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We calculate the emission spectrum for vacuum Cerenkov radiation in Lorentz-violating extensions of
electrodynamics. We develop an approach that works equally well in the presence or the absence of
birefringence. In addition to confirming earlier work, we present the first calculation relevant to Cerenkov
radiation in the presence of a birefringent photon kF term, calculating the lower-energy part of the
spectrum for that case.
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I. INTRODUCTION

In the past decade, a great deal of interest has developed
in the possibility that Lorentz and CPT symmetries might
not be exact in nature. If any violations of these important
symmetries were discovered, they would be of tremendous
importance. The form of the violations could potentially
tell us a great deal about the new physics of the Planck
scale. In fact, a number of candidate theories of quantum
gravity suggest the possibility of Lorentz symmetry break-
ing in certain regimes. For example, Lorentz violation
could arise spontaneously in string theory [1,2] or else-
where [3]. There could also be Lorentz-violating physics in
loop quantum gravity [4,5] and noncommutative geometry
[6,7] theories, or Lorentz violation through spacetime-
varying couplings [8], or anomalous breaking of Lorentz
and CPT symmetries [9] in certain spacetimes.

Over the years, there have been many sensitive experi-
mental tests of Lorentz symmetry. Modern tests of this type
have included studies of matter-antimatter asymmetries for
trapped charged particles [10–13] and bound state systems
[14,15], determinations of muon properties [16,17], analy-
ses of the behavior of spin-polarized matter [18,19], fre-
quency standard comparisons [20–23], Michelson-Morley
experiments with cryogenic resonators [24–26], Doppler
effect measurements [27,28], measurements of neutral me-
son oscillations [29–34], polarization measurements on
the light from distant galaxies [35–38], analyses of the
spectra of energetic astrophysical sources [39,40], and
others. There is a well-developed effective field theory
framework, the standard model extension (SME), which
parametrizes possible Lorentz violations in a local quan-
tum field theory [41,42] and also in the gravity sector [43].

The general SME has an infinite number of parameters,
since it includes nonrenormalizable operators of arbitrarily
high dimensions. Practically, it is usually more useful to
restrict attention to a finite subset of these operators. The
most commonly considered subset is the minimal SME.
This includes operators which are superficially renorma-
lizable (that is, of dimension two, three, or four) and
invariant under the standard model’s SU�3�c � SU�2�L �

U�1�Y gauge group. The minimal SME describes the forms
of Lorentz violation that should be most important at lower
energies. We shall only consider minimal SME operators
in this paper, although higher-dimension operators could
still have distinct and potentially quite interesting effects
on the processes that we are interested in. We shall also
specialize to Lorentz violations that are entirely in the
electromagnetic sector, so that the matter sector is
conventional.

Lorentz-violating field theories are extremely interesting
theoretically, since they possess many new features that are
absent in Lorentz-invariant models. Processes that are
kinematically forbidden when Lorentz symmetry is exact
may become allowed when this symmetry is weakly bro-
ken. One especially interesting process is vacuum
Cerenkov radiation, e� ! e� � �. This is the analogue
of ordinary Cerenkov radiation in matter, and the threshold
conditions are similar. An electron (or other charged par-
ticle) can emit low-energy Cerenkov photons when the
electron’s velocity exceeds the photons’ phase speed.
(When the photon energy becomes large enough that recoil
effects are important, the threshold conditions becomes
more complicated. This is natural, because the crucial
quantity—the electron’s velocity—does not remain con-
stant through the duration of the emission process. What
must exceed the phase speed of light in this case is the
electron’s average velocity during the emission process—
averaged over the region of momentum space between the
initial and final values of the electron momentum.)

The problem of vacuum Cerenkov radiation may be
approached from several angles. There are a number of
different operators in the SME photon sector that could
give rise to this kind of process. How Cerenkov radiation
works in the presence of a birefringent Chern-Simons term
has been analyzed in detail, using both macroscopic tech-
niques [44,45] and the microscopic language of Feynman
diagrams [46]. Terms that do not induce birefringence have
also been considered [47]. However, there are still ten
coefficients in just the minimal SME photon sector whose
effects have not yet been considered in this context.

