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We study the collision of two flat, parallel end-of-the-world branes in heterotic M theory. By insisting
that there is no divergence in the Riemann curvature as the collision approaches, we are able to single out a
unique solution possessing the local geometry of (2d compactified Milne)/Z2 � R3, times a finite-volume
Calabi-Yau manifold in the vicinity of the collision. At a finite time before and after the collision, a second
type of singularity appears momentarily on the negative-tension brane, representing its bouncing off a zero
of the bulk warp factor. We find this singularity to be remarkably mild and easily regularized. The various
different cosmological solutions to heterotic M theory previously found by other authors are shown to
merely represent different portions of a unique flat cosmological solution to heterotic M theory.
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I. INTRODUCTION

The riddle of the initial singularity is one of the most
basic challenges in cosmology. In standard four-
dimensional general relativity, the Riemann curvature di-
verges at the big bang signaling an irretrievable breakdown
of the theory. In higher-dimensional string and M theory,
however, the nature of the initial singularity is significantly
altered. Within the higher-dimensional picture, the
Riemann curvature may remain small all the way to the
singularity. In this situation, string and M theory correc-
tions to the background geometry will be negligible to a
first approximation, allowing one to attempt to study the
propagation of strings and branes right up to, and perhaps
even across, the singularity.

In this paper, we wish to study such a model of the
cosmological background spacetime, within an especially
well-motivated theoretical framework. Heterotic M theory
is built on the profound correspondence between super-
gravity and strongly coupled heterotic string theory [1,2],
and it remains one of the most promising approaches to the
unification of particle physics and gravitation. From the
perspective of particle phenomenology, heterotic M theory
makes full use of branes and of the extra M theory dimen-
sion, in order to solve the fundamental puzzles of chirality
and of the difference between the grand unified theory
(GUT) and Planck scales. From a cosmological perspec-
tive, heterotic M theory provides a setup in which standard
model matter is localized on branes, allowing the back-
ground density of such matter to remain finite at the initial
singularity.

We consider the collision of two flat, parallel end-of-the-
world branes within heterotic M theory [3,4]. From the
standpoint of the four-dimensional effective theory, this
event is a cosmological singularity of the usual cata-

strophic type. Yet from the higher-dimensional standpoint,
the situation is far less singular. The density of standard
model matter remains finite. Moreover, even the bulk
spacetime between the branes is relatively well behaved:
as we shall show, the Riemann curvature remains finite for
all times away from the collision event itself. In the case of
trivial, toroidal compactifications of M theory, this phe-
nomenon is well known. Here, the colliding-brane space-
time is locally flat, a product of two-dimensional
compactified Milne spacetime, modded out by Z2, with
nine-dimensional flat space. At the collision itself, the
spacetime is non-Hausdorff since one dimension momen-
tarily disappears. Nevertheless, the low-energy degrees of
freedom, described near the collision by winding M2
branes (or, equivalently, weakly coupled heterotic strings),
possess a regular evolution across the singularity [5].

In more realistic models, six spatial dimensions are
compactified on a Calabi-Yau manifold. The dynamics
are then described by a five-dimensional effective field
theory known as heterotic M theory, which is a consistent
truncation of 11-dimensional supergravity coupled to the
boundary branes [6,7]. Recently, an improved formulation
has been developed which avoids problematic terms in-
volving squares of delta functions [8,9], giving one greater
confidence that classical solutions of the five-dimensional
effective theory do indeed provide consistent M theory
backgrounds. In this paper, we shall show that these equa-
tions possess a unique global solution representing the
collision of two flat end-of-the-world branes which, in
the vicinity of the collision, reduces to (2d compactified
Milne)/Z2 � R3, times a finite-volume Calabi-Yau mani-
fold. In this solution, the Riemann curvature is again
bounded at all times away from the collision event itself.
Our solution offers the intriguing prospect of modeling the
big bang as a brane collision in a setup with a high degree
of physical realism.

The idea that the big bang was a brane collision in
heterotic M theory was first proposed in [3,4]. However,
the solution representing the approach and collision of two
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branes has not so far been given in complete form.
Important steps towards such a solution were taken by
Chamblin and Reall [10], who found a static solution for
the bulk geometry in which moving, spatially flat branes
can be consistently embedded. The bulk geometry pos-
sesses a timelike virtual naked singularity lying ‘‘beyond’’
the negative-tension boundary brane. Two qualitatively
different solutions then exist according to whether the
boundary branes move through the static bulk in the
same, or in opposing, directions. Both of these solutions,
together with their time-reverses, are naturally combined
within our global solution. In a more recent paper [11],
Chen et al. considered the solution where both the positive-
and negative-tension boundary branes move towards the
virtual singularity. They found an exact solution in a
convenient alternative coordinate system which is comov-
ing with the branes. However, Chen et al. found that both
branes encounter the naked singularity, resulting in the
annihilation of the entire spacetime.

In this paper, we shall argue for a different fate of the
Chen et al. solution. We shall show that the naked singu-
larity is ‘‘repulsive’’ as far as the negative-tension brane is
concerned, so the brane approaches it with vanishing
speed. The ensuing singularity is extremely mild and is
easily regulated, for example, by introducing an arbitrarily
small amount of matter on the negative-tension brane. The
result is a smooth bounce, at finite Calabi-Yau volume, so
that the negative-tension brane recoils from the singularity

and collides with the positive-tension brane. The end-of-
the-world brane collision is locally (2d compactified
Milne)/Z2 � R3, with a finite-volume Calabi-Yau mani-
fold. Assuming that M theory can deal with this second
singularity in the manner described by [5], we can follow
the system through. The M theory dimension then reap-
pears and the negative-tension brane is thrown back to-
wards the naked singularity. A second bounce of the
negative-tension brane occurs before the system continues
into the future with both branes expanding. The complete
solution is illustrated in the Kruskal diagram shown in
Fig. 1.

We will present the single, global solution in two differ-
ent coordinate systems, each of which has some merit. In
the first system, which comoves with the branes so that
they are kept at fixed coordinate locations, only the bulk is
dynamic. Here, we are able to derive the solution as a series
expansion in the relative rapidity of the branes at the
collision. This method has been previously applied to solve
for the bulk geometry and cosmological perturbations of
the Randall-Sundrum model [12]. The chief virtue of this
brane-comoving coordinate system is that it simplifies the
junction conditions on the branes, and allows for a man-
ageable treatment of cosmological perturbations.

