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We derive the low-energy effective theory of gravity for a generalized Randall-Sundrum scenario,
allowing for a third self-gravitating brane to live in the 5D bulk spacetime. At zero order the 5D spacetime
is composed of two slices of anti-de Sitter spacetime, each with a different curvature scale, and the 5D
Weyl tensor vanishes. Two boundary branes are at the fixed points of the orbifold whereas the third brane
is free to move in the bulk. At first order, the third brane breaks the otherwise continuous evolution of the
projection of the Weyl tensor normal to the branes. We derive a junction condition for the projected Weyl
tensor across the bulk brane, and combining this constraint with the junction condition for the extrinsic
curvature tensor, allows us to derive the first-order field equations on the middle brane. The effective
theory is a generalized Brans-Dicke theory with two scalar fields. This is conformally equivalent to
Einstein gravity and two scalar fields, minimally coupled to the geometry, but nonminimally coupled to
matter on the three branes.
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I. INTRODUCTION

The possibility that our Universe might be a �3�
1�-dimensional membrane (brane) embedded in some
higher �4� n�-dimensional spacetime (bulk), as suggested
by M theory [1], has been extensively studied over recent
years. In brane models, although gravity can propagate in
the whole bulk, other matter fields are localized on the
brane. In particular, Randall and Sundrum [2,3] proposed a
brane-world model in which we live on a 4D brane em-
bedded in a 5D anti-de Sitter (AdS) spacetime. In [2] two
branes are placed at the fixed points (y � 0 and y � y0) of
an orbifold S1=Z2, where we identify y! �y and y�
y0 ! y0 � y, and y is the extra coordinate. The bulk AdS
spacetime can be then thought of as being bounded by the
two 4D branes. The induced metrics on the branes can be
flat (Minkowski) if a fine-tuning condition is imposed on
the vacuum energies or tensions of the branes:

 �0 � ��y0
�

6

�2
5

1

‘
; (1.1)

where �0 and �y0
are the tensions on the hidden brane at

y � 0 and on the visible brane at y � y0, �2
5 is the (5D)

gravitational coupling and ‘ is the AdS curvature scale.
Assuming the bulk metric obeys the 5D vacuum Einstein

equations, then the projected gravitational field equations
on the brane are modified with respect to general relativity
[4]. Two additional terms appear with respect to general
relativity: a local term, quadratic in the energy-momentum
tensor on the brane, and a nonlocal term, which is a
projection of the 5D Weyl tensor, namely E��.

The contribution to the 4D effective theory of E��,
which describes the contribution of the bulk gravitational
field on the brane and influences the brane cosmological

evolution, is of crucial importance [5]. Although the qua-
dratic source term becomes relevant only at high energies,
the projected Weyl tensor may remain non-negligible in the
low-energy regime, where one would hope to recover
general relativity.

The projected Weyl tensor generally has nonclosed
equations on the brane [4,5] and in general one should
solve the full bulk gravitational field equations. However it
is possible to derive a scheme which allows one to self-
consistently solve the 5D Einstein equations in the low-
energy regime, and carefully construct the projected Weyl
tensor on the brane.

A low-energy perturbation scheme was proposed in [6]
for the Randall-Sundrum (RS) two-brane scenario [2]. (See
also [7].) The low-energy regime is defined as the regime in
which the matter energy density on the brane is much
smaller than the RS brane tension (1.1). The perturbation
parameter is defined as the ratio between these two energy
densities, and the 5D Einstein equations can be solved at
different orders in the perturbation parameter. This method
allows one in principle to derive the effective Einstein
equations on the brane at each order, although of particular
interest is the first-order correction, which is the most
relevant at low energies.

In the original derivation by Kanno and Soda [6], the full
5D equations of motion were solved at each order in the
bulk by performing a perturbation expansion in the metric.
In the alternative derivation by Shiromizu and Koyama [8],
the expansion was rather done directly in terms of the
extrinsic curvature and the projected Weyl tensor, whose
equations of motion can then be solved in the bulk at each
order. Crucially, the use of the junction conditions enables
one to express the Weyl tensor as a function of the matter
content of the branes and the physical distance between the
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branes, interpreted as the radion field. This finally allows
for the derivation of the effective Einstein equations in-
duced on the brane at low energy. On both branes, at first
order, the final effective theory is called by the authors of
[6,8] a quasi-scalar-tensor gravity theory , where the Brans-
Dicke field couples through different gravitational cou-
pling constants with matter on each brane.