Our goal in this paper is to develop a technique that will
allow us to study the spectrum of vacuum Cerenkov radia-
tion in modified electrodynamic theories. This will enable*Email address: baltschu@indiana.edu
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us to fill in some of the gaps in our knowledge of how the
various minimal SME terms impact the Cerenkov process.
However, there are some questions that we shall not be able
to answer using this method. In order to make our calcu-
lations tractable, we must make some general simplifying
assumptions. However, all these assumptions are quite
reasonable physically, because we know that any devia-
tions from conventional electrodynamics (whether Lorentz
violating or otherwise) must be very small at observable
photon energies. Our method will be macroscopic, relying
on methods qualitatively similar to those used in the cal-
culation of ordinary Cerenkov radiation in dielectric ma-
terials. We shall also neglect any recoil effects; because of
this, and because of the particular minimal SME operators
that we are considering, the threshold condition takes its
simplest form.

There are three important aspects of vacuum Cerenkov
radiation that distinguish it from textbook Cerenkov radia-
tion. These are dispersion, birefringence, and direction
dependence. Not all the theories we shall consider have
all of these properties, but understanding each of them will
be important to a complete understanding of vacuum
Cerenkov radiation. Of course, dispersion exists in real
materials as well as Lorentz-violating vacua; the index of
refraction will always be a function of frequency. The other
two effects, which involve direction- and polarization-
dependent speeds of light, are also seen in certain asym-
metric crystals; however, they will be much more impor-
tant and generally more complicated in Lorentz-violating
field theories. Physical vacuum birefringence at observable
wavelengths is strongly constrained by astrophysical ex-
periments, but the property is still of significant theoretical
interest.

As an input to our Cerenkov radiation calculations, we
shall require the dispersion relations for the propagating
modes of the electromagnetic fields. In the birefringent
case, there will be two separate dispersion relations for
each wave vector, which we shall denote by !�i�� ~k�, cor-
responding to the polarization vectors �̂�i�. In general, the
polarization structure of the normal modes of propagation
will also depend on ~k, and this dependence may be either
on the magnitude k � j ~kj or on the direction k̂ � ~k=k (or
potentially both). In situations without birefringence, the
choice of polarization basis is unimportant, because all
polarizations possess the same phase speed. In all cases
we are considering, Cerenkov radiation is possible if the
phase speed for at least one low-frequency mode of the
electromagnetic field is less than 1.

We shall restrict our attention to the most physically
relevant case, that in which the deviation from 1 of the
vacuum speed of light is small, 1�!� ~k�=k� 1. This
excludes some regimes of potential theoretical interest,
but it covers any region for which there is a reasonable
possibility of actually observing the Cerenkov radiation.
Many of the excluded regions are also bedeviled by prob-

lems with stability or causality [48], which could prevent
us from deriving meaningful results in any case. We shall
also assume that the deviation of the dispersion relation
from its conventional form is a slowly varying function of
~k—so that j ~r ~k�!�

~k�=k	j � 1=k. Finally, we shall only
consider linear modifications of electrodynamics and theo-
ries with conventional source terms.

In general, with possible Lorentz and CPT violations,
the electromagnetic field of a propagating wave may not be
transverse. This, however, is not an important effect in the
regime we are considering, in which the deviations from
conventional electrodynamics are small. To see why this
effect is of secondary importance, we may consider the
following dichotomy: a change in the dispersion relation of
the electromagnetic waves without a change in the polar-
ization structure can lead to Cerenkov radiation; however a
change in the polarization states without a change in the
dispersion relation cannot. Modifications to the phase
speed are therefore more important. The existence of non-
transverse propagating waves will only result in higher-
order corrections to the effect we are interested in. We shall
therefore neglect any changes that the new physics may
make to the space of physical polarizations of the radiation
field, and we assume that the normal mode polarization
vectors �̂�1�� ~k� and �̂�2�� ~k� span the transverse subspace

with �̂�i�� ~k� 
 ~k � 0.
Because the modified electrodynamical theories we

shall be considering are linear, we may work with each
polarization mode separately. Because the sources of the
field are not modified, the crucial question for each mode
of the field is how much Cerenkov radiation a moving
charge will emit with that wave vector and polarization,
and this question may be answered by relatively conven-
tional means. We need only calculate how much radiation
would be emitted in that particular mode in an ordinary
Cerenkov process, in a medium with the right dielectric
constant to give the mode we are interested in the correct
phase speed.

