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The confinement problem has been solved in the anisotropic �2� 1�-dimensional SU�N� Yang-Mills
theory at weak coupling. In this paper, we find the low-lying spectrum for N � 2. The lightest excitations
are pairs of fundamental particles of the �1� 1�-dimensional SU�2� � SU�2� principal chiral sigma model
bound in a linear potential, with a specified matching condition where the particles overlap. This matching
condition can be determined from the exactly-known S-matrix for the sigma model.
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I. INTRODUCTION

In recent papers, some new techniques have been devel-
oped for calculating quantities in a �2� 1�-dimensional
SU�N� gauge theories [1–3]. These techniques exploit the
fact that in an anisotropic limit of small coupling, the
gauge theory becomes a collection of completely-
integrable quantum field theories. These integrable sys-
tems are decoupled, save for a constraint which is neces-
sary for complete gauge invariance. In the case ofN � 2, is
possible to perturb away from integrability, using exactly-
known off-shell matrix elements of the integrable theory.

The model we consider is not spatial-rotation invariant,
but has features one expects of real �3� 1�-dimensional
QCD; it is asymptotically free and confines quarks at weak
coupling. Thus the limit of no regularization is accessible.

One can formally remove the regulator in strong-
coupling expansions of �2� 1�-dimensional gauge theo-
ries; the vacuum state in this expansion yields a string
tension and a mass gap which have formal continuum
limits. This can be done in a Hamiltonian lattice formalism
[4], or with an ingenious choice of degrees of freedom and
point-splitting regularization [5]. This leaves open the
question of whether these expressions can be trusted at
weak coupling (more discussion of this issue can be found
in Ref. [2]), and one would like to rule out a deconfinement
transition, or very different dependence of physical quan-
tities on the coupling (as in compact QED [6]). A proposal
has been made for the vacuum state [7], in the formulation
of Ref. [5] which seems to give correct values for some
glueball masses [8], but this proposal evidently requires
more mathematical justification.

In this paper, we will work out the masses of the lightest
glueballs for the case of gauge group SU(2). Our method
would work in principle for SU�N� gauge theories, and our
reason for choosing N � 2 is that the analysis is simplest
for that case.

The basic connection between the gauge theory
and integrable systems is most easily seen in axial gauge
[1]. We made simple estimates, for the string tensions in
the x1- and x2-directions (called the vertical and horizontal
string tension, respectively), for small g00. The result for the
horizontal string tension was confirmed for gauge group
SU(2), and additional corrections in g00 were found [2],
through the use of exact form factors for the currents of the
sigma model. String tensions for higher representations can
also be worked out, and adjoint sources are not confined
[3].

Careful derivations of the connection between the gauge
theory and integrable systems use the Kogut-Susskind
lattice formalism [1,2]. A shorter derivation was given in
Ref. [9], which we summarize again here. The formalism is
essentially that of ‘‘deconstruction’’ [10].

The Yang-Mills action is
R
d3L, where the Lagrangian

is L � 1
2e02 TrF2

01 �
1

2e2 TrF2
02 �

1
2e2 TrF2

12, and where A0,

A1 and A2 are SU�N�-Lie-algebra-valued components of
the gauge field, and the field strength is F�� � @�A� �
@�A� � i�A�; A��. This action is invariant under the gauge
transformation A��x� ! ig�x��1�@� � iA��x��g�x�, where
g�x� is an SU�N�-valued scalar field. We take e0 � e,
thereby losing rotation invariance.

We discretize the 2-direction, so that the x2 takes on the
values x2 � a; 2a; 3a . . . , where a is a lattice spacing. All
fields are considered functions of x � �x0; x1; x2�. We de-
fine the unit vector 2̂ � �0; 0; 1�. We replace A2�x� by a
fieldU�x� lying in SU�N�, viaU�x� 	 exp�iaA2�x�. There
is a natural discrete covariant-derivative operator:
D�U�x� � @�U�x� � iA��x�U�x� � iU�x�A��x� 2̂a�,
� � 0, 1, for any N � N complex matrix field U�x�. The
action is S �

R
dx0

R
dx1P

x2aL where

 L �
1

2�g00�
2a

TrF2
01 �

1

2g2
0

Tr�D0U�x��yD0U�x�

�
1

2g2
0

Tr�D1U�x��
yD1U�x�; (1.1)
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and where g2
0 � e2

0a and �g00�
2 � e02a. The Lagrangian

(1.1) is invariant under the gauge transformation: A��x� !
ig�x��1�@� � iA��x��g�x� and U�x� ! g�x��1U�x�g�x�
2̂a� where again, g�x� 2 SU�N� and � is restricted to 0
or 1. The bare coupling constants g0 and g00 are dimen-
sionless. We recover from (1.1) the anisotropic continuum
action in the limit a! 0. The sigma model field is
U�x0; x1; x2�, and each discrete x2 corresponds to a differ-
ent sigma model. The system (1.1) is a collection of
parallel �1� 1�-dimensional SU�N� � SU�N� sigma mod-
els, each of which couples to the auxiliary fields A0, A1.
The sigma-model self-interaction is the dimensionless
number g0.

We briefly mention how the anisotropic regime is differ-
ent from the standard �2� 1�-dimensional Yang-Mills the-
ory. The point where the regulator can be removed in the
theory is g00 � g0 � 0. This point can be reached in our
treatment, but only if

 �g00�
2 


1

g0
e�4�=�g2

0N�: (1.2)

The left-hand side and ride-hand side are proportional to
the two energy scales in the theory (the latter comes from
the two-loop beta function of the sigma model). Thus our
method cannot accommodate fixing the ratio g00=g0, which
is natural in standard perturbation theory [11]. This is why
the mass gap is not of order e, e0 and the string tension is
not of order e2, �e0�2.

We now discuss the Hamiltonian in the axial gauge A1 �
0. The left-handed and right-handed currents are, jL��x�b �
iTrtb@�U�x�U�x�

y and jR��x�b � iTrtbU�x�
y@�U�x�, re-

spectively, where � � 0, 1. The Hamiltonian obtained
from (1.1) is H0 �H1, where

 H0 �
X
x2

Z
dx1 1

2g2
0

f�jL0 �x�b�
2 � �jL1 �x�b�

2g; (1.3)

and
 

H1 �
X
x2

Z
dx1 �g

0
0�

2a2

4
@1��x1; x2�@1��x1; x2�

�

�
g00
g0

�
2 XL2�a

x2�0

Z
dx1�jL0 �x

1; x2���x1; x2�

� jR0 �x
1; x2���x1; x2 � a�� � �g00�

2qb��u1; u2�b

� �g00�
2q0b��v1; v2�b; (1.4)

where ��b � A0b is the temporal gauge field, and where
in the last term we have inserted two color charges—a
quark with charge q at site u and an antiquark with charge
q0 at site v. Some gauge invariance remains after the axial-
gauge fixing, namely, that for each x2

 �Z
dx1�jL0 �x

1; x2�b � jR0 �x
1; x2 � a�b� � g2

0Q�x
2�b

�
� � 0;

(1.5)

whereQ�x2�b is the total color charge from quarks at x2 and
� is any physical state. To derive the constraint (1.5) more
precisely, we started with open boundary conditions in the
1-direction and periodic boundary conditions in the 2-
direction, meaning that the two-dimensional space is a
cylinder [1,2].

From (1.4) we see that the left-handed charge of the
sigma model at x2 is coupled to the electrostatic potential
�, at x2. The right-handed charge of the sigma model is
coupled to the electrostatic potential at x2 � a. The exci-
tations of H0, which we call Fadeev-Zamoldochikov or FZ
particles, behave like solitons, though they do not corre-
spond to classical configurations. Some of these FZ parti-
cles are elementary and others are bound states of the
elementary FZ particles. An elementary FZ particle has
an adjoint charge and mass m1. An elementary one-FZ-
particle state is a superposition of color-dipole states, with
a quark (antiquark) charge at x1, x2 and an antiquark
(quark) charge at x1, x2 � a. The interaction H1 produces
a linear potential between color charges with the same
value of x2. Residual gauge invariance (1.5) requires that
at each value of x2, the total color charge is zero. If there
are no quarks, the total right-handed charge of FZ particles
in the sigma model at x2 � a is equal to the total left-
handed charge of FZ particles in the sigma model at x2.