In the second coordinate system, the branes move
whereas the bulk is static. The boundary conditions that
we impose at the moment of the collision, in conjunction
with the assumed cosmological symmetry and spatial flat-

FIG. 1 (color online). A Kruskal plot of the entire solution, in the spirit of Chen et al. [11]. The exact trajectories of the positive- and
negative-tension branes are plotted in dark and light shades respectively (red and green online), as they move through a static bulk
spacetime containing a naked singularity (indicated by the thick black lines). Note, however, that only a slice of this bulk spacetime,
namely, that sandwiched between the two branes, is actually present in the orbifold compactification. Representative orbits of the bulk
Killing vector field are shown with dashed lines, while the solid straight lines indicate the Boyer axes. The ‘‘bounces’’ of the negative-
tension brane off the naked singularity, as well as the collision of the branes themselves, are shown at a magnified scale in the inset. In
this plot, we have chosen the relative rapidity of the brane collision to be 2y0 � 1. Analogous plots for greater collision rapidities may
be found in Fig. 4.
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ness of the branes, allows us to derive a modified Birkhoff
theorem singling out a unique solution. Away from the
brane collision, this solution has finite Riemann curvature
throughout, at least after suitable regularization of the
bounce of the negative-tension brane. The ensuing evolu-
tion, before and after the latter event, is described by
Chamblin and Reall’s two solutions [10], the second of
which Chen et al. succeeded in rewriting in a brane-
comoving coordinate system.

The outline of this paper is as follows. In Sec. II, we
review the standard static solution of heterotic M theory
and fix notation. In Sec. III, we derive the colliding-brane
solution in brane-comoving coordinates, as an expansion in
the rapidity of the brane collision. In Sec. IV, we discuss
the same solution in a coordinate system in which the bulk
is static and the branes are moving. Considering the rele-
vant modified Friedmann equation, we then show how the
negative-tension brane bounces when an arbitrarily small
amount of matter is present on the brane. Three appendices
are devoted to technical matters. The first proves a
Birkhoff-like theorem for the bulk. The second derives
the equations governing the motion of branes in the bulk,
and the third discusses the Kruskal extension of the bulk
geometry. These calculations are used to make accurate
plots of the brane trajectories, like that shown in Fig. 1.

II. HETEROTIC M THEORY

Eleven-dimensional supergravity can be compactified
on a Calabi-Yau 3-fold to give a minimal five-dimensional
supergravity theory [1,2,6,7]. Although the dimensional
reduction of the graviton and the 4-form flux generates a
large number of fields, it is consistent to retain only the
five-dimensional graviton, and a scalar � parametrizing
the volume of the Calabi-Yau manifold (namely, VCY �
e�). This theory can be consistently coupled to two four-
dimensional boundary brane actions, provided that one
keeps, in addition to gravity and the scalar, the components
of the 4-form flux with all indices pointing in the Calabi-
Yau directions. This flux thus appears as a scalar in five
dimensions (albeit a constant one, as can be seen from its
Bianchi identity [6,7]), and it leads to a potential for�: The
resulting dimensionally reduced effective action is given
by
 

S �
Z

d5x
�������
�g
p

�
R�

1

2
�@��2 � 6�2e�2�

�

� 12�
Z
y��y0

d4x
�����������
�g�
p

e��

� 12�
Z
y��y0

d4x
�����������
�g�

q
e��; (2.1)

where � is related to the number of units of 4-form flux,1

and where we have placed branes of opposite tensions at
y � �y0 (y being the coordinate transverse to the branes).
In brane-comoving coordinates, the resulting equations of
motion are
 

Gab �
1

2
�;a�;b �

1

4
gab�;c�;c � 3gab�2e�2�

� 6����y� y0� � ��y� y0�	�
�
a ��bg��

1�������gyy
p e��;

(2.2)
 

�� � �12�2e�2�

� 12����y� y0� � ��y� y0�	
1�������gyy
p e��; (2.3)

where Latin indices run over all five dimensions, but Greek
indices run over only the four dimensions to which the y
coordinate is normal. [The corresponding junction condi-
tions follow in (3.4)]. The static domain wall vacuum
solution [6,7] is given by
 

ds2 � h2=5�y�����dx�dx� � dy2�; e� � h6=5�y�;

h�y� � 5��y� y0� � c; �y0 
 y 
 y0: (2.4)

The y coordinate is taken to span the orbifold S1=Z2, with
fixed points at �y0. In an ‘‘extended’’ picture of the
solution, obtained by Z2 reflecting the solution across the
branes, there is a downward-pointing kink at y � �y0 and
an upward-pointing kink at y � �y0. These ensure that the
appropriate Israel matching conditions are satisfied, with
the negative-tension brane being located at y � �y0 and
the positive-tension brane at y � �y0. The integration
constant c is arbitrary.

III. A COSMOLOGICAL SOLUTION WITH
COLLIDING BRANES

We now wish to generalize the static solution above to
allow for time dependence. In particular, we are interested
in cosmological solutions in which the two boundary
branes collide, with the five-dimensional spacetime ge-
ometry about the collision reducing to (2d compactified
Milne)=Z2 � R3. We will therefore take as our metric
ansatz

 d s2 � n2�t; y���dt2 � t2dy2� � b2�t; y�d ~x2; (3.1)

where the xi span the three-dimensional spatial worldvo-
lume of the branes, which we are assuming to be flat. This
ansatz is in fact the most general form consistent with
three-dimensional spatial homogeneity and isotropy, after
we have made use of our freedom to write the (t, y) part of
the metric in conformally flat Milne form. In the above,
and throughout this section, we will take the branes to be
fixed at the constant coordinate locations y � �y0.

1Compared to [6,7], we have rescaled � such that � �
��LOSW=3

���
2
p
�:
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The functions n and b, as well as the scalar field �, are
arbitrary functions2 of t and y. In order that the collision be
the ‘‘least singular’’ possible, we require that the brane
scale factors, as well as the Calabi-Yau volume, be finite
and nonzero at the collision. By an appropriate choice of
units, we will therefore demand that n, b and e� all tend to
unity as t! 0. In this way the geometry about the collision
reduces to the desired (2d compactified Milne)=Z2 � R3

times a finite-volume Calabi-Yau manifold. Since the five-
dimensional part of this geometry is flat, our solution will
be protected from higher-derivative string or M theory
corrections in the vicinity of the collision.

To solve the relevant equations of motion, (2.2) and
(2.3), we will perform a perturbative expansion in the
rapidity of the brane collision. This latter quantity is given
by 2y0 (see, e.g., [14]), and so we are interested in the case
in which y0 � 1, i.e., the case in which the relative veloc-
ity of the branes at the collision is small. (See [12] for an
analogous procedure in the case of the Randall-Sundrum
model.)

