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TeV scale mirage mediation has been proposed as a supersymmetry-breaking scheme reducing the fine-
tuning for electroweak symmetry breaking in the minimal supersymmetric extension of the standard
model. We discuss a moduli stabilization setup for TeV scale mirage mediation which allows an
extradimensional interpretation for the origin of supersymmetry breaking and naturally gives a weak-
scale size of the Higgs B parameter. The setup utilizes the holomorphic gauge kinetic functions depending
on both the heavy dilaton and the light volume modulus whose axion partners are assumed to be periodic
fields. We also examine the low-energy phenomenology of TeV scale mirage mediation, particularly the
constraints from electroweak symmetry breaking and flavor changing neutral current processes.
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I. INTRODUCTION

Low-energy supersymmetry (SUSY) is one of the pri-
mary candidates for physics beyond the standard model
(SM) above the weak scale [1]. One strong motivation for
supersymmetric extension of the SM is to solve the hier-
archy problem between the weak scale and grand unified
theory (GUT)/Planck scale. In particular, the minimal
supersymmetric standard model (MSSM) is quite interest-
ing from the viewpoint of its minimality as well as the
realization of gauge coupling unification at MGUT � 2�
1016 GeV.

In the supersymmetric standard model, the lightest
Higgs boson h0 is predicted to have a light mass. In-
cluding the one-loop correction while ignoring the effect
of stop mixing [2], mh0 in the MSSM is given by

 m2
h0 ’ M2

Zcos22��
3y2

t m2
~t

4�2 ln�m2
~t =m

2
t �; (1)

where MZ is the Z-boson mass, tan� � hH0
ui=hH

0
di * 3, yt

is the top quark Yukawa coupling, and m~t is the stop mass.
Thus the current experimental bound for the SM-like Higgs
mh0 > 114 GeV can be satisfied within the MSSM, but it
implies a rather heavy stop mass, e.g. m~t * 600 GeV. In
supersymmetric models, m~t is tightly linked to the up-type
Higgs soft mass mHu

through the renormalization group
(RG) evolution induced by the large value of yt:

 �m2
Hu
��

3y2
t m

2
~t

4�2 ln��=m~t�; (2)

where � is the (effective) messenger scale of SUSY break-
ing which is expected to be close to the GUT/Planck scale
in generic high scale mediation models. Unless cancelled

by other effects, this RG evolution implies that jm2
Hu
j �m2

~t
at the weak scale. On the other hand, the electroweak
symmetry breaking (EWSB) conditions in the MSSM
give rise to

 

M2
Z

2
’ ��2�MZ� �m2

Hu
�MZ� �

m2
Hd
�MZ�

tan2�
; (3)

where � is the Higgsino mass and mHd
is the down-type

Higgs soft mass. This EWSB condition requires a fine-
tuning of parameters with an accuracy of O�1�% if mHu

is
heavier than 600 GeV as suggested by the lower bound of
mh0 and the RG evolution ofm2

Hu
. This is the so-called little

SUSY hierarchy problem [3].
During the last years, several types of scenarios solving

the little SUSY hierarchy problem have been proposed [4–
18]. Many of them extend the MSSM to increasemh0 while
keeping the superparticle masses as light as possible. An
alternative possibility is to have a particular pattern of
SUSY-breaking soft terms within the MSSM [19,20], sat-
isfying the EWSB condition (3) without fine-tuning. A
particularly interesting proposal along this direction is
the TeV scale mirage mediation of SUSY breaking
[21,22] which gives a little hierarchy between mHu

and
m~t in a natural manner1:

 jm2
Hu
�MZ�j �

m2
~t �MZ�

8�2 : (4)

In mirage mediation [25], anomaly mediated SUSY
breaking [26] and modulus-mediated SUSY breaking
[27] are dynamically arranged to cancel the RG evolution
of soft parameters [19]. Such a pattern of SUSY breaking is
a natural outcome of KKLT-type moduli stabilization [28]
in which the modulus F component is suppressed com-
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1The schemes proposed in [23,24] also give a qualitatively
similar pattern of soft terms.
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pared to the gravitino mass m3=2 by the factor
1= ln�MPl=m3=2� [25]. The typical size of superparticle
masses in this scheme is given by

 mSUSY �
m3=2

8�2 ; (5)

while the detailed pattern is determined by the anomaly to
modulus mediation ratio. Under certain assumption on the
discrete parameters of underlying theory, the effective RG
evolution of soft parameters in mirage mediation is deter-
mined by a ‘‘mirage messenger scale’’

