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The equation of motion for massive particles in f�R� modified theories of gravity is derived. By
considering an explicit coupling between an arbitrary function of the scalar curvature, R, and the
Lagrangian density of matter, it is shown that an extra force arises. This extra force is orthogonal to
the four-velocity and the corresponding acceleration law is obtained in the weak-field limit. Connections
with MOND and with the Pioneer anomaly are further discussed.
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I. INTRODUCTION

Higher-order curvature theories of gravity have recently
received a great deal of attention in connection with the
possibility of giving rise to cosmological models in the
context of which one can address the issue of the accel-
erated expansion of the Universe without the need of
ad hoc scalar fields [1–6]. These theories involve correc-
tions to the Einstein-Hilbert action by considering a non-
linear function of the curvature scalar, f�R�. Earlier interest
in f�R� theories was motivated by inflationary scenarios as
for instance, in the Starobinsky model, where f�R� � R�
�� �R2 was considered [7]. Other motivations include
the search for wormhole-type solutions [8]. In these stud-
ies, different approaches are used throughout the literature.
These include the metric formalism, where the action is
varied with respect to the metric; the Palatini formalism,
where the metric and the connections are treated as sepa-
rate variables; and the metric-affine formalism, which
generalizes the Palatini variation, where the matter part
of the action depends and is varied with respect to the
connection [9].

Recently, it has been argued that most models proposed
so far in the metric formalism violate weak-field solar
system constraints [10], although viable models do exist
[11]. Furthermore, it has been argued that higher-order
gravity may explain the flatness of the rotation curves of
galaxies [12–14]. For instance, in the context of f�R� �

f0R
n theories, the obtained gravitational potential is shown

to differ from the Newtonian one due to the appearance of a
repulsive term that increases with the distance from the
center. The rotation curves of our Galaxy were studied, and
compared with the observed data, so to assess the viability
of these theories and to estimate the typical length scale of
the correction. It was shown at first approximation, where
spherically symmetric and thin disk mass distributions
were considered, that a good agreement with data can be
obtained with just the stellar disk and the interstellar gas.

In this paper we aim to derive the equation of motion for
massive particles in a class of generalized gravitational
models in which the Lagrangian of the gravitational field
is an arbitrary function of the curvature scalar. The study of
the equation of motion is of fundamental importance for
the understanding of the structure and properties of gravi-
tational theories. One of the most effective ways to test
gravitational theories is by matching their predictions with
the motion of real objects. For this purpose, we point out
that the covariant conservation equation for a symmetric
energy-momentum tensor, corresponding to matter is not,
in general, conformally invariant [15]. One is led to relax
the covariant conservation of the matter energy-
momentum by considering a coupling between the matter
Lagrangian and an arbitrary function of the curvature
scalar. It is interesting to note that nonlinear couplings of
matter with gravity were analyzed in the context of the
accelerated expansion of the Universe [16], and in the
study of the cosmological constant problem [17]. This is
reminiscent of the situation in scalar-tensor theories of
gravity and also arises in string theory. Nonminimal cou-
plings have also been extensively considered in the litera-
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ture, namely, between a scalar field and matter, including
baryons and dark matter [14,18–23]. These couplings
imply the violation of the equivalence principle, which is
highly constrained by solar system experimental tests
[24,25]. However, it has been recently reported, from
data of the Abell Cluster A586, that interaction of dark
matter and dark energy does imply the violation of the
equivalence principle [26]. Notice that the violation of the
equivalence principle is also found as a low-energy feature
of some compactified version of higher-dimensional
theories.

In what follows, by considering a coupling between a
function of the curvature scalar and the matter Lagrangian,
we show that in higher-order curvature theories of gravity
the equation of motion of massive particles is nongeodesic.
Thus, as shall be shown in Sec. II, the equation describing
the trajectory of the particle has an extra-force term, which
is orthogonal to its four-velocity. The nongeodesic nature
of motion is a distinct feature of these f�R� theories, found
also in the context of a scalar field model with a suitable
potential and proposed [27] as a solution for the Pioneer
anomaly problem [28]. We shall discuss this question in
Sec. III. Furthermore, it will also be addressed how our
approach can be regarded as a covariant realization of a
Modified Newtonian Dynamics (MOND) [29], even
though free from the arbitrariness of its phenomenological
version and somewhat simpler than its more recent real-
ization which involves besides gravity, a vector and two
scalar fields, the so-called TeVeS approach [30].

II. THE EQUATION OF MOTION IN f�R�
GRAVITATIONAL THEORIES

The action for the modified theories of gravity consid-
ered in this work takes the following form

 S �
Z �1

2
f1�R� � �1� �f2�R��Lm

� �������
�g
p

d4x; (1)

where fi�R� (with i � 1, 2) are arbitrary functions of the
Ricci scalar R and Lm is the Lagrangian density corre-
sponding to matter. Note that the strength of the interaction
between f2�R� and the matter Lagrangian is characterized
by a coupling constant �. Analogous nonlinear gravita-
tional couplings with a matter Lagrangian were also con-
sidered in the context of proposals to address the cosmic
accelerated expansion [16], and in the analysis of the
cosmological constant problem [17].