Our physically motivated approximations will also al-
low other simplifications. The smallness of the deviation of
the phase speed from 1 ensures that the (appropriately
generalized) Mach cone will always be very broad.
Cerenkov photons must be emitted in directions close to
the direction v̂ of the charge’s motion. Moreover, there will
only be emission if the charge’s speed is close to 1.

With our conventional matter sector, 1 is the maximum
achievable velocity for a moving charge; however, many of
the expressions we shall derive would apply equally well to
theories with Lorentz violation in the matter sector and
speeds v > 1 allowed. However, we shall assume v < 1,
because it simplifies the accounting of which modes of the
electromagnetic field contain vacuum Cerenkov radiation.
In fact, it is not always a well-posed question which sector
actually contains a Lorentz violation; some forms of
matter-sector Lorentz violation can be defined away, a
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change of coordinates moving the Lorentz violations into
the gauge sector without changing the physics.

Since our study of the Cerenkov spectrum will be per-
formed on a mode by mode basis, there are some interest-
ing features of vacuum Cerenkov radiation which it is not
possible to study with these techniques. It can be difficult
or impossible to calculate the backreaction on the moving
charge, because this quantity depends on the total emission
in all modes of the electromagnetic field. This limits our
ability to evaluate the high-energy part of the spectrum,
where recoil is an important effect. It also limits us to
considering moving charges with velocities significantly
above the Cerenkov threshold; if the velocity were too
close to the threshold, the recoil accompanying the first
emitted photons could push the charge’s velocity back
below threshold, fundamentally altering the character of
the process. Furthermore, for some modes, the condition
that the deviation of the phase speed from 1 be small may
not be met, and for higher-energy modes, new physics may
come into play. Questions related to the overall stability of
the process may also be difficult to answer, although they
have already been considered, using a different technique,
for the case which poses the most interesting questions in
this regard; in the presence of a Lorentz-violating Chern-
Simons term, there is no vacuum Cerenkov emission if and
only if in the rest frame of the moving charge the energetic
stability of the electromagnetic sector is manifest [44]. We
shall also neglect consideration of any finite-duration ef-
fects, treating the Cerenkov radiation as a completely
steady state process. Thus, some interesting phenomena
that arise in real, finite period Cerenkov processes (such as
diffraction) will not have any analogues in our analysis.

This paper is organized as follows. In Sec. II, we in-
troduce a number of interesting theories, most of them
Lorentz violating, in which vacuum Cerenkov radiation
could be possible. In Sec. III, we show how to generalize
the usual equations governing Cerenkov radiation, and in
Sec. IV, we apply these generalizations to the specific
models introduced in Sec. II. Section V presents our con-
clusions and outlook.

II. MODIFIED ELECTRODYNAMIC MODELS

The free Lagrange density for the electromagnetic sec-
tor, without any of the modifications that would make
vacuum Cerenkov radiation possible, is

 L 0 � �
1
4F

��F�� � j�A�: (1)

For our purposes here, the source term may be taken to be
externally specified, corresponding to a point charge e
moving with velocity ~vwell above the Cerenkov threshold.

In this section, we shall only be concerned with the free
propagation of electromagnetic waves in vacuum. This
restricts us to considering modifications of the
Lagrangian which are bilinear in the electromagnetic field.
We shall also consider only those operators which are

superficially renormalizable—that is, operators of dimen-
sions two, three, and four. We shall not insist on gauge
invariance for the dimension two operators, since there are
potentially interesting physics associated with photon mass
terms. However, we shall only consider higher-dimension
operators that are gauge invariant, at least at the level of the
action.

We shall consider modifications to L0 one at a time.
Within the minimal SME, there are two types of gauge-
invariant, renormalizable Lorentz-violating coefficients in
the purely electromagnetic sector. (Since we are consider-
ing the Cerenkov response to an externally prescribed
charge density, we shall not consider Lorentz violation in
the matter sector, although Lorentz violations can have
important effects on how real particles move.) These are
the CPT-odd Chern-Simons term

 L AF �
1
2k
�
AF�����F

��A� (2)

and the CPT-even term

 L F � �
1
4k
����
F F��F��: (3)

The four-index tensor kF has the symmetries of the
Riemann tensor and a vanishing double trace, leaving it
with 19 independent coefficients. We shall consider the kAF
and kF separately, because doing so will make the analysis
much more elegant and intuitive. However, there would be
no impediment in principle to doing our calculations in the
presence of both kAF and kF, for which case the dispersion
relations and the correct techniques for identifying the
elliptically polarized normal modes of propagation are
known [42].

