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2University of Liège, Institute of Physics B5, Sart Tilman, B-4000 Liège 1, Belgium
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I. INTRODUCTION

So far the standard approach to baryon spectroscopy is
the constituent quark model where the Hamiltonian con-
tains a spin independent part formed of the kinetic plus the
confinement energies and a spin dependent part given by a
hyperfine interaction. The latter can be either due to one
gluon exchange or to Goldstone boson exchange between
quarks, or it can be an instanton induced interaction. The
results are naturally model dependent.

It is therefore very important to develop model indepen-
dent methods that can help in alternatively understanding
baryon spectroscopy and that can support quark model
assumptions. Large Nc QCD offers such a method. In
1974 ’t Hooft proposed to generalize QCD from SU(3) to
SU�Nc� [1] where Nc is an arbitrary number of colors and
suggested a perturbative expansion in the parameter 1=Nc,
applicable to all QCD regimes. Witten has generalized the
approach to baryons [2] and this has lead to a powerful
1=Nc expansion method to study static properties of bary-
ons, as for example, the masses, the magnetic moments, the
axial currents, etc. The method is systematic and predic-
tive. It is based on the discovery that, in the limit Nc ! 1,
QCD possesses an exact contracted SU�2Nf� symmetry
[3,4] where Nf is the number of flavors. This symmetry
is only approximate for finiteNc so that corrections have to
be added in powers of 1=Nc. The 1=Nc expansion method
has extensively and successfully been applied to ground
state baryons [5–8] (for recent developments see Ref. [9]).
Its applicability to excited states is a subject of current
investigations. In this case the symmetry under considera-
tion is assumed to be SU�2Nf� � O�3� where SU�2Nf� is
related QCD, as introduced above. However O(3) is not
related to QCD but it brings an additional degree of free-
dom. It is of common practice to introduce it in order to
construct orbitally excited states. The direct product
SU�2Nf� � O�3� is also used in quark models to classify

three quark states, but there SU�2Nf� is not an intrinsic
symmetry. Thus the two approaches have formally the
same symmetry in common which does not imply common
dynamical assumptions. The only common feature is that
the excited states are stable in a first approximation.

The purpose of the present study is to see whether or not
there is a compatibility between the two methods. If such a
compatibility exists, an important support to the constitu-
ent quark model can be provided by the model independent
1=Nc expansion method, and a better understanding of the
physical content of large Nc mass formulas can be gained.

In the language of quark models, the baryon states can
roughly be classified into excitation bands with N � 0 for
the ground state band andN � 1; 2; 3; . . . for excited states,
where N represents units of excitation, like in a harmonic
oscillator picture. The key tool of this comparative study is
that one can analyze both the 1=Nc expansion results and
the quark model basic ingredients in terms of N which
makes the comparison between the two methods possible
and very convenient.

The paper is organized as follows. The next section
introduces the mass formula used in the 1=Nc expansion
method. Section III gives a mass formula obtained from a
Hamiltonian quark model where the kinetic energy is
relativistic, the confinement is an Y-junction flux tubes
and the hyperfine interaction is of an one-gluon exchange
nature. Section IV is devoted to the comparison between
terms of the mass formula which are common in the two
approaches. The last section is devoted to conclusions.

II. BARYONS IN LARGE Nc QCD

For simplicity, we illustrate the method with the Nf � 2
case but the arguments are similar to any Nf. So, here we
deal with SU(4) which has 15 generators, the spin sub-
group generators Si (i � 1, 2, 3), the isospin subgroup
generators Ta (a � 1, 2, 3) and Gia which act both on
spin and isospin degrees of freedom. The SU(4) generators
are components of an irreducible tensor operator which
transforms according to the adjoint representation [211] of
dimension 15 of SU(4). The SU(4) algebra is

*Electronic address: claude.semay@umh.ac.be
†Electronic address: fabien.buisseret@umh.ac.be
‡Electronic address: nmatagne@ulg.ac.be
xElectronic address: fstancu@ulg.ac.be