The low-energy effective actions on the negative and
positive brane, respectively, are [6,9]

 S� �
‘

2�2
5

Z
d4x

�������
�g
p

�
�R�

!����
�

�r��2
�

�
Z
d4x

�������
�g
p

�L� � �1���2L��; (1.2)

where !���� � �3��2��� 1���1, and

 S� �
‘

2�2
5

Z
d4x

�������
�ĝ

p �
�R̂�

!����
�

�r̂��2
�

�
Z
d4x

�������
�ĝ

p
�L� � �1���2L��; (1.3)

where!���� � 3��2�1�����1, and L� and L� are the
Lagrange densities for matter fields on the branes.

The theories, as expected for Brans-Dicke theories, are
conformally equivalent to Einstein gravity plus a mini-
mally coupled scalar field, described by

 SEF �
‘

2�2
5

Z
d4x

�������
�~g

p
� ~R� �~r��2�

�
Z
d4x

�������
�~g

p
�sinh4��=

���
6
p
�L�

� cosh4��=
���
6
p
�L��; (1.4)

where the conformal factors �2 (negative brane) and �̂2

(positive brane) are

 �2 �
1

sinh2��=
���
6
p
�
; �̂2 �

1

cosh2��=
���
6
p
�
; (1.5)

�����������������
�1���

p
� coth��=

���
6
p
�, and

�����������������
�1���

p
� tanh��=

���
6
p
�,

where �< 1 [10–12].
There are many additional complications to take into

account if one wishes to relate simple brane-world models
to realistic configurations in the context of superstring and
M theory. In any brane-world models it is important to
derive the low-energy effective theory on the 4D branes. In
this paper we consider just the effect of adding an addi-
tional brane in the bulk. We will focus on a generalization
of [8] to a three-brane scenario. The work presented in the
paper was originally presented in [12]. Since then a num-
ber of other authors [13–15] have investigated the low-
energy effective theory corresponding to three branes in an
AdS bulk, in particular, considering the effective potential
for D-branes in warped flux compactifications [13] and a

simple geometrical model for brane inflation [14]. A gen-
eralized Randall-Sundrum scenario with three branes was
also previously studied in [10,16], and multibrane colli-
sions were considered in [17].

The plan of the paper is the following. In the second
section we derive the low-energy effective theory in a
generalized Randall-Sundrum two-branes scenario, allow-
ing for a third brane to live in the bulk. In Sec. II A we
discuss the preliminaries, adapting the covariant formalism
of [8] to a three-brane model. In Sec. II B we discuss the
background solution and in Sec. II C we derive the effec-
tive Einstein equations at first order on the third brane. The
effective theory turns out to be a Brans-Dicke theory, with
two independent scalar fields, one minimally coupled with
the geometry. Finally in Sec. II D we show that a conformal
transformation relates the effective theory on the third
brane to Einstein gravity plus two minimally coupled
scalar fields. In the third and final section we draw our
conclusions.

II. FIRST-ORDER EFFECTIVE THEORY AT THE
THIRD BRANE

In this section we derive the low-energy effective theory
at first order in a three-brane scenario, using the perturba-
tive scheme introduced in Ref. [6]. We choose to follow the
covariant approach as in Ref. [8].

A. Preliminaries

We consider an extension of the Randall-Sundrum two-
brane model [2]. The three branes are separated by slices of
AdS bulk, each characterized by a different curvature
scale, as is schematically shown in Fig. 1. Branes I and II
are still at the fixed points of the S1=Z2 orbifold, and
therefore they respect a Z2 symmetry, whereas brane III

 

FIG. 1. The branes are separated by slices of AdS 5D spaces,
each with a different curvature scale, ‘. The sign � and � are
placed on either side of the third brane to show our convention
for the orientation of the normal vector field. The induced
metrics, q��, on the three branes are conformally rescaled by
the geometrical warp factor.
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is not at a fixed point of the orbifold. Two natural scalar
degrees of freedom characterize this scenario: one associ-
ated with the overall distance between the two boundary
branes, one associated with the relative position of the third
bulk brane.