Varying the action with respect to the metric g�� yields
the field equations, given by
 

F1�R�R�� �
1
2f1�R�g�� �r�r�F1�R� � g���F1�R�

� �2�F2�R�LmR�� � 2��r�r� � g����

�LmF2�R� � �1� �f2�R��T
�m�
�� ; (2)

where we have denoted Fi�R� � f0i�R�, and the prime
represents the derivative with respect to the scalar curva-

ture. The matter energy-momentum tensor is defined as

 T�m��� � �
2�������
�g
p

��
�������
�g
p

Lm�

��g���
: (3)

Now, taking into account the covariant derivative of the
field equations (2), the Bianchi identities,r�G�� � 0, and
the identity

 ��r� �r���Fi � R��r
�Fi; (4)

one finally deduces the relationship

 r�T�m��� �
�F2

1� �f2
�g��Lm � T

�m�
�� �r�R: (5)

Thus, the coupling between the matter and the higher
derivative curvature terms describes an exchange of energy
and momentum between both. Analogous couplings arise
after a conformal transformation in the context of scalar-
tensor theories of gravity, and also in string theory. In the
absence of the coupling, one verifies the conservation of
the energy-momentum tensor [31], which can also be
verified from the diffeomorphism invariance of the matter
part of the action [24,32,33]. Note that from Eq. (5), the
conservation of the energy-momentum tensor is also veri-
fied if f2�R� is a constant or the matter Lagrangian is not an
explicit function of the metric.

In order to test the motion in our model, we consider for
the energy-momentum tensor of matter a perfect fluid

 T�m��� � ��� p�u�u� � pg��; (6)

where � is the overall energy density and p, the pressure,
respectively. The four-velocity, u�, satisfies the conditions
u�u� � 1 and u�u�;� � 0. We also introduce the projec-
tion operator h�� � g�� � u�u� from which one obtains
h��u� � 0.

By contracting Eq. (5) with the projection operator h��,
one deduces the following expression
 

��� p�g��u�r�u� � �r�p����� � u
�u��

�
�F2

1� �f2
�Lm � p��r�R���

�
� � u

�u�� � 0: (7)

Finally, contraction with g�� gives rise to the equation of
motion for a fluid element

 

Du�

ds
	
du�

ds
� ����u�u� � f�; (8)

where we have introduced the space-time connection ����,
which is expressed in terms of the Christoffel symbols
constructed from the metric, and where

 f� �
1

�� p

�
�F2

1� �f2
�Lm � p�r�R�r�p

�
h��: (9)

As one can immediately verify, the extra force f� is
orthogonal to the four-velocity of the particle,
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 f�u� � 0; (10)

which can be seen directly from the properties of the
projection operator. This is consistent with the usual inter-
pretation of the force, according to which only the compo-
nent of the four-force that is orthogonal to the particle’s
four-velocity can influence its trajectory.

Notice that massless particles do follow geodesics and
therefore for them f� � 0.

III. THE ACCELERATION LAW IN f�R� GRAVITY

To derive the acceleration law in the f�R� gravity, we
start by assuming that the motion of a particle in a space-
time with metric g�� is given by Eq. (8). The presence of
the extra force f� implies that the motion of the particle is
nongeodesic. For f� � 0 we recover the geodesic equation
of motion. The usual gravitational effects, due to the
presence of an arbitrary mass distribution, are assumed to
be contained in the term a�N � ����u

�u�. In three dimen-
sions and in the Newtonian limit, Eq. (8) can be formally
represented as a three-vector equation of the form

 

~a � ~aN � ~f; (11)

where ~a is the total acceleration of the particle, ~aN is the
gravitational acceleration, and ~f is the acceleration (per
unit mass) due to the presence of the extra force. If ~f � 0,
the equation of motion is the usual Newtonian one, ~a �
~aN , which for a pointlike mass distribution is given by ~a �
�GM~r=r3.

Taking the square of Eq. (11) one obtains

 

~f 
 ~aN �
1
2�a

2 � a2
N � f

2�; (12)

where the dot stands for the three-dimensional scalar prod-
uct. Equation (12) can be interpreted as a general relation
which expresses the unknown vector ~aN as a function of the
total acceleration ~a, the extra force ~f, and the magnitudes
a2, a2

N , and f2. From Eq. (12) one can express the vector
~aN , as one can easily verify, in the form

 ~a N �
1

2
�a2 � a2

N � f
2�

~a
~f 
 ~a
� ~C� ~f; (13)

where ~C is an arbitrary vector perpendicular to the vector
~f. In the following, we assume for simplicity, that ~C � 0.