 ��Mmir �
MGUT

�MPl=m3=2�
�=2

; (6)

where � � O�1� parameterizes the anomaly to modulus
mediation ratio [19]. Having � � 2 leads toMmir � 1 TeV
minimizing the effective RG evolution of m2

Hu
; it thereby

allows the little hierarchy (4) realized without fine-tuning.
The TeV scale mirage mediation solving the little hier-
archy problem can give two different mass patterns at the
weak scale suggested by the EWSB condition (3):
 

�I� ��mHu;d
�MZ; m~t �

���������
8�2

p
MZ;

B�MZ= tan�;

�II� ��mHu
�MZ; mHd

�m~t �
���������
8�2

p
MZ;

B� 8�2MZ= tan�;

(7)

where we have used another EWSB condition �B ’
�m2

Hd
�m2

Hu
� 2�2�= tan� for the estimate of the Higgs

mass parameter B. In Ref. [21], it has been shown that both
mass patterns can be obtained in a certain class of a (string-
motivated) effective supergravity (SUGRA) model with
SUSY-breaking uplifting potential. The same model giving
the mass pattern (I) also has been discussed in [22], fol-
lowed by a phenomenological study including the degree
of fine-tuning, dark matter detection and collider signals
[29].

Recently, it was pointed out that the uplifting potential
which has been assumed in [21,22] to get � � 2 is difficult
to have an extradimensional interpretation [30]. This
would cast a doubt on the naturalness of the whole setup.
Indeed, if the uplifting potential originates from a SUSY-
breaking brane stabilized at the IR end of a warped throat
as in the KKLT moduli stabilization scenario, the minimal
setup discussed in [19,25] gives � � 1, and thus an inter-
mediate scale value of Mmir. In this paper, we propose an
alternative scheme giving Mmir � 1 TeV even when the
uplifting potential originates from a brane-localized source
located at the IR end of a warped throat. This scheme
utilizes the holomorphic gauge kinetic function and non-
perturbative superpotential depending on both the dilaton
superfield S and the volume modulus superfield T whose
axion components are periodic fields. Following KKLT
[28], we assume that S is stabilized by flux with a mass

hierarchically heavier than the gravitino mass m3=2, while
T is stabilized by a nonperturbative superpotential with
mT �m3=2 ln�MPl=m3=2�. In fact, such a scheme was
studied recently in [31]; however, the possibility ofMmir �
1 TeV has not been explored.

In mirage mediation, the Higgs mass parameter B can be
another source of fine-tuning since the conventional
SUGRA mechanism to generate � typically gives B�
m3=2 � 8�2mSUSY. As we will see, the dilaton-modulus
mixing in gauge kinetic function and nonperturbative
superpotential provides a nonperturbative mechanism to
generate B�mSUSY in mirage or anomaly mediation sce-
nario with m3=2 � 8�2mSUSY. Also, this mechanism for
B�mSUSY automatically gives a real B=Ma, thus avoids
the SUSY CP problem.

The mass patterns (I) and (II) differ by the values ofmHd

and B, leading to a significant difference in the Higgs
spectrum and associated phenomenology. A potential dif-
ficulty of the pattern (I) is that it requires a rather small B�
MZ= tan�, which might be difficult to be obtained even
under a mechanism to guarantee B�mSUSY. On the other
hand, the pattern (II) does not suffer from such difficulty
and predicts tan��

���������
8�2
p

under a mechanism to give B�
mSUSY �

���������
8�2
p

MZ. Although a rather extensive study of
the mass pattern (I) has been performed in [29], no detailed
study of the mass pattern (II) has been made yet. In the last
part of this paper, we analyze the electroweak symmetry
breaking and various constraints from flavor changing
neutral current (FCNC) processes in both mass patterns
of TeV scale mirage mediation.

This paper is organized as follows. In Sec. II, we discuss
the mirage mediation resulting from a moduli stabilization
setup with dilaton-modulus mixing and also a nonpertur-
bative mechanism to generate B�mSUSY in mirage me-
diation scenario. We will present an explicit example
which leads to the TeV scale mirage mediation solving
the little SUSY hierarchy problem while giving a desired
size of B�mSUSY. In Sec. III, we discuss the electroweak
symmetry breaking and the constraints from FCNC pro-
cesses for the SUSY mass patterns (I) and (II). We give our
conclusions in Sec. IV.

