In the usual DSR approach how-
ever, it is possible to place an arbitrary amount of particles
arbitrarily close to each other. This is not only inconsistent
with the ansatz itself to understand DSR as a an effective
quantum gravitational description (since the system would
inevitably undergo gravitational collapse), but it is also in
conflict with every day experience.

It is also important to note that for a quantized theory the
number of constituents of an object is a very ill defined
quantity, due to virtual particle content, and would better
be avoided.

Again, we are lead to the conclusion that the quantity to
consider should be the field’s energy-momentum density
rather than the four momentum of a particle. Or, to con-
struct a four vector, the projection of the energy-
momentum tensor on an observer’s four velocity u�:

 J� :� T��u� � m4
p: (39)

In the rest frame this is just J � ��; 0; 0; 0�. Like for the
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momentum, one derives easily a deformed transformation
that respects this behavior by just replacing !! J0, k!
J, and mp ! m4

p in Eq. (2).
Now what happened to the soccer-ball problem? Well, a

system’s energy density is not an extensive quantity. Thus,
there is no problem with an addition law. In fact, we notice
immediately that the deformations and modifications van-
ish as one would expect for energy densities �� m4

p, and
soccer balls do exist and transform like we are used to from
soccer balls.

If one considers the addition of energies of single modes,
one arrives via Noether’s theorem at the above derived
quantity Eq. (31) [43]. To be in accordance with the DSR
interpretation, we again lower the index and arise at the
addition law Eq. (6) for the quantity with the deformed
transformation behavior. The previously encountered prob-
lem that this quantity does not transform covariantly (7) is
absent because the transformation ~L now is not only a
function of the mode it acts on, but a function of both
modes’ wave vectors since both enter J. Therefore, the
transformations for both modes are equal. In this way, the
total energy of a system can become arbitrarily large, but
its transformation properties approach the special relativ-
istic limit for small densities.

One finds the common DSR prescription for a particle
with k � �!; k� if one localizes it as good as maximally
possible while still respecting the generalized uncertainty,
that is one sets Jm3

p � k.

VI. PREDICTIONS REVISITED

These were the good news. Now to the bad news. The
time of flight analysis for photons with different energies
from �-ray bursts has been proposed as a possible test for
DSR. If the speed of light is energy dependent, one finds a
possible time delay �T of [44,45]

 �T � T
E
mp

; (40)

where T is the duration of travel, which for a distance as
large as a Gpc can be up to �1017 s. Even though for
typical energies like E� GeV, the ratio to the Planck mass
is tiny E=mp � 10�19, the long distance traveled results in
�T � 10�2 s. This time delay is comparable to the typical
duration of the burst, and thus potentially measurable.

However, having come to the conclusion that not the
energy of a single particle is the relevant quantity but rather
its energy density that curves the space it propagates in, let
us repeat this analysis. The typical peak energy of a �-ray
burst is �100 keV, but let us consider one of highest peak
energy � GeV, which will have a typical localization of
�fm, and an energy density of roughly �� 10�76mp=l

3
p.

Thus, the effect is about 57 orders of magnitude smaller
than predicted [46].

It should be pointed out that this conclusion does not
apply for theories with a modified dispersion relation that
explicitly break Lorentz-invariance. All the here made
investigations are based on the assumption of observer-
independence without a preferred frame.

VII. DISCUSSION AND CONCLUSION

In the previous sections we have seen that the transfer of
the single particle DSR prescription to a field theory needs
to be formulated in the field’s densities rather than in
integrated quantities of total four momentum. The depen-
dence on the volume inside which energy is accumulated is
necessary to recover the standard transformation behavior
in the limit when the density is small compared to the
Planck scale, and quantum gravitational effects can safely
be neglected. It has also been previously pointed out in
Ref. [34] that the soccer-ball problem might be due to the
use of quantities with inappropriate dimensionality.
Another related approach, suggested in Ref. [18], is that
the relevant quantity could scale with the number of
constituents.

We have seen that the soccer-ball problem is naturally
absent if one assumes a deformation of special relativity
that saturates with the energy density approaching the
Planckian limit. The total energy adds linearly, but its
transformation is deformed as a function of the energy
density. The total energy of macroscopic systems thus
can exceed the Planck mass, while the dropping energy
density assures the recovery of special relativity. As a
consequence, predictions for the measurement of an energy
dependent speed of light with �-ray bursts are rendered
unobservable, since the scale for the effect is set by the
typical energy density rather than the total energy of the
photons.

Now why am I writing such a depressing paper? The
reason is that despite the excitement that DSR has under-
standably caused, one should not neglect the demand for
consistency. A model that is claimed to potentially describe
nature must reproduce the known and well established
theories in the range that we have confirmed them with
observations. It is not difficult to make exciting predictions
if one weakens this requirement. Even though I find the
possibility to experimentally test quantum gravity ex-
tremely fascinating, one should carefully investigate the
known problems of the approach as to whether they are
fatal.

Deformed special relativity, in the interpretation as com-
monly used, is not able to reproduce the standard model of
particle physics because multiparticle states can not be
described. For the same reason, it is not possible to repro-
duce the usual transformation laws of special relativity for
macroscopic objects.

The here presented analysis does not aim to provide a
complete quantum field theory with DSR that incorporates
the suggested framework, but it presents a starting point for
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further investigations. I am summarizing the difficulties
with the common approach here not because I like to tell
depressing stories, but because I think that it is indeed
possible to formulate a quantum field theory with DSR,
that does not suffer from the above mentioned problems.
This theory might be less exciting but also less speculative.
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