The particles of the principal chiral sigma model carry a
quantum number r, with the values r � 1; . . . ; N � 1 [12].
Each particle of label r has an antiparticle of the same
mass, with label N � r. The masses are given by

 mr � m1

sinr�N
sin�N

;

m1 � K��g2
0N�

�1=2e�4�=g2
0N � nonuniversal corrections;

(1.6)

where K is a nonuniversal constant and � is the ultraviolet
cutoff of the sigma model.

Lorentz invariance in each x0, x1 plane is manifest. For
this reason, the linear potential is not the only effect of H1.
The interaction creates and destroys pairs of elementary FZ
particles. This effect is quite small, however, provided that
g00 is small enough. Specifically, this means that the square
of the 1� 1 string tension in the x1-direction coming from
H1 is small compared to the square of the mass of funda-
mental FZ particle; this is just the condition (1.2). The
effect is important, however, in that it is responsible for the
correction to the horizontal string discussed in the next
paragraph in Eq. (1.8).

Simple arguments readily show that at leading order in
g00, the vertical and horizontal string tensions are given by

 �V �
m1

a
; �H �

�g00�
2

2a2 CN; (1.7)

respectively, where CN is the smallest eigenvalue of the
Casimir of SU�N�. These naive results for the string tension

PETER ORLAND PHYSICAL REVIEW D 75, 101702(R) (2007)

RAPID COMMUNICATIONS

101702-2



have further corrections in g00, which were determined for
the horizontal string tension for SU(2) [2]:

 �H �
3

2

�
g00
a

�
2
�

1�
4

3

0:7296

K2�2

�g00�
2

g2
0

e4�=g2
0

�
�1
: (1.8)

The leading term agrees with (1.7). This calculation was
done using the exact form factor for sigma model currents
obtained by Karowski and Weisz [13]. The form factor can
also be used to find corrections of order �g00�

2 to the vertical
string tension; this problem should be solved soon.

Another recent application of exact form factors to the
�2� 1�-dimensional SU(2) gauge theory is Ref. [14], in
which form factors of the two-dimensional Ising model
[15] are used to find the profile of the electric string, near
the high-temperature deconfining transition, assuming the
Svetitsky-Yaffe conjecture [16].

A picture of a physical state for N � 2 is in Fig. 1. This
figure is inaccurate in that the ‘‘ring’’ of particles is ex-
tremely broad in the x2-direction, compared to the
x1-direction (because �H 
 �V). For N > 2, there are
more complicated ways strings can join particles.

The lightest glueballs are pairs of FZ particles with the
same value of x2. For small enough g00, the very lightest
state has a mass well-approximated by 2m1. The purpose of
this paper is to find the leading corrections in �g00�

2 to this
result.

In the next section we will discuss the wave function of
an unbound pair of FZ particles. We find that this is
described by phase shift for the color-singlet sector. In
Sec. III, we determine the bound-state spectrum. The

problem we solve is very similar to that of two particle-
states of the two-dimensional Ising model with an external
magnetic field [17] (for a good summary of this problem,
see Ref. [18]); the only genuine difference is the presence
of a matching condition where the particles overlap. This
matching condition comes from the phase shift of the
scattering problem.

II. SCATTERING STATES OF FZ PARTICLES

The lightest glueball state, as discussed above, is a pair
of FZ particles located at the points �x1; x2� and �y1; x2� and
bound in a linear potential. Residual gauge invariance
(1.5), demands that the state be a color singlet. We begin
by examining free states of two particles.