II. MIRAGE MEDIATION FROM A GENERALIZED
MODULI STABILIZATION WITH

DILATON-MODULUS MIXING

In mirage mediation [25], soft terms receive comparable
contributions from anomaly mediation [26] and modulus
mediation [27]. For the canonically normalized soft terms

 L soft � �
1
2Ma�

a�a � 1
2m

2
i j�

ij2 � 1
6Aijkyijk�

i�j�k

� H:c:; (8)

where �a are gauginos, �i are sfermions, yijk are the
canonically normalized Yukawa couplings, the soft pa-
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rameters at energy scale just below the GUT scale MGUT

are given by [25]
 

Ma � M0 �
ba

16�2 g
2
GUTm3=2;

Aijk � ~Aijk �
1

16�2 ��i � �j � �k�m3=2;

m2
i � ~m2

i �
1

32�2

d�i
d lnQ

m2
3=2

�
1

4�2

�X
jk

1

4
jyijkj

2 ~Aijk �
X
a

g2
aC

a
2��

i�M0

�
m3=2;

(9)

where M0, ~Aijk, and ~mi are the pure modulus-mediated
gaugino mass, trilinear A parameters, and sfermion masses
which are generically of the order of m3=2=8�2, and Q
denotes the renormalization scale. Here ba and �i are the
one-loop beta function coefficients and the anomalous
dimension given by
 

ba � �3 tr�T2
a�Adj�� �

X
i

tr�T2
a��i��;

�i � 2
X
a

g2
aC

a
2��

i� �
1

2

X
jk

jyijkj
2;

(10)

where the quadratic Casimir Ca2��
i� � �N2 � 1�=2N for a

fundamental representation �i of the gauge group SU�N�,
Ca2��

i� � q2
i for the U�1� charge qi of �i, and !ij �P

klyikly
	
jkl is assumed to be diagonal. Thus in our conven-

tion, ba and �Hu
of the MSSM are given by

 ba � �
33
5 ; 1;�3�; �Hu

� 3
2g

2
2 �

1
2g

2
Y � 3y2

t ; (11)

where g2 and gY �
��������
3=5

p
g1 denote the SU�2�W and U�1�Y

gauge couplings. For our later discussion, it is convenient
to define

 � �
m3=2

M0 ln�MPl=m3=2�
; aijk �

~Aijk
M0

; ci �
~m2
i

M2
0

;

(12)

where � represents the anomaly to modulus mediation
ratio, while aijk and ci parameterize the pattern of the
pure modulus-mediated soft masses. As was noted in
[25], soft terms resulting from KKLT-type moduli stabili-
zation [28] receive comparable contributions from both the
anomaly mediation and the modulus mediation; therefore,
�, aijk, and ci generically have the values of order unity.

Taking into account the 1-loop RG evolution, the above
soft masses at MGUT lead to quite a distinctive pattern of
low-energy soft masses which can be described in terms of
the mirage messenger scale [19]:

 Mmir �
MGUT

�MPl=m3=2�
�=2

: (13)

The low-energy gaugino masses are given by

 Ma�Q� � M0

�
1�

1

8�2 bag
2
a�Q� ln

�
Mmir

Q

��

�
g2
a�Q�

g2
a�Mmir�

M0; (14)

showing that the gaugino masses are unified at Mmir, while
the gauge couplings are unified at MGUT. The low-energy
values of Aijk and m2

i generically depend on the associated
Yukawa couplings yijk. However, if yijk are small enough
or if

 aijk � ci � cj � ck � 1; (15)

their low-energy values are given by [19]
 

Aijk�Q� �M0

�
aijk�

1

8�2 ��i�Q���j�Q���k�Q��

� ln
�
Mmir

Q

��
;

m2
i �Q� �M

2
0

�
ci�

1

8�2 Yi

�X
j

cjYj

�
g2
Y�Q� ln

�
MGUT

Q

�

�
1

4�2

�
�i�Q��

1

2

d�i�Q�
d lnQ

ln
�
Mmir

Q

��
ln
�
Mmir

Q

��
;

(16)

where Yi is the U�1�Y charge of �i. Quite often, the
modulus-mediated squark and slepton masses have a com-
mon value, i.e. c~q � c~‘. Then, according to the above
expression of low-energy sfermion mass, the 1st and 2nd
generation squark and slepton masses are unified again at
Mmir.