To implement this expansion, we first introduce the
rescaled time and orbifold coordinates

 ! � y=y0; T � y0t; (3.2)

so that the branes are now located at! � �1, independent
of the rapidity of the brane collision. For convenience, we
will also adopt the convention that primes denote deriva-
tives with respect to ! and dots denote derivatives with
respect to lnT, i.e.,

 

0 � @!; _ � T@T: (3.3)

In order to write down the junction conditions and the
Einstein equations, it is useful to work with the variables
e� � b3 and e� � y0nt � nT. The junction conditions
[15], valid when evaluated at ! � �1� or ! � �1�,
are then

 �0 � �e���; �0 � 3�e���; �0 � 6�e���:

(3.4)

Evaluating the �, G0
0 �G

5
5, G5

5, G0
0 �G

5
5 � �1=2�Gi

i, and
G05 equations in the bulk, we obtain the following set of
equations:

 �00 � �0�0 � 12�2e2��2� � y2
0�

��� _� _��; (3.5)

 �00 � �02 � 6�2e2��2� � y2
0�

��� _�2�; (3.6)

 

1

3
�02 � �0�0 �

1

4
�02 � 3�2e2��2�

� y2
0

�
���

2

3
_�2 � _� _��

1

4
_�2
�
; (3.7)

 

�00 �
1

3
�02 �

1

4
�02 � �2e2��2�

� y2
0

�
���

1

3
_�2 �

1

4
_�2
�
; (3.8)

 

_� 0 �
1

3
_��0 � _��0 � �0 _��

1

2
_��0 � 0: (3.9)

In the above, both the G5
5 equation (3.7) and the G05

equation (3.9) involve only single derivatives with respect
to !. Applying the junction conditions, we find that both
left-hand sides vanish when evaluated on the branes. The
G05 equation is then trivially satisfied on the branes, while
the G5

5 equation yields the relation

 

b;TT
b
�
b2
;T

b2 �
b;Tn;T
bn

�
1

12
�2
;T � 0; (3.10)

valid on both branes. Introducing the brane conformal time
�, defined on either brane via by0d� � ndT, this relation
can be reexpressed as

 

b;��
b
�

1

12
�2
;� � 0: (3.11)

Notice that in the Einstein equations (3.5), (3.6), (3.7),
and (3.8), all terms involving time derivatives appear at
O�y2

0� higher than the terms involving derivatives along the
orbifold direction. Thus, solving the equations of motion
perturbatively in powers of y2

0 (and assuming that the time
dependence is not anomalously large), at zeroth order we
have a set of ordinary differential equations in !.
Integrating these differential equations, we obtain the !
dependence of the solution at leading order, along with
three arbitrary functions of time. How these functions are
determined will be explained below in Sec. III B. Then, at
next-to-leading order, we have a set of ordinary differential
equations for the ! dependence of the solution at O�y2

0�,
involving source terms constructed from the time depen-
dence at leading order. Thus, solving the Einstein equa-
tions is reduced to an iterative procedure involving the
solution of a finite number of ordinary differential equa-
tions at each new order in y2

0.

A. Initial conditions

In order to fix the initial conditions for our expansion in
y2

0, it is useful to solve for the bulk geometry about the
collision as a series expansion in t (in this section we revert
briefly to our original t and y coordinates). Up to terms of
order t3, the solution corresponding to the Kaluza-Klein
zero mode is:

2Note, in particular, that we are not assuming a factorized
metric ansatz (e.g., n�t; y� � n1�t�n2�y�), since this generically
leads to brane collisions in which the Calabi-Yau manifold
shrinks to zero size at the moment of collision [13].

JEAN-LUC LEHNERS, PAUL MCFADDEN, AND NEIL TUROK PHYSICAL REVIEW D 75, 103510 (2007)

103510-4



 

n � 1� ��sechy0 sinhy�t

�
�2

8
sech2y0�9� cosh2y0 � 8 cosh2y�t2; (3.12)

 

b � 1� ��sechy0 sinhy�t

�
�2

4
sech2y0�3� cosh2y0 � 4 cosh2y�t2; (3.13)

 e� � 1� 6��sechy0 sinhy�t

�
3�2

2
sech2y0�2� cosh2y0 � cosh2y�t2;

(3.14)

where we have used the junction conditions to fix the
arbitrary constants arising in the integration of the bulk
equations with respect to y. The brane conformal times ��
(where the subscript � refers to the brane locations ! �
�1, or equivalently, to their tensions) are then given by

 �� �
Z n�
b�

dt � t�O�t3�; (3.15)

in terms of which the brane scale factors b� are

 b� � 1� ��� tanhy0 �
3

2
�2�2

�tanh2y0 �O����
3:

(3.16)

B. A conserved quantity

As explained above, every time we integrate the bulk
Einstein equations at a given order in y2

0 with respect to !
we pick up three arbitrary functions of time. Two of these
three functions may be determined with the help of the G5

5
equation evaluated on both branes, namely, (3.11). To fix
the third arbitrary function, however, a further equation is
needed, which we derive below.

Introducing the variable 	 � �� 2�, upon subtracting
twice (3.6) from (3.5) we find

 �	0e��0 � y2
0� _	e��_; (3.17)

which is the massless wave equation �	 � 0 in this back-
ground.3 Since the junction conditions imply 	0 � 0 on the
branes, the left-hand side vanishes upon integrating over!.
A second integration over lnT then yields

 

Z �1

�1
_	e�d! � 
; (3.18)

for some constant 
, which we can set to zero since our
initial conditions are such that _	e� ! 0 as T ! 0.

Let us now consider solving (3.17) for 	, as a perturba-
tion expansion in y2

0. Setting 	 � 	0 � y
2
0	1 �O�y

4
0�, and

similarly for �, at zeroth order we have �	00e
�0�0 � 0.

Integrating with respect to ! introduces an arbitrary func-
tion of T which we can immediately set to zero using the
boundary condition on the branes, which, when evaluated
to this order, read 	00 � 0. This tells us that 	00 � 0
throughout the bulk; 	0 is then a function of T only, and
can be taken outside the integral in (3.18). Since 
 � 0, yet
the integral of e� across the bulk cannot vanish, it follows
that 	0 must be a constant.