The mathematical consistency of Eq. (13) requires that
~f 
 ~a � 0, that is, vectors ~f and ~a cannot be orthogonal to
each other. We consider that both vectors are parallel.
Therefore, we can represent the gravitational acceleration
of a particle in the presence of an extra force as

 ~a N �
1

2
�a2 � a2

N � f
2�

~a
fa
: (14)

In the limit of very small gravitational accelerations
aN � a, we obtain the relation

 ~a N �
1

2
a
�
1�

f2

a2

�
1

f
~a: (15)

If one denotes

 

1

aE
	

1

2f

�
1�

f2

a2

�
; (16)

then Eq. (15) can be immediately written as

 ~a N �
a
aE

~a; (17)

which has a striking resemblance with the equation put
forward phenomenologically in the so-called MOND ap-
proach [29]. It then follows that a �

������������
aEaN
p

, and since
aN � GM=r2, then a �

��������������
aEGM
p

=r � v2
tg=r, where vtg is

the rotation velocity of the particle under the influence of a
central force. Therefore, it follows that v2

tg ! v2
1 ���������������

aEGM
p

, from which arises the Tully-Fisher relation L
v4
1 as v4

1 � aEGM, where L is the luminosity that is
assumed to be proportional to the mass [29].

Notice however, that in the framework of f�R� gravity,
aE is not a universal constant as it depends on local
curvature features. This might explain why it is somewhat
difficult to match the whole galactic phenomenology
within the framework of MOND (see e.g. [34] for a critical
assessment). Nevertheless, this feature of our model opens
up quite interesting possibilities as we will see next.

Indeed, in general, the definition of aE, Eq. (16), allows
one to formally represent the extra force as a function of a
and aE, that is

 

f
aE
� �

�
a
aE

�
2
�

�
a
aE

� ����������������������
1�

�
a
aE

�
2

s
: (18)

Hence, through Eq. (16), Eq. (14) can be rewritten as

 

~a N �
a
aE

�
h
�
a
aE

��
aN
a

�
2
� 1

�
~a; (19)

where

 h
�
a
aE

�
	

1

2

�
a
aE

�
�1
�
a
aE
�

���������������
1�

a2

a2
E

s �
�1
: (20)

Upon substitution into Eq. (16), we verify a2 � v4
1=r

2 �
aEGM=r2, which yields for aE:

 aE �
f2r2

GM
� 2f: (21)

Suppose now that fGM�=r, where � is a constant, then
in the large r limit, when f ! 0, aE � �2 is a constant,
whose numerical value is determined by the physical prop-
erties of the extra force.

Given the environmental nature of this extra force, only
phenomenology can guide us in its identification. In the
galactic context, it seems natural to identify aE with the
a0 � 10�10 m=s2, the threshold acceleration of MOND.
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On the other hand, in the solar system and its neighbor-
hood, the Pioneer anomaly, whether a real effect unrelated
with systematic effects (see e.g. [35] and references
therein), suggests that aE � aPio � �8:5� 1:3� �
10�10 m=s2. Interestingly, our approach allows for a uni-
fied explanation for these two problems and can account
for the fact that the characteristic acceleration of each class
of observations is somewhat different.

IV. DISCUSSION AND CONCLUSIONS

In this work we have studied a class of generalized
gravitational models, in which the Lagrangian density of
the gravitational sector is an arbitrary function of the scalar
curvature and an explicit coupling between the scalar
curvature term and the matter Lagrangian density.
Interestingly, we have found that the equation of motion
of massive particles is nongeodesic. Therefore, the equa-
tion describing the trajectory of particles exhibits a term
representing an extra force, which is orthogonal to its four-
velocity. We have also shown that our models have similar
features with the phenomenological approach of MOND,
providing an alternative formulation to this proposal with-
out the need of introducing, such as in the TeVeS proposal,
extra fields besides the metric and the scalar curvature,
which now plays the role of an additional scalar field.
Furthermore, we have shown that the extra force is con-

sistent with the so-called Pioneer anomaly. A distinct
feature of the formalism outlined in this work is that it
allows to establish a connection between the problem of
the rotation curve of galaxies, via a solution somewhat
similar to the one put forward in the context of MOND,
and the Pioneer anomaly, even though the characteristic
acceleration of these two classes of observation is some-
what different, about 10�10 m=s2. Certainly, a more de-
tailed study of the solar system implications of our model
via the parametrized post-Newtonian analysis remains still
to be performed, but it will be considered elsewhere.
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[34] O. Bertolami and J. Páramos, arXiv:gr-qc/0611025.
[35] O. Bertolami and J. Páramos, arXiv:gr-qc/0702149.
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