A TeV scale mirage mediation can provide a natural
solution to the little SUSY hierarchy problem [21,22]. If
� � 2 and also the conditions of (15) are satisfied for the
top quark Yukawa coupling, Mmir is of the order of 1 TeV
and the troublesome RG running ofm2

Hu
is nearly cancelled

by the anomaly mediation effect. Explicitly, we find
 

m2
Hu
�MZ� � M2

0

�
cHu
� 0:026

X
i

ciYi �
3

4�2 y
2
t ln

�
Mmir

m~t

�

�O

�
1

4�2

��

� cHu
M2

0 �O

�
M2

0

4�2

�
; (17)

where Mmir � 1 TeV. Related to the little SUSY hierarchy
problem, an attractive feature of mirage mediation arising
from KKLT-type moduli stabilization is that �, aijk, and ci
take rational values [up to small corrections of O�1=4�2�]
under suitable assumption. Then by choosing the discrete
parameters of the model in such a way to give

 � � 2; cHu
� 0; aHutLtR � c~tL � c~tR � 1; (18)

one can naturally obtain the little hierarchy:
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 m2
Hu
�MZ� �

m2
SUSY

8�2 �M
2
Z; (19)

for which the correct EWSB can be achieved without any
severe fine-tuning of parameters. Here mSUSY �M0 de-
notes generic superparticle masses including the stop and
gaugino masses. The discrete parameter values of (18)
predict

 M~g ’ M ~W ’ M ~B ’ At ’
���������������������
m2

~tL
�m2

~tR

q
� O�

���������
8�2

p
MZ�

(20)

at low-energy scales around 1 TeV, where Ma (a � ~g, ~W,
~B) are the MSSM gaugino masses, and m~tL;R are the left-
handed and right-handed stop masses.

Mirage mediation is a natural outcome of KKLT-type
moduli stabilization [28] which can be described by 4D
effective action of the form [25]:

 

Z
d4	
�3CC	e�K=3 � C2C	2P lift	

2 �	2�

�

�Z
d2	

�
1

4
faWa�Wa

� � C3W
�
� H:c:

�
; (21)

where C � C0 � F
C	2 is the chiral compensator super-

field, K and W are the Kähler potential and superpotential,
and P lift	

2 �	2 is the uplifting spurion operator induced by a
SUSY-breaking brane which is assumed to be sequestered
from the visible gauge and matter superfields. After inte-
grating out heavy moduli which are fixed by fluxes, K and
W appear to depend only on the light (volume) modulus T
and the visible matter superfields �i:
 

K � K0�T � T	� � Zi�T � T	��i	�i;

W � W0�T� �
1
6�ijk�

i�j�k: (22)

Here we assume that the model possesses an axionic shift
symmetry:

 Im �T� ! Im�T� � real constant; (23)

which is broken by the nonperturbative term in W0. This
ensures that the modulus Kähler potential K0 and the
matter Kähler metric Zi depend only on the invariant
combination T � T	, the holomorphic Yukawa couplings
�ijk are complex constants, and finally @Tfa are real con-
stants. These features eliminate the dangerous CP violat-
ing phases in soft terms deduced from (21) [32].

As long as the uplifting brane is sequestered from the
visible gauge and matter fields, its low-energy conse-
quence can be described by a spurion operator [25,30,33]
of the form

 	2 �	2P lift�T � T	�; (24)

independently of the detailed feature of SUSY breakdown.
The condition of a nearly vanishing cosmological constant
requires

 P lift � O�m2
3=2M

2
Pl�: (25)

On the other hand, if it is induced by SUSY breaking at the
IR end of a warped throat as in the scenario proposed by
[28], which is the case of our major concern, P lift is red-
shifted as

 P lift � e4AM4
Pl; (26)

where e2A � 1 is the metric warp factor at the end of
throat, implying that e2A �m3=2=MPl in such scenario.
Although it is possible that uplifting is achieved by con-
ventional F-term SUSY breaking which is not necessarily
sequestered from the volume modulus T [34], here we
focus on a sequestered uplifting scenario since the seques-
tering of a visible sector is crucial for TeV scale mirage
mediation to solve the little SUSY hierarchy problem.

In the original KKLT compactification of type IIB string
theory [28], the uplifting operator is provided by an
anti-D3 brane stabilized at the IR end of a warped throat,
while the Calabi-Yau volume modulus T can be identified
as a field living at the UV end of the throat [35]. In such
case, T is also sequestered from the uplifting brane, and
thus P lift is (approximately) independent of T [25]. More
detailed analysis of the modulus potential induced by
anti-D3 [36] and also the study of SUSY breaking trans-
mitted through the warped throat [37] imply that
@T lnP lift � O�e4A� in the limit that T lives mostly in the
unwarped region. As a result, practically P lift can be
regarded to be independent of T in senarii that it originates
from SUSY-breaking brane at the IR end of the warped
throat.