PHYSICAL REVIEW D 75, 096001 (2007)

1550-7998=2007=75(9)=096001(7) 096001-1 © 2007 The American Physical Society

http://dx.doi.org/10.1103/PhysRevD.75.096001


 

�Si;Ta��0; �Si;Gja�� i"ijkGka; �Ta;Gib�� i"abcGic;

�Si;Sj�� i"ijkSk; �Ta;Tb�� i"abcTc;

�Gia;Gjb��
i
4
�ij"abcTc�

i
4
�ab"ijkSk:

(1)

Together with the generators ‘i of SO(3), the SU(4) gen-
erators form the building blocks of the mass operator. Then
in the 1=Nc expansion the mass operator M has the general
form

 M �
X
i

ciOi; (2)

where the coefficients ci are reduced matrix elements that
encode the QCD dynamics and are determined from a fit to
the existing data, and the operators Oi are O(3) scalars of
the form

 Oi �
1

Nn�1
c

O�k�‘ 	O
�k�
SF; (3)

where O�k�‘ is a k-rank tensor in O(3) and O�k�SF a k-rank
tensor in SU(2)-spin (homomorphic to SO(3)), but invari-
ant in SU(2)-flavor. Generally the operators O�k�SF are com-
binations of the SU(2Nf) generators and here, in particular,
of SU(4) generators. The lower index i in the left hand side
represents a specific combination. Each n-body operator is
multiplied by an explicit factor of 1=Nn�1

c resulting from
the power counting rules [2]. For the ground state, one has
k � 0. For excited states the k � 2 tensor is also important.
The sum in the mass operator is finite. Operator reduction
rules simplify the expansion. In addition, in practical ap-
plications, it is customary to include terms up to 1=Nc and
drop higher order corrections of order 1=N2

c . As an ex-
ample, in Eqs. (4), we exhibit the list of operators used in
the calculation of the masses of the �70; 1��multiplet up to
order 1=Nc included [10]. Note that although O5 and O6

carry a factor of 1=N2
c their matrix elements are of order

1=Nc because they contain the coherent operatorGia which
brings an extra factor of Nc.
 

O1 � Nc1; O2 �
1

Nc
‘iSi; O3 �

1

Nc
TaTa;

O4 �
1

Nc
SiSi; O5 �

15

N2
c
‘�2�ijGiaGja;

O6 �
3

N2
c
‘iTaGia:

(4)

Here O1 � Nc1 is the trivial operator, proportional to Nc
and the only one which survives when Nc ! 1 [2], where
the SU(4) symmetry is exact. It is the only spin-isospin
independent term in the mass formula. The SU(4) qua-
dratic operators SiSi, TaTa and GiaGia should all enter the
mass formula (the sum over repeated indices is implicit).
But they are related to each other by the operator identity
[7]

 fSi; Sig � fTa; Tag � 4fGia; Giag � 1
2Nc�3Nc � 4�; (5)

so one can express GiaGia in terms of SiSi and TaTa. Note
that the right hand side of Eq. (5) is the eigenvalue of the
Casimir operator for the irreducible representation [Nc �
1, 1] of SU(4). The operators O2, O5 and O6 are relevant
for orbitally excited states. Among them, the role of O2

will be discussed below.

A. The ground state band

The mass formula for the ground state up to order 1=Nc
is simple because one can replace TaTa by SiSi, due to an
identity which holds for symmetric [Nc] states [7]. As there
is no orbital excitation, the mass formula (2) takes the
following simple form

 M � c1Nc � c4
1

Nc
S2 �O

�
1

N3
c

�
; (6)

which means that for N � 0 only the operators O1 and O4

contribute to the mass. Thus the fit gives quantitative
information only for c1 and c4. For Nc � 3, MN �
940 MeV for S � 1=2, and M� � 1232 MeV for S �
3=2, one gets

 c1 � 289 MeV; c4 � 292 MeV: (7)

B. Excited states

Among the excited states, those belonging to the N � 1
band, or equivalently to the �70; 1�� multiplet, have been
most extensively studied, either for Nf � 2 [11–20] or for
Nf � 3 [21]. In the latter case, first order corrections in
SU(3) symmetry breaking were also included.