At order y2
0, the right-hand side of (3.17) evaluates to

y2
0� _	0e

�0�_, which vanishes. Evaluating the left-hand side,
we have �	01e

�0�0 � 0, and hence, by a sequence of steps
analogous to those above, we find that 	1 must also be
constant. It is easy to see that this behavior continues to all
orders in y2

0. We therefore deduce that 	 � �� 2� is
exactly constant. Since both � and � tend to zero as T !
0, this constant must be zero, and so we find

 � � 2�: (3.19)

The essence of this result is that a perturbative solution
in powers of y2

0 exists only when 	 is in the Kaluza-Klein
zero mode. This may be seen from (3.17), which reduces,
in the limit where T ! 0 and �! 0, to 	00 � y2

0 �	. The
existence of a perturbative expansion in y2

0 requires the
right-hand side of this equation to vanish at leading order.
This is only the case, however, for the Kaluza-Klein zero
mode: all the higher modes have a rapid oscillatory time
dependence such that the right-hand side does contribute at
leading order. For these higher Kaluza-Klein modes, there-
fore, a gradient expansion does not exist.

Setting � � 2� from now on, returning to (3.11) and
recalling that � � 3 lnb, we immediately obtain the
equivalent of the Friedmann equation on the branes,
namely,

 

�
b;�
b

�
;�
� 4

�
b;�
b

�
2
� 0: (3.20)

Integrating, the brane scale factors are given by

 b� � �A���� � c��1=4: (3.21)

To fix the arbitrary constants �A� and c�, we need only to
expand the above in powers of �� and compare with (3.16).
We find

 b� � �1� �4� tanhy0���	
1=4: (3.22)

This equation determines the brane scale factors to all
orders in y2

0 in terms of the conformal time on each brane.
(As a straightforward check, it is easy to confirm that the
O��2

�� terms in (3.16) are correctly reproduced.)

3For branes with nonzero spatial curvature, however, there is
an additional source term in this equation, invalidating the
argument that follows.

COLLIDING BRANES IN HETEROTIC M THEORY PHYSICAL REVIEW D 75, 103510 (2007)

103510-5



C. The scaling solution

We are now in a position to solve the bulk equations of
motion perturbatively in y2

0. Setting

 � � �0 � y2
0�1 �O�y4

0�;

� � �0 � y
2
0�1 �O�y

4
0�;

(3.23)

the leading terms of this expansion (namely, �0 and �0)
constitute a scaling solution, whose form is independent of
y0 for all y0 � 1. To determine the ! dependence of this
scaling solution, we must solve the bulk equations of
motion at zeroth order in y2

0. Evaluating the linear combi-
nation �3:6� � 3��3:7� � �3:8�	, noting that at this order the
right-hand sides all vanish automatically, we find

 ���00 � 3�00�e
�0�0 � 0: (3.24)

Using the boundary condition �00 � 3�00 � 0 on the branes,
we then obtain �0 � 3�0 � f�T�, for some arbitrary func-
tion f�T�. Substituting back into (3.7) and taking the square
root then yields

 �00 � �e�5�0�2f; (3.25)

where consistency with the junction conditions (3.4) forced
us to take the positive root. Integrating a second time, and
rewriting ef � B�15, we find

 e�0 � B6�T�h1=5; e�0 � B3�T�h3=5; (3.26)

where h � 5�!� C�T�, with C�T� arbitrary.
In the special case where B and C are both constant, we

recover the exact static domain wall solution (2.4), up to a
trivial coordinate transformation. In general, however,
these two moduli will be time-dependent. Inverting the
relation b5

� � B5��5�� C� to reexpress B and C in terms
of the brane scale factors b��T�, we find

 B5 �
1

10�
�b5
� � b

5
��; C � 5�

�
b5
� � b

5
�

b5
� � b

5
�

�
: (3.27)

Furthermore, at zeroth order in y2
0, the conformal times on

both branes are equal, since

 y0d� �
n
b

dT � e�0��0=3 dT
T
� B5�T�

dT
T

(3.28)

is independent of !. To this order then, (3.22) reduces to

 b� � �1� 4�y0��
1=4; (3.29)

allowing us to express the moduli in terms of � as

 B5��� �
1

10�
��1� 4�y0��

5=4 � �1� 4�y0��
5=4	; (3.30)

 C��� � 5�
�
�1� 4�y0��5=4 � �1� 4�y0��5=4

�1� 4�y0��
5=4 � �1� 4�y0��

5=4

�
: (3.31)

The brane conformal time � and the Milne time T are
then related by

 lnT � 10�y0

Z
��1� 4�y0��

5=4 � �1� 4�y0��
5=4	�1d�:

(3.32)

Rather than attempting to evaluate this integral analyti-
cally, we will simply adopt � as our time coordinate4 in
place of T. The complete scaling solution is then given by

 d s2 � h2=5��;!��B2�����d�2 � d ~x2� � B12���d!2	;

e� � B6���h6=5��;!�; h��;!� � 5�!� C���;

(3.33)

with B��� and C��� given in (3.30) and (3.31). This scaling
solution solves the bulk Einstein equations and the junction
conditions to leading order in our expansion in y2

0. The
subleading corrections at y2

0 higher order may be obtained
in an analogous fashion, although we will not pursue them
here.

The expressions above for the scaling solution can also
be used to calculate the slope of the ‘‘warp factor’’ appear-
ing in the metric (3.33), namely, hB5. The slope, which
from the Israel matching condition represents the effective
strength of the two brane tensions, is given by

 �hB5�0 � 1
2��1� 4�y0��

5=4 � �1� 4�y0��
5=4	: (3.34)

Thus we can picture the effective brane tensions to be
evolving in time. In particular, note that what was a
downward-pointing kink before the collision turns into an
upward-pointing kink after the collision (and vice versa),
while at the collision itself the slope is zero. Thus the
tension of the branes swaps over at the collision, with
both branes becoming effectively tensionless at the colli-
sion itself. (This is another indication that the collision
represents a rather mild singularity.)

The scaling solution is valid for times in the range
��4�y0�

�1 < �< �4�y0�
�1. At � � ��4�y0�

�1, how-
ever, the scale factor on the negative-tension brane van-
ishes from (3.29) (recalling that the tension of the branes is
reversed for � < 0). Since the physical interpretation of
these events is much clearer in the alternative coordinate
system in which the bulk is static and the branes are
moving, we will postpone a full discussion until
Sec. IVA. (In fact, it will turn out that to continue the
solution to times � > �4�y0�

�1, we simply need to intro-
duce absolute value signs around all factors of �1�
4�y0��.)

A further quantity of interest, the distance between the
branes, evolves as

4Note that the relation between T and � is monotonic. At small
times T � y0�� ��

2=4�y3
0�

3 �O�y5
0�

5�.
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 d �
Z �1

�1
h1=5B6d!

�
1

6�
��1� 4�y0��3=2 � �1� 4�y0��3=2	: (3.35)

Thus, for small � we have d ’ 2y0�, independent of �, and
for large � (imposing an absolute value on the second
term), we have d ’ �y0�=��

1=2.