The sequestering of visible matter, i.e. the suppression of
the dependence of P lift on the visible matter fields �i:

 

@P lift

@��i	�j�
� m2

SUSY �

�m3=2

8�2

�
2
; (27)

is crucial for mirage mediation to be able to give
jm2

Hu
�MZ�j �m2

SUSY=8�2 which would solve the little
SUSY hierarchy problem. It was noticed in [38,39] that
generically geometric separation alone does not lead to
such sequestering. In particular, for many geometric back-
ground realized in string/M theory, sizable contact inter-
action (in N � 1 superspace) between �i and a SUSY-
breaking field is induced by the exchange of bulk fields
[38], implying that a rather special type of geometric
background is required to realize sequestering.

On the other hand, studies of sequestering in some class
of 4D CFT [40] and 5D warped geometry [41], and also an
operator analysis for SUSY breaking transmitted through a
warped throat [42], suggest that sequestering might be
realized if the visible sector is separated from the SUSY-
breaking brane by a warped throat. Based on these obser-
vations, sequestering of visible matter fields was assumed
in the initial analysis of soft terms in KKLT setup [25].
Recently, it was argued in [33] that sizable contact inter-
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action might be induced even for the case of a warped
throat by the exchange of the throat isometry vector super-
field. More recently, this issue of sequestering in warped
string compactification has been examined in more detail
[37], confirming that the desired sequestering can be
achieved easily when the visible brane and SUSY-breaking
brane are separated from each other by a strongly warped
throat. For instance, it has been noticed that transmission of
SUSY breaking through a Klebanov-Strassler-type throat
[43] leads to (in the unit with MPl � 1)

 

@P lift

@��i	�j�
& O�e

����
28
p

A� � O�e1:29Am2
3=2�; (28)

where we have used e2A �m3=2=MPl for the metric warp
factor. The soft scalar masses of �i resulting from this
violation of sequestering are given by

 �m2
i �j & m2

3=2

�m3=2

MPl

�
0:65
� 10�9m2

3=2; (29)

which are small enough to be ignored compared to the
modulus and anomaly mediated scalar mass squares of
O�m2

3=2=�8�
2�2�.

The size of the violation of sequestering can differ for
different types of throat. Generically, the warped seques-
tering scenario discussed in [37] gives �m2

i �j � e
�Am2

3=2

with � � O�1� for the metric warp factor which can be
as small as e2A �m3=2=MPl, and thereby the soft scalar
masses of visible matter and Higgs fields are dominated by
the modulus and anomaly mediated contributions given by
(9). In the following, we start with a setup including the
case that P lift has a nontrivial T dependence as in
Refs. [19,21,22], while keeping that P lift is independent
of the visible matter fields �i. Later, we will focus on the
specific case that P lift is independent of both T and �i.

In the Einstein frame, the modulus potential from (21)
takes the form:

 VTOT � eK0
�@T@ �TK0�
�1jDTW0j

2 � 3jW0j
2� � Vlift;

(30)

where DTW0 � @TW0 �W0@TK0 and the uplifting poten-
tial is given by

 Vlift � e2K0=3P lift: (31)

The superspace Lagrangian density (21) also determines
the auxiliary components of C and T as
 

FC

C0
�

1

3
@TK0FT �m	3=2;

FT � �eK0=2�@T@ �TK0�
�1�DTW0�

	;
(32)

where m3=2 � eK0=2W0. For the minimal KKLT setup with

 fa � T; W0 � w0 � Ae�aT; (33)

where w0 is a hierarchically small constant of O�m3=2� and

A � O�1� in the unit with MPl � 1, it is straightforward to
compute the vacuum values of T and FT by minimizing
the corresponding modulus potential (30) under the fine-
tuning condition hVTOTi � 0.2 At leading order in 
 �
1= ln�MPl=m3=2�, one finds [19,45]:
 

aT � 
1�O�
�� ln�MPl=m3=2�;

M0 � FT@T ln�Re�fa�� �
FT

T � T	

�
m3=2

ln�MPl=m3=2�

�
1�

3@T ln�P lift�

2@TK0
�O�
�

�
;

� �
m3=2

M0 ln�MPl=m3=2�
�

�
1�

3@T ln�P lift�

2@TK0
�O�
�

�
�1
:

(34)

In order to get � � 2 giving Mmir � 1 TeV within this
minimal setup, one needs @T ln�P lift�=@TK0 � �1=3 as
was assumed in [19,21,22]. However, as was pointed out
in [30], @T ln�P lift�=@TK0 < 0 means that the uplifting
sector couples more strongly for a larger value of T, which
makes it difficult to give an extradimensional interpretation
for P lift. Thus, in order to get Mmir � 1 TeV in a more
plausible case with @T ln�P lift�=@TK0 
 0, one needs to
modify the minimal setup given by (33).