The N � 2 band contains the �560; 0��, �56; 2��,
�70; ‘�� (‘ � 0, 2) and �20; 1�� multiplets. There are no
physical resonances associated to �20; 1��. The few studies
related to the N � 2 band concern the �560; 0�� for Nf � 2
[22], �56; 2�� for Nf � 3 [23], and �70; ‘�� for Nf � 2
[24], later extended to Nf � 3 [25]. The method has also
been applied [26] to highly excited nonstrange and strange
baryons belonging to �56; 4��, the lowest multiplet of the
N � 4 band [27].

The group theoretical similarity of excited symmetric
states to the ground state makes the analysis of these states
simple [23,26]. For mixed symmetric states, the situation is
more complex. There is a standard procedure which re-
duces the study of mixed symmetric states to that of
symmetric states. This is achieved by the decoupling of
the baryon into an excited quark and a symmetric core of
Nc � 1 quarks. This procedure has been applied to the
�70; 1�� multiplet [11–21] and to the �70; ‘�� (‘ � 0, 2)
multiplet [24,25]. In fact the decoupling is not necessary,
provided one knows the matrix elements of the SU�2Nf�
generators between mixed symmetric states. The case of
SU(4) has been presented in Ref. [10].
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In Sec. IV, we collect the values of c1, c2 and c4 obtained
in the above studies in order to make a comparison between
those values and their analogs resulting from the quark
model described below.

III. QUARK MODEL FOR BARYONS

A. Confining interaction

In the framework of potential models, it is generally
assumed that a baryon, viewed as a bound state of three
quarks, can be described in a first approximation by the
following spinless Salpeter Hamiltonian

 H �
X3

i�1

������������������
~p2
i �m

2
i

q
�VY; (8)

where mi is the current mass of the quark i, and VY the
confining interaction potential.

The nonperturbative part of the gluon exchanges, re-
sponsible for the confinement, can be successfully de-
scribed in the flux tube model [28]. In this framework,
each quark is assumed to generate a string, or a flux tube,
characterized by its energy density (string tension). Recent
developments in lattice QCD tend to confirm the
Y-junction as the correct configuration for the flux tubes
in baryons [29]. In this picture, a flux tube starts from each
quark and the tubes meet at the Toricelli point of the
triangle formed by the three quarks. This point, denoted
by ~xT , is such that it minimizes the sum of the flux tube
lengths, and its position is a complicated function of the
quark coordinates ~xi. Moreover, the energy density of the
tubes appears to be equal for mesons and baryons. The
Y-junction potential reads

 VY � a
X3

i�1

j ~xi � ~xTj: (9)

In Ref. [30], it has been shown that this complicated
potential is successfully approximated by the more easily
computable expression

 V � a
�
�
X3

i�1

j ~xi � ~Rj � �1� ��
1

2

X
i<j

j ~xi � ~xjj
�
; (10)

where ~R is the position of the center of mass. If � � 1,
Eq. (10) is a simplified Y-junction, where the Toricelli
point is replaced by the center of mass. If � � 0, this
interaction reduces to a �-type potential. Results of
Ref. [30], obtained in the framework of a potential model,
show that � � 1 gives a better description than � � 0, and
that the Y-junction is approximated at best by � close to
1=2.

