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Mexico
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Analytical radiative corrections of order ��=���q=M1� are calculated for the four-body region of the
Dalitz plot of baryon semileptonic decays when the ŝ1 � l̂ correlation is present. Once the final result is
available, it is possible to exhibit it in terms of the corresponding final result of the three-body region
following a set of simple changes in the latter, except for a few exceptions. We cover two cases, a charged
and a neutral polarized decaying baryon.
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The radiative corrections (RC) to the decay of polarized
baryons A! Bl ��l require that, when the real photon in
A! Bl ��l� cannot be detected nor kinematically discrimi-
nated, the three-body region (TBR) of the Dalitz plot be
extended to the four-body region (FBR). This is the case
when only the momentum of the lepton l is measured. In
the FBR neither the neutrino nor the photon can reach zero
energy. So, this region arises solely from bremsstrahlung.
In Ref. [1] we calculated the RC of order ��=���q=M1�

0 to
the angular correlation ŝ1 � l̂ over the FBR. In this report
we shall improve the precision of these RC by incorporat-
ing to them the contributions of order ��=���q=M1�. We
shall follow the same notation and conventions of this
reference.

One cannot easily calculate only the order ��=���q=M1�
RC and add them to the final results of Ref. [1]. It is
necessary to perform the calculation from the early stages.
It is a long and tedious one and, accordingly, its analytical
result is long and tedious. However, once the final result is
available it is possible to make a concise presentation of it
by establishing a set of simple rules to convert the final
result of the RC up to order ��=���q=M1� over the TBR of
the ŝ1 � l̂ correlation [2] into a substantial part of the FBR
result. In addition, keeping the same definitions, one can
identify many of the analytical expressions in previous
works covering the unpolarized decay rate and the ŝ1 � p̂2

correlation [3–9]. This way we can avoid many unneces-
sary repetitions, give a concise presentation of our results,
and limit ourselves to exhibit those expressions which
cannot be found in previous work.

The difference between the RC calculation in the TBR
and in the FBR lies in the role of y0 in the summation over
the momentum of �, where the integrations over ’k, y, and
x are performed (let us recall that x and’k refer to the polar
and azimuthal angles of the photon, respectively, and y �
p̂2 � l̂, as defined in Ref. [8]). In the TBR y0 appears in the

integrand and as the upper limit of the y integration, while
in the FBR the upper limit is one and y0 appears only in the
integrand. Nevertheless, there is an exact parallelism be-
tween the two calculations. We shall proceed along this
parallelism and introduce a subindex F as a reminder of the
FBR.

The decay rate over the Dalitz plot including both re-
gions is

 d�r � d�TBR
r � d�FBR

r ; (1)

where r � C�N� refers to a negatively charged [neutral]
decaying baryon and a neutral [positively charged] emitted
baryon. Other charge assignments to the baryons are dis-
cussed in Ref. [10]. The analytical RC to order ��=���
�q=M1� over the TBR including the ŝ1 � l̂ correlation are
found in Eq. (1) of Ref. [2]. The RC over the FBR can be
separated into an unpolarized part and into another one
containing the ŝ1 � l̂ correlation (indicated by the upper
index s), that is,

 d�FBRr � d�0FBR
rB 	 d��s�FBR

rB : (2)

The bremsstrahlung origin of these terms is indicated by
the index B. The order ��=���q=M1� RC to the spin-
independent part are found for r � C in Eq. (32) of
Ref. [3] and for r � N in Eq. (22) of Ref. [4]. To order
��=���q=M1�

0 the RC to the ŝ1 � l̂ correlation are found in
Eq. (59) of Ref. [1] for r � C, N.