The Randall-Sundrum metric [2] reads

 ds2 � e2��y;x�dy2 � q���y; x�dx�dx�; (2.1)

where q�� is the metric induced on the brane. The normal
vector field n� is chosen to have the same orientation
throughout the bulk, so that locally, at each brane, it is
pointing in the same direction and q�� � q5D

�� � n�n� if
q5D
�� is the 5D metric. The proper distances between the

branes are defined via

 d1�x� �
Z ~y

0
e��y

0;x�dy0; d2�x� �
Z y0

~y
e��y

0;x�dy0:

(2.2)

Our objective is to derive at first order the effective
Einstein equations on the third (i.e. middle) brane: this
will be enough to determine the effective Einstein equa-
tions on the other two branes, as they are related to the
Einstein equations on the third brane by an appropriate
conformal transformation, given the specific form of the
metric (2.1) which in turn implies that the background
metrics on the three branes can be conformally trans-
formed into each other.

In the perturbative scheme introduced in Ref. [6], the
low-energy regime is defined as the regime in which the
energy densities on the branes are negligible with respect
to the brane tension,

 	i � j�ij; (2.3)

or, taking into account (1.1) and 8
G�4� � �2
5‘
�1 where

G�4� is the effective 4D Newton’s constant [4],

 

�
‘
L

�
2
� 1; (2.4)

where ‘ is the bulk curvature scale in the AdS slice and L is
the brane curvature scale. Therefore the background solu-
tion is the vacuum spacetime, and perturbations are intro-
duced as matter is added on the branes. The parameter of
expansion is given by [6]

 � �
�
‘
L

�
2

(2.5)

and, accordingly, expansions of the extrinsic curvature

 K�
� 	

1
2q
��Lnq�� �

1
2q
��e��@yq��; (2.6)

and the projected 5D Weyl tensor,

 E�� 	 C�	��n	n� (2.7)

around the vacuum solutions can be considered as follows
[8]

 K�
� � K��0�

� � �K��1�
� � �2K��2�

� � . . . ; (2.8)

 E�� � �E��1�� � �2E��2�� � . . . ; (2.9)

where E��0�� � 0 for the Randall-Sundrum brane-world.
With the expansions (2.8) and (2.9), the evolution equa-
tions for K�

� and E�� can be solved at different orders, and
subsequently, so can the induced Einstein equations on the
brane [6,8]. In particular the evolution equations in the
bulk for K�

� and E�� are given by the Lie derivatives along
n�, as these describe the changes of both the tensors along
the integral curves of the normal vector field n�.

At zero order for three branes, i.e. for the background
solution, the equations are no more complicated than in the
two-brane case. The bulk solution between each pair of
branes corresponds to a region of anti-de Sitter, with
curvature scales ‘1 > ‘2, and the Weyl tensor vanishes at
this order. In each region the extrinsic curvature tensor is
constant but has two different values in the two different
slices of AdS spaces (giving rise to a constraint on the
tension of the bulk brane).

At first order, some further steps are required, the reason
being mainly that the third brane breaks the otherwise
continuous evolution of the Weyl tensor in the bulk.
Briefly, the plan for deriving the first-order effective theory
is the following

(i) Junction conditions—Write the junction conditions
for each of the three branes. In particular the third
brane (y � ~y) is not at a fixed point of the orbifold so
that we have to include the jump suffered by the
extrinsic curvature tensor at the passage through
brane III.

(ii) Evolution equations—Write the evolution equations
at first order (i.e. the Lie derivatives at first order) for
E�� and K�

� which are the same as in the two-brane
scenario. However the first-order solutions to these
equations now hold only separately in the two AdS
regions of spacetime, so special attention is required
at brane III where in general the solutions are dis-
continuous. In particular, from the Lie derivative of
K�
��~y�, we write the junction condition at the third

middle brane as a function of the source terms, the
tensor E�� at both sides of this brane (� and � as
sketched in Fig. 1) and the kinetic terms associated
with the proper distances d1 and d2 (2.2).

(iii) Consistency of Einstein equations on brane III—
Impose the requirement of consistency of the in-
duced Einstein equations on the third brane. This
leads to a junction condition for E�� at this brane.