B. Mass formula

Let us now introduce auxiliary fields, in order to get rid
of the square roots appearing in the Hamiltonian (8). We

get

 

H��i; �j; �ij� �
X3

j�1

� ~p2
j �m

2
j

2�j
�
�j

2

�

� �
X3

j�1

�a2� ~xj � ~R�2

2�j
�
�j
2

�

�
�1� ��

2

X
j<k

�a2� ~xj � ~xk�2

2�jk
�
�jk
2

�
: (11)

The auxiliary fields, denoted as �i, �j, and �ij are, strictly
speaking, operators. Although being formally simpler,
H��i; �j; �ij� is equivalent to H up to the elimination of
the auxiliary fields thanks to the constraints

 

��i
H��i; �j; �ij� � 0) �i;0 �

������������������
~p2
i �m

2
i

q
; (12a)

��jH��i; �j; �ij� � 0) �i;0 � aj ~xi � ~Rj; (12b)

��ijH��i; �j; �ij� � 0) �ij;0 � aj ~xi � ~xjj: (12c)

It is worth mentioning that h�i;0i can be seen as a dynami-
cal mass of a quark of current mass mi, while h�i;0i is, in
this case, the static energy of the straight string linking the
quark i to the Toricelli point [31]. Similarly, h�ij;0i can be
interpreted as the static energy of a straight string joining
the quarks i and j. Although the auxiliary fields are opera-
tors, the calculations are considerably simplified if one
considers them as real numbers. They are then finally
eliminated by a minimization of the masses with respect
to them [32]. The extremal values of �i, �j, and �ij,
considered as numbers, are logically close to the values
of h�i;0i, h�j;0i, and h�ij;0i given by relations (12). This
procedure leads to a spectrum which is an upper bound of
the ‘‘true spectrum’’ (computed without auxiliary fields)
[33]: it can be shown that, the more auxiliary fields are
introduced, the higher are the masses compared to those
without auxiliary fields [34]. Let us finally mention that,
for � � 1, the Hamiltonian (11) can be related to the
rotating string model for a baryon (see, for example,
Ref. [35]).

In Ref. [36], it has been shown that the eigenvalues of a
Hamiltonian of the form (11) can be analytically found by
making an appropriate change of variables, the quark
coordinates ~xi � f ~x1; ~x2; ~x3g being replaced by new coor-
dinates ~x0k � f ~R; ~�; ~�g. The center of mass is defined as

 

~R �
�1 ~x1 ��2 ~x2 ��3 ~x3

�t
; (13)

with�t � �1 ��2 ��3 and f ~�; ~�g being the two relative
coordinates. From Ref. [36], it can be immediately found
that the mass spectrum of bound states of three massless
particles (mi � 0 for the u and d quarks) is given by
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M��; �; �� � !�2n� ‘� 3� �
3

2

�
�� ���

�1� ��
2

�
�
;

(14)

with

 ! � a

���������������������������������������
1

�

�
�
�
�

3�1� ��
2�

�s
; (15)

n � n� � n� and ‘ � ‘� � ‘�. An obvious symmetry ar-
gument helps us to make the identification �i � �, �i �
�, and �ij � �. In this symmetric case, properties of the
equilateral triangle together with the relations (12) allow to
make the following ansatz

 � �
���
3
p
�: (16)

Defining

 Q � ��
�1� ��

2

���
3
p
; ~� � Q�; (17)

and

 N � 2n� ‘; (18)

we find

 M��; ~�� � aQ

�������
1

�~�

s
�N � 3� �

3

2
��� ~��: (19)

Formula (19) is clearly symmetric in � and ~�. That means
that we can set � � ~�. This equality can be viewed as a
sort of virial theorem. Then we have

 M��� �
aQ
�
�N � 3� � 3�: (20)

One can easily find that the relation ��M��� � 0 implies

 �0 �

�
a
3
Q�N � 3�

�
1=2
; (21)

and M��0� � 6�0, as observed in Ref. [37]. Writing ex-
plicitly the square mass, we see that the model of Ref. [37]
also predicts Regge trajectories, which are in agreement
with the experimental data for light baryons

 M2��0� � 12aQ�N � 3�: (22)

The Regge slope is here given by 12aQ. However, from
experiment we know that the Regge slope for light baryons
and light mesons are approximately equal. For light me-
sons, the exact value in the relativistic flux tube model is
2�a, a lower value than the one obtained from formula
(22). This is due to the auxiliary fields method: the more
auxiliary fields we introduce, the more the masses are
overestimated [34]. What can be done to cure this problem
is to rescale a: let us define 	 such that 12aQ � 2�	.
Then, formula (22) is able to reproduce the light baryon
Regge slope for a physical value 	 & 0:2 GeV2. Note that

the best value for � is 1=2. Consequently, the best value for
Q is 1=2�

���
3
p
=4 
 0:93. It is worth mentioning that such

a rescaling of the string tension has already given good
results in the study of hybrid mesons [38].