The Chern-Simons term LAF (which is gauge invariant
up to a total derivative) gives different dispersion relations
for right- and left-handed electromagnetic waves. The
positive- and negative-helicity waves have frequencies
[35]

 !2
� � k2 �

k0
AFk� j ~kAFj!� cos�AF�������������������������

1
4�

~k2
AFsin2�AF
!2
��k

2

r ; (4)

where �AF is the angle between ~k and ~kAF. Equation (4) is
not a closed form expression for !�� ~k�; however, expand-
ing it to leading order in the Lorentz violation, we get

 !� � k� �k0
AF � j

~kAFj cos�AF�: (5)

This covers the range of k that we are interested in.
However, it should be noted that, at small wave numbers,
the dispersion relation becomes problematical. If only k0

AF
is nonzero, then we have !2

� � k�k� 2k0
AF�, so that !

may become imaginary. There are then runaway solutions,
which can be fixed only by allowing for acausal signal
propagation. It is not clear whether the theory can be
physically meaningful in this regime, especially when
considering an unconventional radiation process like
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Cerenkov radiation. The previous macroscopic analyses of
vacuum Cerenkov radiation in the presence of kAF have
focused more on the spacelike case, in which such insta-
bilities do not occur.

With kF only, the dispersion relations are determined by
the matrix equation

 ��jkp2 � pjpk � 2�kF�j	
kp	p
	��̂�i�	k � 0; (6)

where p� � �!; ~k� is the photon four-momentum. In this
case, the phase speed and polarization structure are inde-
pendent of the wave number, although they do depend on
the propagation direction. To leading order in kF, the
polarizations are transverse and orthogonal, and the fre-
quencies are [49]

 !� � �1� ��k̂� � ��k̂�	k; (7)

where ��k̂� � � 1
2

~k		, and �2�k̂� � 1
2

~k	
~k	
 � �
2�k̂�,

with ~k	
 � k	�
�F p̂�p̂� and p̂� � �1; k̂�. Since the kF
term is dimensionless, there is no dispersion in the photon
spectrum; the phase speed depends only on k̂. Moreover,
there is no birefringence if � � 0, which was the case
considered in [47].

Using the explicit leading-order expression for the dis-
persion relation, it is possible to recast the eigenvector
condition (6) as

 �2��� ���jk � k̂jk̂k � 2~kjk	��̂���	k � 0: (8)

In a primed frame where a photon’s energy-momentum is
p̂0� � �1; ê3�, the polarization vectors are

 �̂ 0
���
/ �sin�;�1� cos�; 0�; (9)

where � sin� � ~k012 and � cos� � 1
2 �

~k011 �
~k022�. In these

coordinates, �̂��� makes an angle �=2 with the x0 axis.
Another class of possibly Lorentz-violating models with

photon speeds less than 1 may also be considered. These
are models which break gauge invariance. The Lagrange
density

 LM � M��A�A� (10)

has a generalized photon mass term. In the presence of LM,
there are generally three propagating modes of the elec-
tromagnetic field. However, we shall neglect the novel
longitudinal mode, because if the breaking of gauge in-
variance is weak, this mode will be correspondingly
weakly coupled to charges.

Of interest is obviously the Lorentz-invariant Proca
theory, with M�� � 1

2g
��m2. Other Lorentz-violating ver-

sions have also aroused some recent interest [50–52]. In all
the cases that have been considered, there exists a frame in
which M�

� is diagonal, with non-negative eigenvalues, at
most one of which is different from the others. These
models are never birefringent. If M0

0 vanishes, but the
Mj

k �
1
2m

2
1�

j
k are nonvanishing, then the theory contains

only two propagating modes; while if M0
0 is finite as well,

then there is also a propagating longitudinal mode.
However, the dispersion relation for the transverse modes
is always

 !2 � k2 �m2
1: (11)

If one of the spatial elements on the diagonal of M�
�

differs from the others, then the situation is more complex.
The basis of propagation states is not orthogonal; however,
the only mode with an unconventional dispersion relation
is again essentially longitudinally polarized. (As the
Lorentz violation gets smaller, the associated polarization
vector moves closer to k̂.) The net result is that the trans-
verse modes propagate at the same rate, and this rate is
again independent of the propagation direction.