(iv) Weyl tensor—Obtain a system of two independent
equations in the two unknownsE���~y�� and E���~y��,
from the previous steps. The system is then solved
for E���~y�� (analogously it could be solved for
E���~y��). We then obtain the Weyl tensor on one
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side of brane III as a function of the sources and the
kinetic terms associated with both d1 and d2 (2.2).

(v) Einstein equations—Finally, substituting the ex-
pressions for K�

��~y�� and E���~y�� in the equation [8]

 G�
�j�~y �

�
�

2

‘2
�K�

� � �
�
�K�j�~y � E

�
�j�~y

�
(2.10)

enables us to obtain the Einstein equations on brane
III.

We show that the effective gravity theory obtained at first
order is a generalized Brans-Dicke theory with two scalar
fields.

B. Junction conditions and background solution

If the direction of the normal vector field n� to a brane is
chosen to be the same throughout the bulk, the junction
conditions read

(i) brane I

 �K�
� � �

�
�K�j0 � �

�2
5

2
���0�

�
� � T

�
� j0�; (2.11)

(ii) brane III

 �K�
� � �

�
�K���j~y � ��2

5���~y�
�
� � T

�
� j~y�; (2.12)

(iii) brane II

 �K�
� � �

�
�K�jy0

�
�2

5

2
���y0

��� � T
�
� jy0
�; (2.13)

where the factor 1=2 appears on the right-hand side of
Eqs. (2.11) and (2.13) because we have Z2-symmetry at
the boundary branes. We therefore assume the tension on
brane I to be positive (�0 > 0) and the tension on brane II
to be negative (�y0

< 0).
At the lowest order, matter is neglected and as in the

two-branes case the only equation to solve is the equation
for K�

� , as E�� is taken to be zero at this order. In the bulk
and at this order, the Lie derivative for K�

� reads [8]

 L nK
��0�
� � e��@yK

��0�
� �

1

‘2 �
�
� � K

�0�
� K��0�

 : (2.14)

In each AdS slice Eq. (2.14) has the solution [8]

 K��0�
� � �

1

‘
���; (2.15)

where ‘ is now either ‘1 or ‘2 depending on which AdS
slice is under consideration. Moreover, from the definition
of the extrinsic curvature (2.6), in each AdS region the
metric at zero order reads [8]

 q�0����y; x� � e�2d�y;x�=‘h���x�; (2.16)

where

 d 	
Z y

�y
e��y

0;x�dy0 (2.17)

is the proper distance between �y, any fixed point on the
extra-coordinate axis, and y, both points being in the same
AdS region, and h���x� is a tensor field which does not
depend on the extra coordinate y (but will in general
depend on the coordinates on some hypersurface orthogo-
nal to the extra coordinate, and, in particular, on the
coordinates on the branes).

In our generalized Randall-Sundrum type scenario
Eqs. (2.11), (2.13), and (2.15) imply

 K�
� �

8<:�
�2

5

6 �0�
�
� 0< y< ~y;

�2
5

6 �y0
��� ~y < y < y0:

(2.18)

Furthermore for the background solution we can write

 �K�
� � �

�
�K���j~y � �K

�
� � �

�
�K���jy0

� �K�
� � �

�
�K���j0

(2.19)

and we then conclude, using solution (2.18), that there exits
a fine-tuning condition constraining the tension on brane
III, namely [18]

 �0 � �y0
� 2�~y � 0: (2.20)

Finally, again from solution (2.15), the condition (2.20)
can be expressed in terms of the AdS curvature scales ‘1;2

as

 �~y �
3

�2
5

�‘1 � ‘2�

‘1‘2
; (2.21)

where for simplicity we will assume �~y > 0 and hence
‘1 > ‘2.

C. First-order effective theory

At first order and in the bulk, the Lie derivatives for the
Weyl tensor and the extrinsic curvature read [8]

 L nE
�1�
�� �

2

‘
E�1���; (2.22)

 L nK
��1�
� � ��D�D���D��D��� �

2

‘
K��1�
� � E��1�� ;

(2.23)

where D� is the covariant derivative with respect to the
induced metric q���y�. These first-order evolution equa-
tions have solutions in each AdS slice [8]

 E��1�� �y; x� � e4d=‘E��1�� � �y; x�; (2.24)

where the zero-order induced metric (2.16) has been used
to raise the indices, and [8]
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 K��1�
� �y; x� � e2d=‘K��1�

� � �y; x� �
‘
2
�1� e�2d=‘�E��1�� �y; x�

�

�
D�D

�d�
1

‘

�
D�dD

�d�
1

2
����Dd�2

��
;

(2.25)

where again d is the proper distance (2.17) between a
generic point �y on the extra-coordinate axis and y.