The state of the SU�2� � SU�2� ’ O�4� nonlinear sigma
model with a particles of momenta p1 and p2 and quantum
numbers j1 and j2 (which take the values 1, 2, 3, 4) is
described by the wave function

  p1p2
�x1; y1�j1;j2

�

�
eip1x1�ip2y1

Aj1;j2
; x1 < y1

eip2x1�ip1y1 P4
k1;k2�1 S

k1k2
j1j2
�p1; p2�Ak2;k1

; x1 > y1 ; (2.1)

where Aj1j2
is an arbitrary set of complex numbers and

Sk1k2
j1j2
�p1; p2� is the two-particle S-matrix. We have not yet

imposed (1.5).
The wave function (2.1) is written in a form where the

O�4� symmetry is manifest. It is straightforward to write it
in a form where the left SU�2�L and the right SU�2�R
symmetries are manifest, by writing

 

 p1p2
�x1; y1� �c;d

a; �b
�

X
j1;j2

1���
2
p ��j14

ac � i�
j1
ac�

1���
2
p ��j24

bd � i�
j2
bd�
�

�  p1p2
�x1; y1�j1;j2

(2.2)

describing a pair of color dipoles, one with quantum num-
bers a, �b and the other with quantum numbers �c, d, where
�j, j � 1, 2, 3 denotes the Pauli matrices.

To impose the physical state condition (1.5) on (2.2), we
set a � b and c � d and sum over these colors. The
projected wave function is, up to an overall constant,

  p1p2
�x1; y1� �

�
eip1x1�ip2y1

; x1 < y1

eip2x1�ip1y1
S0�p1; p2�; x1 > y1 ; (2.3)

where S0�p1; p2� is the singlet projection of the O�4�
S-matrix. This S-matrix was first obtained by
Zamolodchikov and Zamolodchikov [19]. A useful form
is given in Ref. [13]:

 S0�p1; p2� � S0���

� �
�� i�
�� i�

expi
Z 1

0

d�
�

1� e��

1� e�
sin
��
�
;

(2.4)

where the relative rapidity � is given by � � �2 � �1,
p1 � m sinh�1, p2 � m sinh�2 and where we denote the
particle mass m1, given by (1.6), by m (because there is
only one mass for the case ofN � 2). This result is derived
in the appendix of Ref. [2].

The singlet S-matrix is just a phase shift ����: S0��� �
expi����. The phase shift has a simple form in the low-

FIG. 1. A glueball state is a collection of heavy particles, held
weakly together by strings. The horizontal coordinate is x1 and
the vertical coordinate is x2.
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energy, nonrelativistic limit, jp1 � p2j 
 m. In this limit,
� 	 jp1 � p2j=m. The integral on the right-hand side of
(2.4) can be done by Taylor expanding in jp1 � p2j=m
yielding

 ���� � ��p1; p2�

� ��
3� 2 ln2

�m
jp1 � p2j �O

�
jp� rj2

m2

�
: (2.5)

III. THE LOW-LYING GLUEBALL SPECTRUM

Let us now consider the states of a bound pair of FZ
particles in the potential V�x1; y1� � 2�Hjx

1 � y1j (the
reason for the factor of 2 is that the particles are joined
by a pair of strings). We keep our nonrelativistic approxi-
mation, used to find (2.5). For our problem the horizontal
string tension times the size of a typical bound state is
small compared to the mass, by (1.2). This justifies the
nonrelativistic approximation for low-lying states. The
mass of a low-lying glueball is given by

 M � 2m� E;

where E is the energy eigenstate of the two-particle
problem.

Let us introduce center-of-mass coordinates, X � �x1 �
y1�=2 and x � y1 � x1. The reduced mass of the system is

m=2. We can factor out a phase depending on X, leaving us
only with a wave function depending on x. The
Schrödinger equation we wish to consider is

 �
1

m
d2 

dx2 � 2�Hjxj � E 

with a matching condition at x � 0 between the wave
function  �x� at x > 0 and the wave function at x < 0.

Our result (2.4) for the unbound two-particle state, with
phase shift (2.5) tells us that for x1 	 y1, where the effect
of the potential can be ignored, the bound-state wave
function in the center-of-mass frame will be of the form

  �x� �
�

cos�px�!�; x < 0
cos��px�!���p��; x > 0

; (3.1)

for some angle !, where p � p1 � p2 and ��p� � ��
3�2 ln2
�m jpj �O�jpj2=m2�. The value of p near x � 0 is

given by p � �mE�1=2, where E is the energy eigenvalue
of the state. This is the matching condition between the
wave function for x > 0 and for x < 0.