So for all the M�
� of interest, the transverse modes have

the same type of dispersion relation. Unfortunately, while
the group velocity for this dispersion relation is always less
than 1, the phase velocity is the reciprocal of the group
velocity and is hence always greater than 1. There is thus
no vacuum Cerenkov radiation in these theories, and we
shall not consider them any further.

III. CALCULATIONAL TECHNIQUES

We must now generalize the usual techniques used to
calculate rates of Cerenkov emission to cover the vacuum
cases we are interested in. For a charge e moving with
velocity ~v, subject to v < 1, there may be Cerenkov emis-
sion if v is greater than the phase speed of light in some
direction. In a conventional dielectric material, where the
index of refraction is direction and polarization indepen-
dent and constant (or only slowly varying) as a function of
wave number, there is a sharp Mach cone, with a disconti-
nuity (or near discontinuity) across it. The moving charge
emits photons, and the cone represents the signal front for
their propagation. The Cerenkov angle �C is the angle
between the direction v̂ and the propagation of the emitted
photons. With dispersion, this angle becomes frequency
dependent. In an anisotropic vacuum, it will also generally
depend on the azimuthal angle around v̂, and with bire-
fringence, it will depend on the polarization as well. In the
birefringent case, there may exist Cerenkov emission for
only one of the polarizations corresponding to a given ~k,
since the phase speeds for the two polarizations are not the
same. The opening angle of the Mach cone is �

2 � �C.
If there is significant dispersion, there will generally not

be a Mach cone defined by a sharp shock front. However,
the radiation at a given fixed frequency will all be located
on a cone, although with Lorentz violation that cone need
not be right angled or circular.

In the ordinary case, �C is determined by the coherence
condition,

 cos�C �
1

vn
: (12)
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This can be thought of as simply the angle at which the
radiation in the far field does not interfere with itself
destructively, so that there is a net nonzero Poynting flux.
(Since interference between waves emitted by the moving
charge at different points in time is the crucial effect, the
derivation of the coherence condition requires that the
velocity not change appreciably during the time period
under consideration.) The same constructive interference
is still necessary in the Lorentz-violating case if there is to
be a net outflow of radiation. So an analogous condition
will govern the direction in which radiation is emitted in
the more complicated cases under consideration here;
however, the analog of (12) is no longer a straightforward
expression for �C as a function of the other parameters. The
effective index of refraction can be a function of direction
and hence of �C. To generalize (12), we note (omitting any
dependences on polarization) that cos�C � v̂ 
 k̂, and n
generalizes to k=!� ~k�. A simple rearrangement then yields
the generalized coherence condition

 ~v 
 ~k � !� ~k�: (13)

For arbitrary anisotropic dispersion relations, (13) may
be difficult to solve. However, when the effects of new
physics are small, we may solve (13) perturbatively. When
1�!� ~k�=k� 1, the angle �C will be small. The photons
are all emitted in directions k̂ very close to v̂, so to leading
order we may calculate �C by approximating ~k by kv̂ on
the right-hand side of (13). This gives

 cos�C � 1�
�2
C

2
�
!�kv̂�
kv

; (14)

 �2
C � 2�1�!�kv̂�=kv	: (15)

Cerenkov radiation is emitted if �2
C > 0. At this level of

approximation, the Mach cone is right angled and circular.
Any obliquities are higher-order effects. However, the
opening angle of the cone will vary with the direction v̂
of the charge’s movement. We shall make extensive further
use of the approximation ~k � kv̂ in obtaining other
leading-order results; this amounts to approximating the
Mach cone as being a flat planar wave front.

In the absence of birefringence, (15) is all that is needed
to determine the leading-order character of the radiation.
Because the theory is linear, we may look at the electro-
magnetic field one mode at a time. In a momentum-space
neighborhood of any given mode, the theory looks like
conventional electrodynamics but with a speed of light
!� ~k�=k 
 1=n� ~k� different from 1. The effects of disper-
sion are suppressed, because !� ~k�=k is slowly varying.