We shall discuss the case r � C first. Our final result
with order ��=���q=M1� RC to the ŝ1 � l̂ correlation is
compactly given by

 d��s�FBR
CB �

�
�
d�ŝ1 � l̂�B

0
2IC0F � C

�s�
AF�: (3)

B02 is given after Eq. (1) of Ref. [2]. The infrared conver-
gent IC0F, explicitly given in Eq. (37) of Ref. [1], corre-
sponds to the infrared divergent IC0 of the TBR.C�s�AF can be
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arranged as the sum C�s�AF � CIF � CIIF � CIIIF, where
 

CIF �
X9

i�1

Qi�5�iF;

CIIF �
X15

i�6

Qi��i�4�F; and CIIIF �
X25

i�16

Qi��i�4�F:

(4)

The Qi, with i � 6; 7; . . . ; 25, are quadratic functions of
the form factors and are common to both regions. Their
explicit expressions are found in Appendix A of Ref. [5]. It
should be clear that forQ6 andQ7 we use the ~Q6 and ~Q7 of
this Appendix, where the contributions of order ��=���
�q=M1�

2 and higher have been subtracted.
The analytical form of C�s�AF is obtained by performing

explicitly the triple integrals over the real photon variables,
contained in the �iF functions, i � 1; 2; . . . ; 29. The inte-
gration over ’k and y lead to a set of functions XiF, YiF,
ZiF, IF, �0F, �0F, �ijF, and �ijF, which connect the �iF

with the functions �jF that result from the third integration
over x.

Once the final results for the FBR are available, one can
see that the �iF and the intermediate functions can be
obtained from the corresponding �i and Xi, Yi, Zi, I, �0,
�0,�ij, and �ij of the TBR by making some simple changes
in the latter. This is possible because of the parallelism
mentioned above. These changes are: (i) a subindex F is
attached to all the corresponding functions of the TBR,
(ii) the terms proportional to the factor (1	 y0) are re-
placed by zero, and (iii) otherwise the factor y0 is kept as
such. There are three exceptions to rule (iii). In I, �11 and
�0, y0 appears by itself only once and there it must be
replaced by y0 � 1 to produce IF, �11F, and �0F, respec-
tively. The �i are found in Ref. [2] and the Xi, Yi, Zi, I, �0,
�0, and �31 needed here are found in Appendix B of
Ref. [5]. Most of the �ij, and �ij are found in Sec. IV of
Ref. [6]. However, these rules cannot be easily applied to
�10, �10, and �20 because their content of �i functions was
not made explicit. Their FBR counterparts are directly
given in Ref. [7]. We may then limit ourselves to give
explicitly �20, �22 and �30 which are not found in our
previous work, namely,
 

�22 � p2ly0��6 	 2E��2 	 �3�� 	
1

2
�23

	 2l2
�
E0
��2 �

l	 2p2y0

	
��2 	 �3�

�

� 2l2
�

3�E0
� � E�

	2 ��2 	 2�3 � �4�

	
3E

	2 ��3 	 �4 	 	�5�

�
;

�30 � l�0�p2l�1	 y0� 	 2p2
2�;

and

 �20 � 	p2l�1	 y2
0�:

These three functions may serve to illustrate the applica-
tion of the above three rules. Applying them one obtains
for the FBR

 

�22F � p2ly0��6F 	 2E��2F 	 �3F�� 	
1

2
�23F

	 2l2
�
E0
��2F �

l	 2p2y0

	
��2F 	 �3F�

�

� 2l2
�

3�E0
� � E�

	2 ��2F 	 2�3F � �4F�

	
3E

	2 ��3F 	 �4F 	 	�5F�

�
;

�30F � 	2p2
2l�0F;

and �20F � 0.
To complete our analytical result, all we need now is to

give the explicit expressions of the �iF functions. It is only
at this point that we can make a direct use of the �iF of the
order ��=���q=M1�

0 RC of Ref. [1]. For i � 2; . . . ; 16 they
are listed in Appendix B of this reference. �0F is given in
Eq. (38) of this same reference. �1F does not appear in this
FBR, so we can arbitrarily set it equal to zero. For i �
17; . . . ; 23 the �iF are new with respect to Ref. [1]. One has
that �17F � 0 and �18F � 1. For i � 19; . . . ; 22 one can
make a connection with the order ��=���q=M1� RC to the
ŝ1 � p̂2. These �iF �i � 19; . . . ; 22� are found in Ref. [7].