C. One gluon exchange and quark self-energy

Although including only the confining energy is suffi-
cient to understand the Regge trajectories of light baryons,
it is well-known that the absolute value of the masses
which are obtained are too high with respect to the experi-
mental data. Other contributions are needed to decrease
these masses and we shall estimate their effect perturba-
tively. The most widely used is a Coulomb interaction term
of the form

 �Moge � �
2

3
�s
X
i<j

�
1

j ~xi � ~xjj

�
; (23)

arising from one gluon exchange processes, where�s is the
strong coupling constant, usually assumed to be around 0.4
for light hadrons [39]. Lattice QCD calculations also sup-
port this value [40]. Assuming that h1=Ai 
 1=hAi, and
using symmetry arguments, relations (12) lead to

 

X
i<j

�
1

j ~xi � ~xjj

�



3a
�0
�

���
3
p
aQ
�0

; (24)

 �Moge � �2�s
aQ���
3
p
�0

: (25)

Another interesting contribution to the mass, which can
be added perturbatively, is the quark self-energy. Recently,
it was shown that the quark self-energy, which is created by
the color magnetic moment of a quark propagating through
the vacuum background field, adds a negative constant to
the hadron masses [41]. Its negative sign is due to the
paramagnetic nature of the particular mechanism at work
in this case. The quark self-energy contribution for three
massless quarks is given by [41]

 �Mqse � �
3fa

2��0
: (26)

The factor f has been computed in lattice QCD studies.
First quenched calculations gave f � 4 [42]. A more re-
cent unquenched work [43] gives f � 3. Since its value is
still a matter of research, we will only assume that f 2
�3; 4�.

With the unperturbed baryon mass M��0�, given by
Eq. (22), the total mass is given by the sum M0 �

M��0� � �Moge ��Mqse. Then, in the first order of per-
turbation and for � � 1=2, it is straightforward to obtain
the following mass formula for baryons

 M2
0 � 2�	�N � 3� �

4���
3
p �	�s �

12

�2�
���
3
p
�
f	; (27)
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where the scaling 12aQ � 2�	 has been used. The effects
of the one gluon exchange term and of the quark self-
energy are thus to shift the square mass spectrum by a
global negative amount. Let us note that the symbol N
defined by Eq. (18) and the quantity N used to classify
baryon states and used to plot results from the 1=Nc
expansion are the same. This common N will be used in
the next section to perform a comparison between the
results obtained in both approaches.

The mass formula (27) does not take into account spin
relativistic contributions, as the spin-spin or spin-orbit
forces. Within the auxiliary field formalism, all these cor-
rections to the static potential are expanded in powers of
1=�2 where � is the constituent quark mass [44]. All the
spin corrections to the mass formula (27) must depend both
on the matrix elements of the interaction and on the coef-
ficient 1=�2. In the following, we shall consider that the
dominant dynamical effect is due to the constituent mass,
while the matrix elements remain roughly constant with N,
as presented in the next section.

IV. COMPARISON OF THE TWO APPROACHES

In the 1=Nc expansion method, the first term c1Nc in the
mass formula of Eq. (2) contains the main spin-
independent contribution to the baryon mass, which in a
quark model language, represents the confinement and the
kinetic energy. So, it is natural to identify this term with the
mass given by the formula (27). Then, for Nc � 3, we
assume the relation

 c2
1 �

M2
0

9
; (28)

which gives
 

c2
1 �

2�
9
	N � c0 (29)

 �
2�
9
	�N � 3� �

4

9
���
3
p �	�s �

4

3�2�
���
3
p
�
f	: (30)

Figure 1 shows a comparison between the values of c2
1

obtained in the 1=Nc expansion method and those derived
from the Eq. (29) for various values of N. From this
comparison one can see that the results of large Nc QCD
are entirely compatible with the formula (29). From a fit,
one has 	 � 0:163� 0:004 GeV2, a rather low but still
acceptable value according to usual potential models, and
c0 � 0:085� 0:007 GeV2. To reproduce c0, we can set
�s � 0:4, f � 3:5: these are very standard values.