As was pointed out recently [31], generalizing the gauge
kinetic functions as

 fa � kaT � laS (35)

can give rise to a different value of the anomaly to modulus
mediation ratio � for a given form of P lift, where S is the
dilaton superfield and T is the volume modulus superfield.
Such dilaton-modulus mixing in fa is not an unusual
feature of string compactification. For instance, in heterotic
string/M theory, for an appropriate normalization of S
and T, one finds la are positive rational numbers, while
ka are flux-induced rational number [46]: ka �

1
8�2 �R

CY J ^ 
tr�F ^ F� �
1
2 tr�R ^ R��, where J, F, and R are

the Kähler, gauge, and curvature 2-forms, respectively. A
similar form of fa is obtained also in D-brane models of
type II string compactification. For instance, the gauge
kinetic function on D7 branes wrapping a 4-cycle �4 is
given by (35) where ka are integer-valued wrapping num-
ber and la are flux-induced rational number [47]: la �

1
8�2

R
�4
F ^ F.

2In fact, the correct condition should be hVTOTi ��VTOT � 0,
where �VTOT denotes the quantum correction to the classical
vacuum energy density hVTOTi [44]. This can alter the prediction
of sfermion masses by an order of �VTOT=M

2
Pl. �VTOT is

dominated by the quadratically divergent one-loop corrections
with the cutoff scale �, i.e. �VTOT � N�2m2

SUSY=8�2, where N
is the number of light superfields in 4D effective theory. In
KKLT-type moduli stabilization, the volume modulus is stabi-
lized at a value for which � is comparable to MGUT, and then
�VTOT=M

2
Pl is small enough to be ignored.
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The dilaton-modulus mixing in fa suggests that some
nonperturbative terms in the superpotential depend on both
S and T as

 W0 � Wflux�S; Z�� �Wnp

� Wflux�S; Z�� �
X
I

AI�Z��e
�8�2�kIT�lIS�; (36)

where Z� are complex structure moduli stabilized by Wflux

together with S, and AI generically have vacuum values of
order unity. Here Wnp might be induced by hidden gaugino
condensation or string-theoretic instantons. For a confining
hidden SU�N� gauge group with gauge kinetic function
fh � khT � lhS, gaugino condensation gives Wnp �

e�8�2�khT�lhS�=N . Similarly, Euclidean action of some
stringy instanton might be given by a linear combination
of S and T, Sins � 8�2�kinT � linS�, thereby yielding
Wnp � e

�8�2�kinT�linS�.
An important feature of the gauge kinetic function (35)

and the nonperturbative terms in (36) which will be crucial
for our subsequent discussion is that

 fkA=kB; lA=lBg � rational numbers; (37)

where kA � fka; kIg and lA � fla; lIg. Note that these ratios
are determined by the topological or group theoretical data
of the underlying string compactification. This feature can
be understood easily by noting that Im�S� and Im�T� are
periodic axion fields, thus the coefficients kA and lA should
be quantized. In the following, we discuss the mirage
mediation resulting from the effective SUGRA with the
holomorphic gauge kinetic function (35) and the moduli
superpotential (36), and examine the possibility of Mmir �
1 TeV, i.e. � � 2, for a sequestered uplifting function
@TP lift � 0.

Let us start with the usual KKLT assumption that S and
Z� are fixed by Wflux at hSi � S0 and hZ�i � Z0� with a
mass hierarchically heavier than m3=2 [28]. To be specific,
we consider a model with the following form of the visible
sector gauge kinetic function and the moduli superpoten-
tial:
 

fv � T � lS;

W0 � Wflux�S; Z�� �Wnp�S; Z�; T�

� Wflux � A1e
�8�2�k1T�l1S�; (38)

where A1 � O�1�. Note that we have chosen the normal-
ization of T for which kA � �ka; kI� take rational values.
After integrating out the heavy S and Z�, the effective
gauge kinetic function and modulus superpotential are
given by
 

f�eff�
v � T � lS0;

W�eff�
0 � hWfluxi �Wnp � hWfluxi � A1e

�8�2�k1T�l1S0�:

(39)

UsingU�1�R transformation and also the axionic shift of T,
we can always make hWfluxi and A1e�8�2l1S0 real.