Only �23 and �23F remain to be identified. Their defini-
tions are �23 �

R
1
	1 
5�x�=�1	 	x�

2dx and �23F �R
1
	1 


T
5 �x�=�1	 	x�

2dx, where 
5�x� is found in Eq. (36)
of Ref. [8] and 
T5 �x� is found in Eq. (A6) of Ref. [3]. After
integrating over x, one has �23 � �T�23 � T

	
23�=p2 and

�23F � T�23F � T
	
23F. The explicit expressions of the TBR

T
23, namely,

 T
23 � 4
�
	3E2

�
	E0

� � l	 p2

1	 	2

�
�
p2��E0

��
2 	 2l2�0�

1	 	2

�
3E2

2
�	E0

�I1 � 2�l	 p2��I1 	 1�� � l
�
E0
�x
0
b


�
2

� ln

��������
a
 � x0

a
 
 1

����������	l�x
0 �2 	 b
�E0
� � lx0��

�
�E0

��
2�1� x0�

b
�1� 	��1	 	x0�

 E0

�

�
3E2 �1� x0��2� 	�

1� 	




�
lE0

�

�
x
0
b


�
2
� 3E2 2	 	x0

	

�
ln

��������
1� 	

1	 	x0

��������
��
;

become in the FBR case
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T
23F �
1

1	 	2

�
8��E0

��
2 	 5l2 � 6E2�

� 4p2l	
�
�y	0 �

2

b	
	
�y�0 �

2

b�

��

	 2p2l	
�

12E2

p2l	
�

�
y�0
b�

�
2
	

�
y	0
b	

�
2
�
I1

� 4p2l
�
y
0
b


�
2
I
2 :

In these expressions one has x0 � 	�p2y0 � l�=E
0
�,

x
0 � x0 � a

, b
 � 1� 	a
, y
0 � y0 
 a


, y0 �
��E0

��
2 	 p2

2 	 l
2�=�2p2l�, and a
 � �E0

� 
 p2�=l, whereas
I1 and I
2 are found in Appendix C of Ref. [6].

Let us now proceed to our second case, r � N. We
follow the same parallelism which allows us to start at

 d��s�FBR
NB �

�
�
d�ŝ1 � l̂�B02IN0F � C

�s�
AF � C

�s�
NAF�; (5)

where B02 and C�s�AF are those of Eq. (3). The infrared-
convergent function IN0F corresponds to the infrared-
divergent IN0 of Eq. (35) of Ref. [9] and it can be found
in Ref. [7].

The new summand with respect to Eq. (3), C�s�NAF, can be
arranged as C�s�NAF � D3�N3F �D4�N4F, where D3 �
2�f1g1 	 g

2
1� and D4 � 2�f1g1 � g

2
1�. The �N3F and

�N4F may be expressed as �N3F � �IF � �IIF � �IIIF
and �N4F � �0IF � �

0
IIF � �

0
IIIF. The final result is ob-

tained after performing the three integrations over the
photon momentum. One can see from looking at this result
that the analytical expressions of �mF and �0mF, m � I, II,

III, can be obtained from the corresponding ones of
Ref. [2] by applying the above three rules of the r � C
case. So there is no need to give the FBR expressions
explicitly here. However there is a simplification worth
mentioning, namely, �IF � �0IF � 0.

We have made crosschecks between numerical integrals
and analytical results of the �iF, �IF, and �0IF and they
were satisfactory. With the present report we complete a
program of systematically calculating model independent
precision RC to the experimentally more accessible ob-
servables of baryon semileptonic decays A! Bl ��l when A
is unpolarized and when it is polarized. In the latter case we
covered the angular correlations ŝ1 � l̂ and ŝ1 � p̂2. Our
results can be used for all the six charge assignment to A
and B expected from the light and heavy quark content of
these baryons [10], the charged lepton lmay be e
, �
, or

, they are suitable for model independent experimental
analysis of high statistics (several hundreds of thousands of
events) hyperon decays and medium statistics (several
thousands of events) of heavy quark baryons, and whether
the real photon is kinematically discriminated or not. The
model independence of our results originates in the Low
theorem [11,12] for the bremsstrahlung photons and in the
extension to all baryons [13] of the model independent
virtual RC to neutron beta decay [14]. Future improve-
ments of precision to order ��=���q=M1�

2 and higher will
require introducing model dependent RC.
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