In the following we drop the first-order superscripts,
assuming that all the quantities are evaluated at first order.

We define

 

�K �
�jy 	 K�

��y; x� � �
�
�K�y; x�: (2.26)

From Eq. (2.25), and integrating from brane I to brane III,
we have
 

�K�
�j�~y � e2d1=‘1

�
�
�2

5

2
T�� j0

�
�
‘1

2
�1� e�2d1=‘1�


 E��j�~y � �D�D� � ���D2�d1

�
1

‘1

�
D�d1D�d1 �

1

2
����Dd1�

2

�
; (2.27)

where we have used Eq. (2.11). On the other side of brane
III, but integrating back from brane II, we have
 

�K�
�j�~y � e�2d2=‘2

�
�2

5

2
T�� jy0

�
�
‘2

2
�1� e2d2=‘2�E��j�~y

� �D�D� � ���D2�d2

�
1

‘2

�
D�d2D

�d2 �
1

2
����Dd2�

2

�
; (2.28)

where this time we have used Eq. (2.13). Note that in
Eqs. (2.27) and (2.28) D� is the covariant derivative in-
duced on brane III.

Because of the junction conditions for K�
� on the two

sides of brane III, E�� does not evolve continuously from
brane I to brane II, unlike the two-brane scenario where
(2.24) can be applied everywhere in the bulk. In fact,
continuity of the induced metric implies that the induced
Einstein tensor should also be continuous

 G�
�j�~y � G�

�j�~y : (2.29)

At first order Eq. (2.10) thus gives a junction condition for
the projected Weyl tensor across the bulk brane

 E��j�~y � E
�
�j�~y � �

2

‘2

�K�
�j�~y �

2

‘1

�K�
�j�~y : (2.30)

In order to obtain an explicit expression for E��j~y on
either side of brane III, we extract from Eqs. (2.12), (2.27),
(2.28), and (2.30) a set of two independent equations for the
unknowns E��j�~y and E��j�~y , which can then be solved. From

(2.12), (2.27), and (2.28) we obtain a first equation forE��j�~y
and E��j�~y ,

 

‘2

2
AE��j�~y �

‘1

2
BE��j�~y �

�2
5

2
�2T�� j~y � e�2d2=‘2T�� jy0

� e2d1=‘1T�� j0� � �D�D� � ���D2��d2 � d1�

�
1

‘2

�
D�d2D

�d2 �
1

2
����Dd2�

2

�
�

1

‘1

�
D�d1D

�d1 �
1

2
����Dd1�

2

�
; (2.31)

where

 A � �1� e2d2=‘2�; B � �1� e�2d1=‘1�: (2.32)

The second independent equation for E��j�~y and E��j�~y is directly obtained from (2.30) and Eqs. (2.27) and (2.28)

 

E��j�~y � E
�
�j�~y � �1� e

2d2=‘2�E��j�~y � �1� e
�2d1=‘1�E��j�~y �

�2
5

‘2
�e�2d2=‘2T�� jy0

� �
�2

5

‘1
�e2d1=‘1T�� j0� � 2�D�D�

� ���D2�

�
d2

‘2
�
d1

‘1

�
� 2

�
D�

d2

‘2
D� d2

‘2
�

1

2
���

�
D
d2

‘2

�
2
�
� 2

�
D�

d1

‘1
D� d1

‘1
�

1

2
���

�
D
d1

‘1

�
2
�
: (2.33)

Equations (2.31) and (2.33) can be solved, for instance, for E��j�~y [12], and the unique induced Einstein equation on the
bulk brane are then derived, using the obtained expression for E��j�~y in Eq. (2.10). After some rearrangements, we finally
obtain