In the scheme under consideration, the requirement of a
nearly vanishing cosmological constant leads to

 P lift �
jW�eff�

0 j2

M2
Pl

�m2
3=2M

2
Pl: (40)

On the other hand, the volume modulus T is stabilized
by W�eff�

0 � hWfluxi �Wnp at a vacuum value yielding
hWnpi � hWfluxi= ln�MPl=m3=2� [25,28]. As a result, the
flux-induced superpotential is required to have a vacuum
value

 

jhWfluxij
2

M2
Pl

� hP lifti (41)

in order for the scheme to admit the fine-tuning for a nearly
vanishing cosmological constant. In the case that P lift is
induced by SUSY breaking at the IR end of a warped throat
as proposed in [28], one finds [48]

 

hP lifti

M4
Pl

� e4A � exp
�
�

��4
R

~�3
H3

3
R

�3
F3

�
8�2 Re�S0�

�
; (42)

where 4�Re�S0� � 1=gst for the string coupling gst whose
self-dual value is normalized to be unity, and

R
�3
F3 andR

~�3
H3 denote the integer-valued RR and NS-NS fluxes

over the 3-cycle �3 collapsing along the throat and its dual
3-cycle ~�3. To summarize, to achieve the nearly vanishing
cosmological constant, the flux-induced superpotential is
required to be tuned as (in the unit with MPl � 1)

 jhWfluxij � exp
�
�

��2
R

~�3
H3

3
R

�3
F3

�
8�2 Re�S0�

�
; (43)

thus can be parameterized as

 hWfluxi � A0e�8�2l0S0 ; (44)

where l0 � ��2
R

~�3
H3�=�3

R
�3
F3� is a positive rational

number of order unity and A0 � O�1�. As we will see, this
feature of the flux-induced superpotential makes the vac-
uum value of Re�T�=l0 Re�S� to be a rational number [up to
small corrections of O�1= ln�MPl=m3=2�], which eventually
yields the mirage mediation parameters �, ci, and aijk
taking rational values. In the following, we will adopt
this parametrization of hWfluxi while keeping in mind that
it does not originate from a nonperturbative dynamics, but
from the fine-tuning of the cosmological constant.

Minimizing the modulus potential (30) for

 W�eff�
0 � hWfluxi � A1e

�8�2�k1T�l1S0�

� A0e�8�2l0S0 � A1e�8�2�k1T�l1S0� (45)

and a generic uplifting function P lift, we find the vacuum
values of T and FT are given by
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k1T ’ �l0 � l1�S0 �
1

8�2 ln
�
�8�2k1

@TK0

A1

A0

�
;

FT

T � T	
’

l0
l0 � l1

m3=2

ln�MPl=m3=2�

�
1�

3@T ln�P lift�

2@TK0

�
:

(46)

On the other hand, the phenomenologically favored
m3=2 � 10 TeV and g�2

GUT ’ 2 require
 

8�2l0 Re�S0� ’ ln�MPl=m3=2� � 4�2;

Re�T� � lRe�S0� ’ 2;
(47)

implying

 4 &
l0 � l1 � k1l

k1l0
& 5 (48)

when the involved uncertainties are taken into account.
The modulus-mediated gaugino mass is given by

 M0 � FT@T ln�Re�fv�� �
FT

T � T	

�
l0 � l1

l0 � l1 � k1l

�
; (49)

thus we find

 � �
m3=2

M0 ln�MPl=m3=2�

�
l0 � l1 � k1l

l0

�
1�

3@T ln�P lift�

2@TK0

�
�1

(50)

up to small corrections of the order of 1= ln�MPl=m3=2� �

1=4�2. Note that the F component of heavy dilaton S is
given by FS=S0 �m

2
3=2=mS, and thus is completely negli-

gible since the dilaton mass mS is hierarchically heavier
than m3=2.