D. Lifting to 11 dimensions

It is straightforward to lift the scaling solution to 11
dimensions, where the five-dimensional metric and scalar
field are both part of the 11-dimensional metric. The 4-
form field strength has a nonzero component in the Calabi-
Yau directions only:

 Gabcd �
����
2
p �efabcd!ef; y0 < y< y0; (3.36)

where !ef is the Kähler form on the Calabi-Yau. In the
extended picture, the sign of Gabcd reverses across the
branes. The metric in 11 dimensions reads

 d s2
11 � e�2�=3ds2

5 � e
�=3ds2

CY

� h�2=5B�2��d�2 � d ~x2� � h�2=5B8d!2

� h2=5B2ds2
CY; (3.37)

and the 4-form flux is proportional to �when all its indices
are pointing in a Calabi-Yau direction. Thus the 11-
dimensional distance between the branes is given, to lead-
ing order in y2

0, by

 d11 � B4
Z �1

�1
h�1=5d! � 2y0�: (3.38)

This simple relationship underlies the utility of � as a time
coordinate.

Finally, the volume of the Calabi-Yau manifold, aver-
aged over the orbifold, is

 he�i �
1

2
B6

Z �1

�1
h6=5d!

�
5

11

�
�1� 4�y0��

11=4 � j1� 4�y0�j
11=4

�1� 4�y0��5=4 � j1� 4�y0�j5=4

�
; (3.39)

where we have imposed the absolute values to permit a
continuation to late times, as will be explained in Sec. IVA.
Thus the radius of the Calabi-Yau grows at large times as
he�=6i  �1=4, whereas the distance between the branes d11

grows linearly in �. A phenomenologically acceptable
configuration where d11 ’ 30e�=6 [16] is therefore quite
naturally obtained, assuming that both the distance be-
tween the branes and the Calabi-Yau volume modulus are
stabilized by an interbrane potential when they reach large
values. We will leave a more detailed investigation of the
11-dimensional properties of our solution to future work.

IV. AN ALTERNATIVE PERSPECTIVE: MOVING
BRANES IN A STATIC BULK

Let us now consider an alternative coordinate system in
which the bulk is static and the branes are moving. To find
the bulk metric in this coordinate system we can make use
of a modified version of Birkhoff’s theorem, as shown in
Appendix A. Assuming only three-dimensional homoge-
neity and isotropy, as consistent with cosmological sym-
metry on the branes, in addition to the exact relation
� � 2� (motivated in Sec. III B through considerations
of regularity at the brane collision), the bulk Einstein
equations can be integrated exactly. One can then choose
the static parametrization:

 d s2 � �fdt2 �
r12

f
dr2 � r2d ~x2;

f�r� � �2r2 ��r4; e� � r6;

(4.1)

where 0 
 r 

����
�
p

=�, and the coordinate t is unrelated to
the Milne time appearing in the previous section.
Physically, this solution describes a timelike naked singu-
larity located at r � 0, and was first discovered by
Chamblin and Reall in [10] (who instead looked directly
for solutions in which the bulk was static). Since the
coordinates above do not cover the whole spacetime mani-
fold, the maximal extension may easily be constructed
following the usual Kruskal procedure, as detailed in
Appendix C.

To find the trajectories of a pair of positive- and
negative-tension branes embedded in this static bulk space-
time we solve the Israel matching conditions in the usual
fashion. After performing this calculation (see
Appendix B, and also [10]), one finds that the induced
brane metrics are indeed cosmological, with scale factors
given by

 b� � �1� 4
����
�
p

���1=4; (4.2)

where �� is the brane conformal time, and we have re-
scaled b� to unity at the collision, which is taken to occur
at �� � 0.

Upon setting � � 0, we immediately recover the static
domain wall solution (2.4), after a suitable change of
coordinates. More generally, we require � � 0 to avoid
the appearance of imaginary scale factors. Through com-
parison with our earlier result (3.22), we also find

 

����
�
p
� � tanhy0: (4.3)

Thus, for �> 0, after starting off coincident, the two
branes proceed to separate. However, while the positive-
tension brane travels out to large radii unchecked, the
negative-tension brane reaches the naked singularity (at
which b� and e� tend to zero) in a finite brane conformal
time �� � �4

����
�
p
��1.

In the following section we will argue that the resulting
singularity is extremely mild, and simple to regularize. If
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almost any type of well-behaved matter is present on the
negative-tension brane — even in only vanishing quanti-
ties—then, rather than hitting the singularity, the negative-
tension brane will instead undergo a bounce at some small
finite value of the scale factor and move away from the
singularity.

A. The bounce of the negative-tension brane

The Friedmann equation for the negative-tension brane
is derived in Appendix B. For the case in which a time-
dependent scalar field (with an e� coupling to the Calabi-
Yau volume scalar) is present on the brane, this equation
takes the form [see (B13)]

 H2
� �

_b2
�

b2
�

� �2�
A�
b18
�

�
A2
�

b24
�

�
�

b10
�

; (4.4)

where the constant A� parametrizes the scalar kinetic
energy density.

The key feature of this equation is the negative sign in
front of the first term on the right-hand side, reflecting the
fact that matter on the negative-tension brane couples to
gravity with the wrong sign. (This property is in fact a
general feature of braneworld models, see, e.g., [17,18].)
For sufficiently large values of the scale factor the right-
hand side is dominated by the �b�10

� term. If we further
assume that the matter density on the branes is small
compared to the brane tension5 (i.e., A� � �), so that
the term linear in A� dominates over the quadratic term,
then it follows that at some small value of the scale factor
the entire right-hand side must vanish. Thus a negative-
tension brane, initially traveling towards the singularity,
will generically undergo a smooth bounce at some small
value of the scale factor. After this bounce the brane travels
away from the singularity back towards large values of the
scale factor. This behavior is specific to the negative-
tension brane, and moreover, persists even in the limit in
which A� (and hence the initial matter density) is negli-
gibly small.6

In fact, even in the complete absence of matter on the
negative-tension brane, the bounce off the naked singular-
ity is still a relatively smooth event: converting to Kruskal
coordinates so that light rays are at��=4 angles, using our
exact solution we show in Appendix C that the trajectory of
the negative-tension brane becomes precisely tangential to
the singularity at the moment of the bounce. In these

coordinates then, the negative-tension brane merely grazes
the singularity with zero velocity, before moving away
again according to a well-defined smooth continuation.
The complete solution is illustrated in Figs. 1 and 4.