LOW-ENERGY EFFECTIVE THEORY FOR A RANDALL- . . . PHYSICAL REVIEW D 75, 104001 (2007)

104001-5



 

G�
�j~y �

�2
5

‘3

�
T�� j~y �

e4d1=‘1

2
T�� j0

�
�
�2

5

2‘3
e�4d2=‘2T�� jy0

�
e2d1=‘1

‘3
�D�D

� � ���D2�d1 �
e�2d2=‘2

‘3
�D�D

� � ���D2�d2

�
e2d1=‘1

‘1‘3

�
D�d1D

�d1 �
1

2
���D2d1

�
�
e�2d2=‘2

‘2‘3

�
D�d2D

�d2 �
1

2
���D2d2

�
; (2.34)

where ‘3 is defined as follows

 ‘3 	
‘1

2
�e2d1=‘1 � 1� �

‘2

2
�1� e�2d2=‘2�

� ‘1e
d1=‘1 sinh

�
d1

‘1

�
� ‘2e

�d2=‘2 sinh
�
d2

‘2

�
: (2.35)

We now show explicitly that the effective theory at first
order is indeed a generalized Brans-Dicke theory with two
independent scalar fields. We may define a first dimension-
less scalar field � to be

 ‘� 	 ‘3; (2.36)

where ‘ is an arbitrary unit of length and ‘3 is given in
(2.35), so that the kinetic terms for d1 and d2 in (2.34) can
be rewritten as

 

1

�
�D�D� � ���D2��� C; (2.37)

where
 

C � �
3e2d1=‘1

‘1‘3

�
D�d1D�d1 �

1

2
���D2d1

�

�
3e�2d2=‘2

‘2‘3

�
D�d2D�d2 �

1

2
���D2d2

�
: (2.38)

We can define a second scalar field, �, which will have
only first-order derivatives appearing in Eq. (2.34) and
should be as well a function of the two proper distances
d1 and d2 (2.2). In general we can write

 � 	 ��u�;

where u � u�d1; d2� and hence

 ‘D���u�d1; d2�� � �1D�d1 ��2D�d2; (2.39)

where �i 	 ‘�0 @u@di if �0 � d�
du . Our objective is to be able

to write C defined in Eq. (2.38) as
 

C �
!���

�2

��
D��D���

1

2
����D��2

�

� ����
�
D��D���

1

2
����D��2

��
: (2.40)

Considering that in C there are no mixed terms
D�d1D

�d2 or D�d2D
�d1, we get a first constraint on

���� and �, which reads

 e2d1=‘1�2d2=‘2 � ��1�2; (2.41)

where �i 	 ‘�@�=@di� and �i are defined as before.

A second constraint comes directly from the form of
Eq. (2.40)
 

‘2�D��D��� ��D��D����

� �e4d1=‘1 � ��2
1�D�d1D

�d1

� �e�4d2=‘2 � ��2
2�D�d2D�d2: (2.42)

Comparing the ratio of the coefficients in Eqs. (2.38) and
(2.42) then implies

 

e4d1=‘1 � ��2
1

e�4d2=‘2 � ��2
2

� �
‘2

‘1
e2d1=‘1�2d2=‘2 : (2.43)

Using (2.41) to eliminate � in (2.43), we obtain

 

�
1�

�
�1

�2

�
e�2d1=‘1�2d2=‘2

��
‘1 � ‘2

�
�2

�1

��
� 0: (2.44)

The solutions of (2.44) are

 

�1

�2
� e2d1=‘1�2d2=‘2 ;

�1

�2
�
‘2

‘1
: (2.45)

The first solution corresponds to the limit in which � �
� and both coefficients on the right-hand side of (2.42)
vanish. Choosing the second solution of (2.44) and using
the definition of �i, we obtain

 u �
d1

‘1
�
d2

‘2
: (2.46)

From the first constraint (2.41) and using �i � �0‘�‘i�
�1

we obtain a differential equation for ��u� which reads

 �0 �

����������
‘1‘2

p
‘
����
�
p eu

2‘�� ‘1 � ‘2

‘1e2u � ‘2

; (2.47)

where we have used (2.36).
In order for � to be only a function of u, and not of �, as

the scalar fields should be independent, we require that in
Eq. (2.47)

 ‘2���� �
�
‘��

‘1

2
�
‘2

2

�
2
: (2.48)