In most of the quark models however, the string tension
is generally assumed to lie in the range �0:17; 0:20� GeV2.
If the value of 	 is chosen in this interval, the correspond-
ing values for c2

1, given by Eq. (29), are located in the
shaded area of Fig. 1. Although the agreement with large
Nc data is not so good than in the optimal case, where 	 �
0:163 GeV2, it remains satisfactory if we choose f �

3:98�4:42� for 	 � 0:17�0:20� GeV2, together with �s �
0:4. These values are larger than what is expected. It could
be argued that other mechanisms than the quark self-
energy are present, their contribution decreasing the total
massM0. In mesons, for example, retardation effects due to
the finite interaction speed were shown to be also propor-
tional to ��2, like the quark self-energy [45]. It is possible
that, when retardation effects are included, f can again be
chosen in the interval [3, 4] with a standard value of	. But,

 

FIG. 1. Values of c2
1 computed in the 1=Nc expansion (full

circles) from a fit to experimental data (Eq. (7) for N � 0,
Refs. [21,23] for N � 1, Ref. [24] for N � 2 and Ref. [26] for
N � 4), compared with results from a fit (see text) of the formula
(29) (empty circles and dotted line to guide the eyes). No data is
available for N � 3 in large Nc studies. Values of c2

1 as predicted
by formula (29) for 	 2 �0:17; 0:20� GeV2 are located in the
shaded area.

 

FIG. 2. Values of c2 computed in the 1=Nc expansion (full
circles) from a fit to experimental data (Refs. [21,23] for N � 1,
Ref. [24] for N � 2 and Ref. [26] for N � 4), compared with
results from formula (31) (empty circles and dotted line to guide
the eyes). No data is available for N � 3 in large Nc studies.
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no model for retardation effects in baryon has been pro-
posed yet.

Within the auxiliary field formalism, we can expect that
c2 and c4 / ��2

0 , and thus

 c2 �
c0

2

N � 3
; c4 �

c0
4

N � 3
: (31)

We see that this behavior is coherent with the large Nc
results in Figs. 2 and 3. We chose c0

2 � 208� 60 MeV so
that the point with N � 1, for which the uncertainty is
minimal, is exactly reproduced. Let us note that the spin-

orbit term is vanishing for N � 0, so no large Nc result is
available in this case. To compute the parameter c0

4 a fit is
performed on all the large Nc data. We obtain then c0

4 �
1062� 198 MeV. Note that c0

4 � c0
2. This shows that the

spin-spin contribution is much larger than the spin-orbit
contribution, which justifies the neglect of the spin-orbit
one in quark model studies.

V. CONCLUSIONS

This study supports the quark model basic assumptions
by the compatibility of its mass formula with the mass
formula derived from the model independent 1=Nc expan-
sion. These assumptions are: relativistic kinetic energy for
light quarks, Y-junction confining interaction, negligible
spin-orbit interaction, hyperfine interaction dominated by a
spin-spin term. A recent analysis shows that a flux tube
model and a feeble spin-orbit interaction give a successful
account of hadron spectroscopy [46].

In addition this study suggests that a good description of
the bulk content of the baryon mass can be obtained with a
spin independent energy eigenvalue of the form M0 /�������������
N � 3
p

where N � 0; 1; 2; . . . is the number of excitation
units, as in the harmonic oscillator. It also shows that the
spin-orbit and spin-spin interactions vanish with the exci-
tation energy. Moreover this comparative study gives a
better insight into the large Nc mass operator where the
coefficients ci encode the QCD dynamics.
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