In this solution, the scale factor on the negative-tension
brane is given exactly for all times post-collision by

 b� � j1� 4
����
�
p

��j1=4; (4.5)

where �� is the conformal time on the negative-tension
brane. This result shows us how to continue our earlier
scaling solution in brane-comoving coordinates (see
Sec. III C) to times after the bounce of the negative-tension
brane: we simply insert an absolute value sign into the
expression (3.29) for b� (recalling that � is indeed the
brane conformal time in these coordinates). The moduli
B��� and C��� then follow from (3.27), which amounts to
replacing all factors of �1� 4�y0�� in (3.30) and (3.31)
with j1� 4�y0�j. It is easy to check that this continuation
does not affect the smooth evolution of quantities defined
on the positive-tension brane, and that the range of the
coordinate ! along the extra dimension is unaltered by this
continuation (see Fig. 2). Nevertheless, this brane-
comoving coordinate system is not particularly well
adapted to deal with the actual moment of the bounce
itself, as evidenced by the ‘‘kinks’’ in Fig. 2. With the
presence of regulatory matter on the negative-tension
brane, however, the bounce will occur at some small non-
zero b�, smoothing out these kinks.

To check that the scaling solution is qualitatively correct
near the bounce of the negative-tension brane, it is inter-
esting to examine the leading behavior of the exact bulk

0.5 1 1.5 2 2.5

0.1

0.2

0.3

0.4

0.5

b4

αy0τ

FIG. 2. Continuation of the scaling solution (accurate to lead-
ing order in y0) beyond the bounce of the negative-tension brane
at �y0� � 1=4, using the absolute value prescription. Contours
of constant ! are plotted against the fourth power of the three-
dimensional scale factor b and the brane conformal time �. The
contours shown are, from left to right, ! � �1,�0:75, �0:5, 0,
0.5, and 1. Thus the left-most and right-most trajectories corre-
spond to the negative- and positive-tension branes, respectively,
(for which b4

� � j1� 4�y0�j), with the region in between
representing the bulk.

5As is in any case necessary for the existence of a four-
dimensional effective description, see, e.g., [19].

6In the simplest version of heterotic M theory, the scalars
present on the negative-tension brane do not couple to � [7].
Nevertheless, in the limit of small matter density on the brane, it
can be shown that the brane bounces in a manner identical to the
case described above. When the scalars do not couple to �, there
are corrections to the bulk geometry in the vicinity of the bounce,
but these become negligibly small as the scalar field density
decreases to zero.
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metric about the singularity. Setting r5 � 5� c, for some
constant c, the metric (4.1) becomes
 

ds2 � �5� c�2=5

�
���2 ���5� c�2=5�dt2 � d ~x2

�
d2

�2 ���5� c�2=5

�
; (4.6)

which, after trivial rescalings, to leading order in r reads

 d s2 � �5� c�2=5��dt2 � d ~x2 � d2	: (4.7)

This is precisely the form of our scaling solution (3.33) at a
given instant in time.

Note also that in the exact solution, the proper velocity
of the negative-tension brane vanishes as it approaches the
naked singularity: from (4.1) the proper velocity is
r6dr=�fdt�, which scales as r4dr=dt at small r. Yet from
(C5), dr=dt scales as f=r5  1=r3, and so the proper ve-
locity tends to zero linearly with r. This result, that the
proper velocity of the negative-tension brane tends to zero
linearly with r as it approaches the naked singularity, is
also found in Kruskal coordinates, as shown in (C14).

V. CONCLUSIONS

We have presented a cosmological solution describing
the collision of the two flat boundary branes in heterotic M
theory. This solution is a significant step towards our goal
of describing the cosmic singularity as a brane collision
within the well-motivated framework of Hořava-Witten
theory. Requiring the collision to be the ‘‘least singular’’
possible, i.e., that the metric tends towards (2d compacti-
fied Milne)=Z2 � R3 times a finite-volume Calabi-Yau,
has two important consequences. First, it selects a single
solution to the equations of motion. Second, it shifts the
singularity in the Calabi-Yau volume that one might have
naively expected at the brane collision to two spacetime
events before and after the brane collision. We have shown
these two events to be very mild singularities, which are
easily removed by including an arbitrarily small amount of
matter (for example scalar field kinetic energy) on the
negative-tension brane. Before the initial bounce of the
negative-tension brane, and after the final bounce, the
solution presented here can be identified with that de-
scribed by Chen et al. [11].

When the branes move at a small velocity, we expect to
be able to accurately describe the solution using a four-
dimensional effective theory (see, e.g., [19–23] and also
[12]). We shall present such a description in a companion
publication [24].

If our colliding-brane solution is to successfully describe
the universe, we must also add potentials capable of stabi-
lizing the moduli; in particular, the volume of the Calabi-
Yau manifold, which determines the value of gauge cou-
plings, and the distance between the branes, which deter-
mines Newton’s constant of gravitation. These potentials

also permit us to generate an interesting spectrum of
cosmological perturbations. Although the required poten-
tials cannot yet be derived from first principles, we can
study the consequences of various simple assumed forms.
The results will be presented elsewhere [25].
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APPENDIX A: A MODIFIED BIRKHOFF
THEOREM

In this appendix we show how the assumption of cos-
mological symmetry on the branes, coupled with the exact
result � � 2� (derived in Sec. III B following from our
assumption that the Riemann curvature remains bounded
as we approach the collision), is sufficient to uniquely
determine the bulk metric. Moreover, with an appropriate
choice of time-slicing, the bulk geometry can be written in
static form. Our derivation closely parallels the analogous
case for the Randall-Sundrum model [26].

We start with the fully general metric ansatz

 d s2 � e2��2 =3��dt2 � dy2� � e2 =3d�2
3; (A1)

where ��t; y� and  �t; y� are arbitrary functions, and the
coordinates t and y are fresh, unrelated to those appearing
earlier. To allow for the possibility of open, flat or closed
brane geometries, we will take

 d �2
3 � �1� k

2��1d2 � 2d�2
2; (A2)

where k � �1, 0 or �1 respectively, and d�2
2 denotes the

usual line element on a unit two-sphere. The above choice
represents the most general bulk metric consistent with
three-dimensional spatial homogeneity and isotropy, after
we have made use of our freedom to write the (t, y) part of
the metric in a conformally flat form.