Equation (2.47) then becomes

 �0 �
2
����������
‘1‘2

p
eu

‘1e
2u � ‘2

(2.49)

and integrating we obtain

 ��u� � ln

��������
�
z� 1

z� 1

���������; where z �

�����
‘1

‘2

s
eu (2.50)
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so that

 eu �

�����
‘2

‘1

s
coth

�
�

2

�
: (2.51)

Imposing now (2.40), from both (2.41) and (2.43), we
obtain

 !��� � �
3

2

�
‘�

‘�� �‘1

2 �
‘2

2 �

�
: (2.52)

Finally, the Einstein equations on brane III (2.34) can be
written as

 G�
�j~y �

�2
5

‘�
T�� j~y �

�2
5

�

�
2‘�

‘2
1

�
cosh4

�
�

2

�
T�� j0 �

�2
5

�




�
2‘�

‘2
2

�
sinh4

�
�

2

�
T�� jy0

�
1

�
�D�D� � ���D2��

�
!���

�2

�
D��D���

1

2
����D��2

�

�
!���

�2 ����
�
D��D���

1

2
����D��2

�
;

(2.53)

where the scalar fields � and � are defined as in
Eqs. (2.36) and (2.50), and ���� and !��� are defined in
Eqs. (2.48) and (2.52).

We can conclude from (2.53) that at low energy the
effective theory on brane III is a generalized Brans-Dicke
theory with two scalar fields, namely � and �. This
conclusion is a generalization of the result obtained in
[6,8] for a two-brane system. Note that although we find
the Brans-Dicke parameter on the bulk brane, !���, is
negative, it is greater than �3=2 and thus there is no
instability. This is most clearly seen when one writes the
effective action in terms of scalar fields minimally coupled
to the scalar curvature, i.e., in the Einstein frame. Also
!������� is negative and thus the kinetic terms for the
second field � are also are of the correct sign and again
there is no instability.

D. The Einstein frame

In this last subsection, we show that the theory is, as
expected for Brans-Dicke theories, conformally equivalent
to Einstein gravity with two scalar fields minimally
coupled with respect to the metric.

The effective action which yields the field equa-
tions (2.53), when written in terms of the induced metric
on brane III, reads

 

S~y�
‘

2�2
5

Z
d4x

�������
�g
p

�
�R�

!���
�
��r��2������r��2�

�

�
Z
d4x

�������
�g
p

�L�~y��F 0��;��L�0�

�F y0
��;��L�y0��; (2.54)

where

 F 0 � 2
‘2�

‘2
1

cosh4

�
�

2

�
; F y0

� 2
‘2�

‘2
2

sinh4

�
�

2

�
:

(2.55)

Performing a conformal transformation ~g�� � �2g��, the
effective action on brane III (2.54) becomes
 

~S~y �
1

2�2
4

Z
d4x

�������
�~g

p ��
~R�

3

2

�~r�

�

�
2
�

�!���
��~r�

�

�
2
� ����

�~r�

�

�
2
��

�
�4

5

‘2�4
4

Z
d4x

�������
�~g

p
��2�L~y �F 0��;��L�0�

�F y0
��;��L�y0��; (2.56)

where we chose

 ���2 � �2
5�‘�

2
4�
�1 (2.57)

and the Ricci scalar is now the Ricci scalar with respect to
the conformally transformed metric. The constant �4 is an
arbitrary constant which is related to the effective 4D
Newton’s constant G�4� via 8
G�4� � �2

4.
Defining  � 2‘�‘1 � ‘2�

�1 (which, given our choice
‘1 > ‘2, is a positive constant) and taking into account
(2.48) and (2.52), action (2.56) becomes
 

~S~y �
1

2�2
4

Z
d4x

�������
�~g

p �
~R�

3

2

�
1

��� 1�

�~r�

�

�
2

� ~�����~r��2
��
�

�4
5

‘2�4
4

Z
d4x

�������
�~g

p
��2


 �L~y �F 0��;��L�0� �F y0
��;��L�y0��;

(2.58)

where ~���� � ��� 1�����1. We now define

 �~r��2 �
3

2

�
1

�� 1

��~r�

�

�
2

(2.59)

from which we get, as in the two-brane case,

 coth
�
����
6
p

�
�

�����������������
�� 1

p
: (2.60)
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Finally given (2.60) we have
 