However, we must still deal with the birefringent case.
Ordinary Cerenkov radiation is linearly polarized in the
plane defined by v̂ and k̂; we shall denote the correspond-
ing polarization vector by �̂�0�� ~k�. Obviously, birefringence
will change the polarization of the emitted radiation.

However, the changes are really quite simple, again be-
cause we can look at the theory one mode of the field at a
time. If the coherence condition is satisfied for a given
mode of the field, with wave vector ~k and polarization �̂�i�,
what happens in all the orthogonal modes is unimportant.
In particular, the emission in the mode we are interested in
is exactly the same as in any other theory with the same ~v
and n� ~k; �̂�i�	. So we can imagine replacing the theory by
one with a constant, polarization-independent index of
refraction ~n � n� ~k; �̂�i�	. Calculating the emitted power in
the mode of interest is then trivial. It is just the total power
emitted in the conventional theory with ~n, times the
squared overlap between the conventional linear polariza-
tion mode and the mode we are studying, or just j�̂�i� 

�̂�0�j

2. This technique for determining the radiated power is
valid even beyond the leading-order approximation.

The power emitted per unit frequency in ordinary
Cerenkov radiation is P�!� � e2

4� sin2�C!. The generaliza-
tions required by the presence of Lorentz violations and
dispersion are minor, at least at leading order. �2

C must be
determined from (15), and we must include the polariza-
tion overlap factor, which adds the only real complication.
At leading order, the Mach cone is right and circular, so �C
does not depend on the azimuthal angle 
. Nor, at leading
order, do the normal mode polarization vectors �̂�i� depend
on 
—and for the same reason, since we can approximate
the �̂�i�� ~k� by �̂�i��kv̂�. However, the polarization of ordi-
nary Cerenkov radiation does depend strongly on 
. In the
same leading-order approximation we have been using, the
polarization vector �̂�0� is �̂ 
 
̂� v̂. So the emitted
power may depend on 
. We must therefore express the
power per unit frequency per unit of azimuthal angle for a
given polarization mode; this is

 P�i��!;
� �
e2

�2��2
j�̂�i� 
 �̂j

2�1�!�i��kv̂�=kv	!�i��kv̂�:

(16)

(At this level of approximation, we may also replace the
terminal !�i� by k.) The average of j�̂�i� 
 �̂j2 over all 
 is
always 1

2 . In a theory without birefringence, all the factors
in (16) except j�̂�i� 
 �̂j2 are equal for the two polarizations,
and the total emitted power, summed over both polariza-
tions, is independent of 
, as we might expect.

To leading order, we need not distinguish whether our
expression for the power is the power per unit frequency or
per unit wave number, nor need we worry about how the
energy-momentum tensor is modified by the new physics;
these effects are only important beyond leading order. So in
(16), we have a simple expression for the leading-order
Cerenkov spectrum in any normal mode of the radiation
field that satisfies our assumptions.
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IV. APPLICATION TO SPECIFIC MODELS

We may now apply our method to the models discussed
in Sec. II. Considering the kAF model first, we note that,
according to the leading-order expression (5) for the dis-
persion relation, exactly one mode of the field is super-
luminal and one subluminal for each value of ~k.
Furthermore, since the normal modes of propagation are
always circularly polarized waves, the overlap expression
j�̂�i� 
 �̂�0�j2 is always exactly equal to 1

2 . The Cerenkov
angle is also easy to calculate at leading order. For which-
ever polarization is moving more slowly than v, it is

 �2
C � 2

�
1�

1

v
�
jk0
AF �

~kAF 
 v̂j
kv

�
: (17)

Since this depends on k, there is not a sharply defined Mach
cone. The sign of the expression inside the absolute value
determines which polarization this represents. The helicity
of the emitted photons is �sgn�k0

AF �
~kAF 
 v̂�; this agrees

with the results in [45] for emission close to the direction of
~v.

The total power emitted per unit frequency is

 P�!� �
e2

4�

�
1�

1

v
�
jk0
AF �

~kAF 
 v̂j
kv

�
k; (18)

and this is emitted in an azimuthally symmetric pattern
around v̂. It is clear in this case that the dispersion will cut
off the Cerenkov spectrum at high energies, because the
absolute value term in (17) is divided by k. For large wave
numbers k > jk0

AF �
~kAF 
 v̂j=�1� v�, there is no emis-

sion, and this ensures that there is no ultraviolet divergence
in the total power.