In light of Sec. III B, we will additionally set � � 2 .
Then, evaluating the Einstein equations (3.5), (3.6), (3.7),
(3.8), and (3.9) in the bulk, after taking appropriate linear
combinations we find

  ;ty � �;y ;t � �;t ;y � 3 ;t ;y; (A3)

  ;tt �  ;yy � 2�;t ;t � 2�;y ;y � 3 2
;t � 3 2

;y; (A4)

  ;tt �  ;yy � � 
2
;t �  

2
;y � 6�2e2��14 =3; (A5)
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 �;tt � �;yy � � 2
;t �  2

;y � �2e2��14 =3 � 2ke2��4 =3:

(A6)

Switching to the light-cone coordinates,

 u � 1
2�t� y�; v � 1

2�t� y�; (A7)

these become

  ;uu � 2�;u ;u � 3 2
;u; (A8)

  ;vv � 2�;v ;v � 3 2
;v; (A9)

  ;uv � � ;u ;v � 6�2e2��14 =3; (A10)

 �;uv � � ;u ;v � �2e2��14 =3 � 2ke2��4 =3: (A11)

Integrating the first two equations, we find

 e2��3 �  ;uV
0�v� �  ;vU

0�u�; (A12)

whereU0�u� and V 0�v� are arbitrary nonzero functions, and
we will use primes to denote ordinary differentiation wher-
ever the argument of a function is unique. It follows that  
and � take the form

  �  �U�u� � V�v��; e2��3 �  0U0V 0: (A13)

Consistency between (A10) and (A11) then requires k � 0,
and so only spatially flat three-geometries are permitted.7

Integrating once, we find

  0e � 9�� 9�2e�2 =3; (A14)

where � is an arbitrary constant.
The metric

 d s2 � �4 0e7 =3dUdV � e2 =3d ~x2; (A15)

upon changing coordinates to

 r � e =3; t � 3�V �U�; (A16)

then takes the static form

 d s2 � ���2r2 ��r4�dt2 �
r12dr2

��2r2 ��r4�
� r2d ~x2:

(A17)

The corresponding Calabi-Yau volume is given by

 e� � r6: (A18)

APPENDIX B: BRANE TRAJECTORIES

In this appendix we embed a pair of moving branes into
the static bulk spacetime (A17) and derive the Friedmann
equations describing their trajectories. This is accom-
plished by solving the Israel matching conditions [15]:

 K�ab � �
1

2

�
T�ab �

1

3
g�abT

�

�
; (B1)

where K�ab, T�ab and g�ab denote the brane extrinsic curva-
ture, stress tensor and induced metric, respectively, and we
are assuming a Z2 symmetry about each brane.

Parametrizing the trajectory of a given brane as t �
T�tp� and r � R�tp�, where tp is the brane proper time,
the induced metric is

 d s2 � �dt2p � R
2�tp�d ~x

2; (B2)

hence R may be associated with the relevant brane scale
factor b�. The brane 4-velocity is then ua � � _T; _R; ~0�,
where, throughout this appendix, we will use dots to in-
dicate differentiation with respect to tp. The constraint
uaua � �1 yields the additional relation _T � �f�
R12 _R2�1=2=f. Similarly, the unit normal vector na is given
by

 na � �
�
R6 _R;�

R6

f
�f� R12 _R2�1=2; ~0

�
; (B3)

where the function f�r� is as defined in (4.1). (Note that the
choice of sign corresponds to our choice of which side of
the bulk we keep prior to imposing the Z2 symmetry.
Keeping the side for which r 
 R�tp� leads to the creation
of a positive-tension brane, with normal pointing in the
direction of decreasing r, requiring the positive sign for na.
Conversely, if we retain the r � R�tp� side of the bulk
creating a negative-tension brane, the normal points in
the direction of increasing r and we must take the negative
sign for na.)

The three-spatial components of the brane extrinsic
curvature are then

 K�ij � rin
�
j � �R

�7�f� R12 _R2�1=2g�ij ; (B4)

while the brane stress-energy is given by T�ab �
�6�e��g�ab. The Israel matching condition then yields
the Friedmann equation H2

� � _R2=R2 � _b2
�=b

2
� �

�=b10
� . Integrating, we find [10]

 b� � �1� 5
����
�
p

t�p �
1=5; (B5)

where the constants of integration have been fixed by
rescaling b� to unity at the collision, which is taken to
occur at t�p � 0. In terms of brane conformal time ��, this
relation reads

 b� � �1� 4
����
�
p

���1=4; (B6)

where the origins of �� are chosen so that the branes
collide at �� � 0.

This result may easily be generalized to scenarios in
which matter is incorporated on one or both of the branes.
For example, in the case where we add a scalar field 	 on
each brane, allowing for an arbitrary coupling F��� to the
Calabi-Yau volume modulus �, the action should be aug-

7Similar conclusions were reached by Chamblin and Reall in
[10].
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mented by the terms

 �
Z
!��1

d4x
�����������
�g�

q 1

2
�@	�2F���: (B7)

The brane stress-energy is now

 T�ab � �6�e��g�ab �
1

2
F���

�
	;a	;b �

1

2
g�ab�@	�

2

�
:

(B8)

Since we are interested in cosmological solutions, we will
consider the scalar field 	 to be a function of time only.
Evaluating the three-spatial components of (B1) then
yields the modified Friedmann equation

 H2
� � �

�
12

_	2F

b6
�

�
_	4F2

242 �
�

b10
�

: (B9)

To find the dependence of 	 on the scale factor b�, it is
necessary to evaluate the tptp component of (B1). This
yields the equivalent of the usual cosmological energy
conservation equations. We start with

 Ktptp � Kabu
aub � uaubranb � �nca

c; (B10)

where the acceleration ac � ubrbuc. Since acuc � 0, the
acceleration may also be written as ac � anc, where a �
�Ktptp . Then, since @t is a Killing vector of the back-
ground,8 we have a � _ut=nt. Thus (B1) reads

 K�tptp � �
1

R6 _R

d

dtp

�
�R�

1

24
R7 _	2F

�
� �

�

R6
�

5

24
_	2F;

(B11)

where we have used (B9). This leads to

 R� _	2F�;R � �12 _	2F; (B12)

i.e., we have _	2F � 24A�R�12, for some constant A�.
Thus the Friedmann equation becomes

 H2
� � �

2�A�
b18
�

�
A2
�

b24
�

�
�

b10
�

: (B13)

We must also satisfy the junction condition arising from
the � equation of motion. This is given by

 2na@a�� � �12�e��� �
1

2
_	2F;�; (B14)

which leads to

 H2
� � �

�
12

_	2F;�
b6
�

�
_	4F2

;�

242 �
�

b10
�

: (B15)

Consistency with (B9) then requires the coupling to be

 F��� � e�: (B16)

It can be verified that this coupling is also consistent with
the equation of motion for 	.

Another form of brane-bound matter that alters the
Friedmann equations on the branes, while remaining con-
sistent with the bulk geometry, is a cosmological constant
� with e�� coupling to the Calabi-Yau volume scalar. In
this case, the modified Friedmann equation is given by

 H2
� � �

�
3

�

b12
�

�
1

36

�2

b12
�

�
�

b10
�

: (B17)

We will use the modified Friedmann equations [which
are generally similar in form to (B13)] in Sec. IVA, to
understand the bounce of the negative-tension brane in the
vicinity of the singularity.