~S~y �
1

2�2
4

Z
d4x

�������
�~g

p �
~R� �~r��2 �

3

2
cosh2

�
����
6
p

�
�~r��2

�

�
�4

5
2

‘2�4
4

Z
d4x

�������
�~g

p
sinh4

�
����
6
p

�
L~y

�
�4

5
2

�4
4

Z
d4x

�������
�~g

p
2cosh4

�
����
6
p

��
cosh4��2 �

‘2
1

L�0�

�
sinh4��2 �

‘2
2

L�y0�

�
: (2.61)

III. CONCLUSIONS AND DISCUSSIONS

In this paper we derived the low-energy effective theory
for a generalized Randall-Sundrum scenario, with three 4D
branes embedded in a 5D AdS bulk. Two of the branes are
located at the fixed points of the orbifold, but the third
brane can be located anywhere in between. By construc-
tion, the metrics on the three branes are all connected by an
appropriate conformal transformation. It is therefore
enough to derive the 4D effective Einstein equations
on the third brane, as the effective theory on the other
branes can then be obtained performing a conformal
transformation.

We followed the covariant approach adopted in Ref. [8]
to derive the low-energy effective theory for a two-brane
Randall-Sundrum system. We considered an expansion of
the extrinsic curvature and of the projected Weyl tensor,
where the expansion parameter is the ratio of the energy
density on the brane to the vacuum energy density as in
Refs. [6,8]. In each separate region of the AdS bulk, the
evolution equations for the extrinsic curvature tensor and
for the projected Weyl tensor are, at each order, the same as
in the two-brane scenario and solutions to the first-order
equations can be found separately in each AdS slice.

The presence of the third brane obliges the evolution of
the projected Weyl tensor to be discontinuous. From the
requirement of consistency of the Einstein equations and
from the junction conditions for the extrinsic curvature
tensor at the third brane we obtain a junction condition
for the projected Weyl tensor in terms of the extrinsic
curvatures on both sides of the branes and the sources on
both branes. Once an expression for the Weyl tensor as a
function of the sources on the branes was obtained, we
have finally derived the first-order 4D effective Einstein
equations on the third brane. The resulting theory is a

generalized Brans-Dicke theory with two independent sca-
lar fields. The appearance of two independent scalar fields
is not surprising as the three-brane scenario is character-
ized by two natural scalar degrees of freedom: the overall
size of the orbifold and the position of the third brane. A
nonminimal coupling of the fields is found with respect to
matter on the other two branes. We have then showed that
the effective theory is conformally equivalent to Einstein
gravity plus two scalar fields minimally coupled with the
geometry.

We can conclude that the interpretation of the radion
field in the two-brane scenario can be generalized to a
three-brane scenario in which there exists an additional
scalar degree of freedom. In the two-brane case the real-
ization at first order of the nonlocal Einstein gravity, with
the generalized dark radiation term, as a local effective
theory is described by the radion field which appears in the
equations through its derivatives. In the three-brane case,
as in the case where a scalar bulk field is living in the bulk
[19,20], two scalar fields both contribute to the realization
of the (local) effective theory on the brane.

A moving bulk brane of the sort described here was
discussed as a simple realization of the original ekpyrotic
scenario [10] where the collision of the bulk brane with a
Minkowski boundary brane was interpreted as initiating a
hot big bang cosmology on the brane. (A moving bulk
brane has also been studied in M theory effective action
[21].) Unlike the collision of two boundary branes in the
later cyclic model [22], the bulk spacetime does not dis-
appear at the collision of a bulk brane with the boundary
and hence the outgoing state is completely determined by
the incoming state [17]. If the boundary brane tension does
not obey the RS fine-tuning (1.1) then it may be inflating
before the collision and the possibility that a collision of
the bulk brane with the boundary may trigger the end of
inflation was studied in Ref. [14], using the effective action
derived in this paper. It remains to be seen whether the
techniques described in this paper might be suitable for
deriving a low-energy effective action capable of incorpo-
rating the gravitational backreaction of moving branes in
flux-compactification scenarios, see, e.g., Refs. [13,23].
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