For the theory with kF, the results are equally straight-
forward. In this case, if ��v̂�<�j��v̂�j, there can be
Cerenkov radiation in both polarization modes. However,
unless ��v̂� � 0, the two polarizations will have Mach
cones of different width and different rates of emission.
Indeed, the Cerenkov angles are

 �2
C � 2

�
1�

1

v
�
��v̂� � ��v̂�

v

�
: (19)

Figure 1 shows the possible shapes of the Mach cones for
two different particle velocities ~v. In one direction, there
are two broad cones, corresponding to two different polar-
ization states, but in the second direction, only a single
Mach cone is possible.

If we choose coordinates so that v̂ � ê3, the polarization
vectors corresponding to the two cones are given by (9).
The angular overlap factors are then, using 
̂� v̂ �
�cos
; sin
; 0�,

 j�̂��� 
 �̂�0�j
2 � cos2�
� �=2�; (20)

 j�̂��� 
 �̂�0�j2 � sin2�
� �=2�: (21)

If ��v̂� � 0, then the radiation intensity is independent of

; moreover, the Cerenkov angle—and thus the power
emitted—agrees in this case with the results calculated in
[47] by somewhat different methods. However, because
there more generally is birefringence, there can be an
angular dependence in the total power. The two polariza-
tions are emitted in two perpendicularly oriented dipole-
like patterns. (These are not, however, dipole radiation
patters in the usual sense, since the waves are all directed
into a narrow angular range around the direction v̂.)
Figure 2 shows the intensity and polarization on the surface
of one of the two possible Mach cones.

The expressions for �2
C and the polarization overlap

factors give us the power emitted and its angular distribu-
tion,

 

P����!;
� �
e2

�2��2

�
1�

1

v
�
��v̂� � ��v̂�

v

�

�!cos2�
� �=2�; (22)

 

P����!;
� �
e2

�2��2

�
1�

1

v
�
��v̂� � ��v̂�

v

�

�!sin2�
� �=2�: (23)

These results should be accurate whenever our approxima-
tions are valid. However, with the kF term, there is an
obvious problem with the spectrum at large k. Since �2

C

 

FIG. 1. Possible shapes of the Mach cones corresponding to
charges moving in two different directions. In one direction, two
Mach cones are possible, but in another direction only one. In the
leading-order approximation, the cones are right angled and
circular, although the cones shown here are exaggeratedly nar-
row.
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and the polarization factors are independent of k, the
spectrum appears to diverge at high energies.

Some new effect, not considered here, must enter to cut
off the spectrum. We have neglected the recoil of the
emitting particle. Including it ought to render the whole
expression finite; the charge will not radiate away more
energy than it possesses [53]. So there is a natural cutoff at
the energy scale of the radiating particle itself. However,
this is not necessarily the relevant cutoff. New physics may
enter at a scale lower than the energy scale of the particle,
and the scale of the new physics may represent the physi-
cally meaningful cutoff scale.

These questions were previously discussed in [47] and a
partial solution put forward for the special case considered
there. The part of kF that does not cause birefringence
mixes with Lorentz-violating coefficients in the matter
sector under renormalization [54]. Although the pure
gauge sector does not make reference to any mass scale,
the matter sector will contain massive charged particles,
which will set a definite scale for the theory. This implies
that new physics must enter at a scale ��mk�1=2

F , where
m is the lightest charged particle mass; without the appear-
ance of new physics, the theory will exhibit pathological
properties at high energies [48]. � is essentially the largest
scale at which new physics can enter, and it is comparable
to the threshold energy for the Cerenkov process.

The appearance of a high-energy cutoff comparable to
the energy threshold for vacuum Cerenkov is actually
desirable, since it provides a uniform ultraviolet regulator
for the total power emitted (although the Cerenkov spec-
trum, even with the cutoff, still has a number of counter-

intuitive properties [47]). In this special case, any charge
emitting vacuum Cerenkov radiation must have an energy
comparable to or larger than �, so we expect �—not the
charge’s energy—to be the most relevant cutoff scale. A
charge whose energy is far above the threshold level can
emit radiation at a rate limited by � for an extended period,
with the velocity decaying only comparatively slowly over
this time, so that recoil effects are unimportant.