APPENDIX C: KRUSKAL EXTENSION OF THE
BULK GEOMETRY

In this appendix we consider the maximal extension of
the bulk geometry (4.1), beyond the range 0 
 r 


����
�
p

=�
for which f � 0. These calculations will lead us to the
Kruskal diagram in Fig. 1. Following Chen et al. [11], we
start with the Eddington-Finkelstein coordinates u and v,
defined via

 d u � 4�2

�
dt�

r6

f
dr
�
; dv � 4�2

�
dt�

r6

f
dr
�
:

(C1)

The entire spacetime manifold is then covered by the
Kruskal coordinates

 U � exp
�
�
�2

4
u
�
; V � exp

�
�2

4
v
�
; (C2)

0.2 0.4 0.6 0.8 1 1.2

-3

-2

-1

1

UV

r̄

FIG. 3. UV plotted as a function of �r, according to (C4) (taking
� � 1). Note, in particular, the smooth continuation to �r > 1
generated by the sign flip in �. The surfaces of constant �r
correspond to the hyperbolas UV � constant, with this constant
being positive for 0 
 �r < 1, and negative for �r > 1.

8For a Killing vector �c, an� � anc�c � ac�c �
�cubrbuc � ubrb�uc�

c� � ucubrb�c, where the last term van-
ishes by Killing’s equation, r�b�c� � 0, hence an� � ub@bu� �
_u�.
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where, for later convenience, we have introduced the con-
stant � �

����
�
p

=� � tanhy0. In these coordinates, the met-
ric then reads

 d s2 �
f

�4�4

dUdV
UV

� r2d ~x2: (C3)

Note that r should be understood here as a function of UV,
given implicitly by

 UV � � exp
�

2

�3

�
�r�

1

3
�r3 �

1

2
ln

��������1� �r
1� �r

��������
��
; (C4)

where the rescaled radial coordinate �r � �r, and � is
defined such that � � �1 for 0 
 �r 
 1, while � � �1
for �r > 1. (This choice generates the smooth continuation
illustrated in Fig. 3.) Surfaces of constant �r thus correspond
to the hyperbolas UV � constant. In particular, we have
chosen the constant of integration deriving from (C1) such
that the singularity at �r � 0 maps to the hyperbola UV �
1. The second constant of integration implicit in (C1) may
then be fixed by requiring that the time slice t � 0 corre-
sponds to the line U � V for 0 
 �r 
 1, in which case
V=U � exp�2�2�2t�.

From the results of the preceding appendix, the trajec-
tory of a brane (in the absence of any additional matter) is
given, for 0 
 �r 
 1, by

 

dr
dt
� �

�f

r5
; (C5)

with the upper and lower signs corresponding, respectively,
to a brane moving away from, and a brane moving towards,
the singularity. Specializing to the case of two branes
moving in opposite directions, upon integrating we find

 � 2�5�2t � �r2 � ln�1� �r2� � �2 � ln�1� �2�; (C6)

where we have fixed the constants of integration by requir-
ing that the brane scale factors are unity at the collision
(hence �r � � at t � 0).

Converting now to Kruskal coordinates, we find the
trajectories of the branes are given parametrically, for all
0 
 �r <1, by

 U � F ��r�; V � G� �r� �outgoing�; (C7)

 U � G��r�; V � F ��r� �infalling�; (C8)

where the smooth functions
 

F � �r� � � exp
�

1

�3

�
�r�

1

2
�r2 �

1

3
�r3 � lnj1� �rj

�
1

2
�2 �

1

2
ln�1� �2�

��
; (C9)

 

G��r� � exp
�

1

�3

�
�r�

1

2
�r2 �

1

3
�r3 � ln�1� �r� �

1

2
�2

�
1

2
ln�1� �2�

��
: (C10)

As previously, � � �1 for 0 
 �r 
 1, but � � �1 for
�r > 1, ensuring that UV < 0 for the portion of the trajec-
tories parametrized by �r > 1.

To extend the brane trajectories beyond the bounce off
the naked singularity, we first of all write down the ‘‘ex-
tended’’ trajectories in terms of the original �r and t coor-
dinates. Altering the constants of integration in (C6) so that
the different branches of the trajectories match up at the
bounce, we find

 � 2�5�2t � �r2 � ln�1� �r2� � �2 � ln�1� �2�; (C11)

FIG. 4 (color online). Kruskal diagrams illustrating the brane
trajectories for different collision rapidities. In the upper plot
y0 � 1, and in the lower plot y0 � 1:5. The corresponding plot
for y0 � 0:5 appeared previously in Fig. 1.
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for 0 
 �r 
 1, where the upper and lower signs corre-
spond, respectively, to an outgoing, and an infalling, brane.
Converting to Kruskal coordinates, this becomes

 U � F � �r�G2�0�; V � G��r�F 2�0� �outgoing�;

(C12)

 U � G��r�F 2�0�; V � F � �r�G2�0� �infalling�;

(C13)

where �r now takes values in the entire range 0 
 r <1.
Finally, plotting (C7), (C8), (C12), and (C13), we obtain
the full Kruskal diagrams shown in Fig. 1 (for y0 � 0:5),
and in Fig. 4 (for y0 � 1 and 1.5). An interesting feature of
the brane trajectories revealed by these plots are the points
of inflection that occur whenever the brane trajectories
intersect the Boyer axes UV � 0 (see Fig. 1 especially).
These may be understood as a consequence of the vanish-
ing of f in (C5) whenever �r � 1.

Note also that at the singularity (�r � 0 corresponding to
UV � 1), the slope of the negative-tension brane trajectory

is exactly �1=U2. For example, using (C7),

 

dV
dU
� �

�
1� �r
1� �r

�
V
U
; (C14)

which reduces to �1=U2 when �r � 0 and UV � 1. A
similar conclusion applies for each of the other solution
branches (C8), (C12), and (C13). Consequently, the brane
trajectory at the bounce is tangent to the singularity itself.
This means that the brane simply grazes the singularity
with vanishing normal velocity. Similarly for the Calabi-
Yau volume at the branes, VCY � r6, we find

 

dVCY

dt
� �6�f � �6��2r2 �O�r4�; (C15)

and hence the rate of change of the Calabi-Yau volume on
the negative-tension brane, as it bounces off the singularity,
is zero. The above considerations suggest that the bounce
of the negative-tension brane is a relatively smooth event,
even in the absence of regulatory matter on the brane.
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