The wave function for x < 0 an Airy function. So is the
wave function for x > 0. We therefore obtain the approxi-
mate WKB form

  �x� �

8>>><
>>>:
C
�
x� E

2�H

�
�1=4

cos
�

2
3 �2m�H�

1=2

�
x� E

2�H

�
3=2
� �

4

�
; x < 0

C0
�
E

2�H
� x

�
�1=4

cos
�
� 2

3 �2m�H�
1=2

�
E

2�H
� x

�
3=2
� �

4

�
; x > 0

; (3.2)

for some constants C and C0. The expression (3.2) can be
made to agree with (3.1) for small x, provided the general-
ization of the Bohr-Sommerfeld quantization condition
 

2�m�1=2

3�H
E3=2
n �

3� 2 ln2

�m1=2
E1=2
n �

�
n�

1

2

�
� � 0;

n � 0; 1; 2; . . . ; (3.3)

is satisfied by E � En. The only new feature in this semi-
classical formula is the second term, produced by the phase
shift.

There is a unique real solution of the cubic equation (3.3)
for a given integer n � 0, by virtue of the fact that 3�
2 ln2 � 1:613 706> 0. The low-lying glueball masses are
therefore given by

 Mn � 2m� En

� 2m�
�
	1=3
n �

3�3� 2 ln2��H

4�m
	�1=3
n

�
2
; (3.4)

where

 

	n �
3��H�n�

1
2�

4m1=2
�

��
3��H

4m1=2�n� 1
2�

�
2

�
1

8

�
3�3� 2 ln2��H

2�m

�
3
�

1=2
: (3.5)

IV. CONCLUSIONS

We have identified the low-lying glueballs of the aniso-
tropic Yang-Mills theory in (2� 1) dimensions as bound
pairs of the fundamental massive particles of the principal
chiral nonlinear sigma model. We found a matching con-
dition for the bound-state wave function at the origin,
which when combined with elementary methods yields
the spectrum of the lightest states.

There are important implications of the two-particle
bound-state problem we have not considered here. For
example, the existence of these bound states implies that
there are small corrections to the form factors used in [2].
This, in turn, will give a further correction to the horizontal
string tension. Such corrections to form factors in theories
close to integrability were first discussed by Delfino,
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Mussardo and Simonetti [20]. The bound-state energies
proliferate between 2m and 4m, as g00 ! 0. Our method
breaks down as the bound-state mass reaches 4m, because
the bound state develops an instability towards fission into
a pair of two-particle bound states. This is analogous to the
situation for the Ising model in a field [17,18] as we stated
earlier. It should be worthwhile to understand the relativ-
istic corrections to the bound-state formula, along the lines
of the work of Fonseca and Zamolodchikov [21].

A similar calculation is possible for SU�N�. It should be
possible to study the bound-state spectrum for any value of
N. An interesting feature is that the phase shift should
vanish as N ! 1, with g2

0N fixed, meaning that the wave
function would be continuous where FZ particles overlap.

It would interesting to study the scattering of a glueball
by an external particle. If the scattering is sufficiently short
range, the FZ particles could be liberated from the glueball,
after which hadronization would ensue.

It may be possible to extend the results of this paper, and
Refs. [1,2] to the standard �2� 1�-dimensional isotropic
Yang-Mills theory with g00 � g0. The strategy we have in
mind is an anisotropic renormalization procedure. At the
start is a standard field theory with an isotropic cutoff. By
anisotropically integrating out high-momentum degrees of

freedom with an isotropic cutoff, the isotropic theory
should flow to an anisotropic theory with a small momen-
tum cutoff in the x2-direction and a large momentum cutoff
in the x1 direction. If the renormalized couplings satisfy the
condition (1.2), we could apply our techniques. A check of
such a method would be approximate rotational invariance
of the string tension. This would give an analytic first-
principles method of solving the isotropic gauge theory
with fixed dimensionful coupling constant e, and no cutoff.
The only other analytic weak-coupling argument for a
mass gap and confinement in �2� 1�-dimensions, namely,
that of orbit-space distance estimates, discussed by
Feynman [22], by Karabali and Nair in the second of
Refs. [5], and by Semenoff and the author [23] is sugges-
tive, but has not yielded definite results yet.1
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