However, the birefringent part of kF does not mix with
any other Lorentz-violating coefficients at leading order,
and so an electromagnetic theory containing only this form
of Lorentz violation is equally valid at all energy scales. It
is obviously possible that new physics may cut off this
theory as well, but there is no indication of at what scale
that cutoff should come. Or it may be impossible to con-
sider this theory without taking into account the backreac-
tion on the charge, which loses momentum as it radiates.
Unlike the previous case, it is possible that recoil effects
might provide the only cutoff for the Cerenkov spectrum.
In any case, the spectrum we have calculated should be a
perfectly valid first approximation at sufficiently low en-
ergies, but to understand the totality of the vacuum
Cerenkov process in the presence of this kind of Lorentz
violation, a different approach is required.

The new physics which should cut off the theory with a
nonbirefringent kF enter the photon sector through radia-
tive corrections, and it would be interesting to consider
how other loop effects might impact our results. One type
of effect may be of particular interest—photon splitting,
�! N�, which is forbidden on shell in a gauge- and
Lorentz-invariant theory. Photon splitting amplitudes are
generally nonzero in the presence of Lorentz violation,
however [55]. An entirely speculative yet interesting pos-
sibility in the context of vacuum Cerenkov radiation is that
the emitted photons may split into multiple collinear pho-
tons, and the amplitude for this process may interfere
destructively with the primary Cerenkov amplitude. To
determine whether this could actually occur would require
evaluation of the amplitude for many-photon Cerenkov
emission, including its phase, as well as the photon split-
ting amplitude in the presence of a general kF; and neither
of these amplitudes is known at present. A tricky balancing
between terms at different orders in e2 would also be
required in this scenario. So whether photon splitting or
other radiative corrections have important impacts on the
Cerenkov process is unknown.

V. CONCLUSION

In this paper, we have worked out a method for deter-
mining the spectrum of vacuum Cerenkov radiation, work-
ing with the electromagnetic field mode by mode. For our
leading-order results to be useful for a given mode, Lorentz
violations must affect the energy-momentum relation for
the mode in question only slightly. However, apart from
that, the method is rather general, allowing us to treat the

 

FIG. 2. Polarization of the radiation on a single Mach cone in
the birefringent kF theory. The cone is seen from above, with the
charge moving out of the plane toward the viewer. The lines
indicate the polarization direction of the radiation at various
points on the cone’s surface, with their lengths denoting the
relative intensities.
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kAF and kF terms, birefringent and not, on equal footing.
We have rederived previous results for a number of cases,
and we have also provided the first calculation of the
lower-energy part of the Cerenkov spectrum in the pres-
ence of a birefringent kF.

However, there are many interesting questions that are
still unanswered. There are regions of the spectrum where
our approximations are simply not valid. The small k
region in the kAF theory is outside the realm of our ap-
proximations’ validity, although it has been examined by
other means. The large k domain in the presence of kF
(where new physics may come into play to cut off the
Cerenkov process) raises further questions. Much more
could also be said about the backreaction on the moving
charge. One technique that might make it easier to take this
effect into account would be to calculate the Cerenkov

spectrum using Feynman diagrams, as was done for the
kAF in [46]. Without understanding recoil effects, it may be
impossible to calculate the highest-energy portions of the
Cerenkov spectrum or even the low-energy spectrum for
particles with energies very close to the threshold. Because
these kinds of deep questions still exist, vacuum Cerenkov
radiation remains a very interesting area in the study of
Lorentz violation.
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Lett. 82, 2254 (1999).
[15] D. F. Phillips, M. A. Humphrey, E. M. Mattison, R. E.

Stoner, R. F. C. Vessot, and R. L. Walsworth, Phys. Rev.
D 63, 111101(R) (2001).

[16] R. Bluhm, V. A. Kostelecký, C. D. Lane, Phys. Rev. Lett.
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[38] V. A. Kostelecký and M. Mewes, Phys. Rev. Lett. 97,

140401 (2006).

BRETT ALTSCHUL PHYSICAL REVIEW D 75, 105003 (2007)

105003-8



[39] T. Jacobson, S. Liberati, and D. Mattingly, Nature
(London) 424, 1019 (2003).

[40] B. Altschul, Phys. Rev. Lett. 96, 201101 (2006).
[41] D. Colladay and V. A. Kostelecký, Phys. Rev. D 55, 6760
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