The modulus-mediated A parameters and sfermion
masses are determined by the following term in the super-
space action (21):

 

Z
d4	CC	e�K0=3Zi�i	�i; (51)

where K0 is the modulus Kähler potential and Zi is the
matter Kähler metric. One then finds [27]
 

~Aijk � aijkM0 � FT@T ln�e�K0ZiZjZk�;

~m2
i � ciM2

0 � �jF
T j2@T@ �T ln�e�K0=3Zi�:

(52)

In the absence of dilaton-modulus mixing, e�K0=3Zi typi-
cally takes the form:

 e�K0=3Zi � �T � T	�ni ; (53)

where ni is a rational number. The gauge flux leading to the
modification of fa can modify the matter Kähler metric Zi
also. For simplicity, here we consider the case that the
matter Kähler metric of the visible sector is not affected
by the involved dilaton-modulus mixing, thereby e�K0=3Zi
takes the above simple form. Then the resulting aijk and ci
are found to be

 

aijk � �ni � nj � nk�
�
l0 � l1 � k1l
l0 � l1

�
;

ci � ni

�
l0 � l1 � k1l
l0 � l1

�
2
:

(54)

In mirage mediation, the Higgs mass parameter B can be
another source of fine-tuning since the conventional
SUGRA mechanism to generate � generically gives B�
8�2mSUSY which is too large to give successful electro-
weak symmetry breaking. For instance, the Higgs bilinear
terms in the Kähler and superpotential:

 �K � ~��T � T	�HuHd � H:c:; �W � ~��T�HuHd

(55)

give the canonically normalized Higgsino mass:

 � � �K ��W

�
1����������������

ZHu
ZHd

p �m3=2 � F
�T@ �T�~��

1����������������
ZHu

ZHd

p eK0=2 ~�;

(56)

and the canonically normalized holomorphic Higgs mass:
 

B� � �
m	3=2 � F
T@T ln� ~�� �O�FT���W

� 
m	3=2 �O�FT���K; (57)

where ZHu
and ZHd

are the Kähler metrics of Hu and Hd,
respectively. Sincem3=2 � 8�2mSUSY in mirage mediation,
this shows that indeed B is generically of O�8�2mSUSY�.

The moduli stabilization setup discussed above provides
a nonperturbative mechanism to generate B�mSUSY with-
out fine-tuning. To obtain the desired size of� and B, let us
assume that ~� � ~� � 0 in perturbation theory due to a
symmetry G under which HuHd has a nontrivial trans-
formation, however an exponentially small ~��
e�8�2�k2T�l2S0� is generated by a nonperturbative effect
which breaks G:

 �W � A2e
�8�2�k2T�l2S0�HuHd: (58)

Adding the above nonperturbative � term to the modulus
superpotential (39), the total nonperturbative superpoten-
tial of the model is given by

 WTOT � A0e
�8�2l0S0 � A1e

�8�2�k1T�l1S0�

� A2e
�8�2�k2T�l2S0�HuHd; (59)

yielding

 � �
eK0=2A2e�8�2�k2T�l2S0�����������������

ZHu
ZHd

p � A2m
N�
3=2;

B � 8�2k2F
T �m3=2 �O�FT�

�

�
2k2

k1

�
1�

3@T ln�P lift�

2@TK0

�
� 1

�
m3=2 �O�FT�;

(60)
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where

 N� �
k2

k1

l0 � l1
l0

�
l2
l0
; (61)

and we have used the vacuum expectation values (46) and
(47) for the last expressions of � and B. This result shows
that B�mSUSY with a proper size of � can be obtained by
choosing the involved rational coefficients as

 

k2

k1
�

1

2

�
1�

3@T ln�P lift�

2@TK0

�
�1
;

k2

k1

l0 � l1
l0

�
l2
l0
� 1;

(62)

and A2 has a value of O�10�2� or of O�10�3� depending
upon the necessary value of �. Note that @T ln�P lift�=@TK0

is typically a rational number for the volume modulus T,
and A2 naturally can be small since the symmetry G is
restored in the limit A2 � 0.

It would be nice if k2 � k1 and l2 � l1, so that the
nonperturbative � term e�8�2�k2T�l2S0�HuHd has the same
dynamical origin as the nonperturbative term
e�8�2�k1T�l1S0� which stabilizes T. However, in view of
the condition (62), it is possible only when
@T ln�P lift�=@TK0 � �1=3 [21], for which it is hard to
give an extradimensional interpretation to P lift [30]. In a
more plausible case that @T ln�P lift�=@TK0 
 0, these two
terms cannot have the same origin. However, still they can
have naturally the same order of magnitude by choosing
the discrete parameters to satisfy k2

k1

l0�l1
l0
� l2

l0
� 1. Another

interesting feature of this mechanism to generate � is that
the resulting B is automatically real in the field basis that
m3=2 and FT are real, and thus avoids the SUSY CP
problem, as a consequence of the axionic shift symmetry
of T [32]. In the most interesting case that the uplifting
brane is located at the IR end of a warped throat, and thus is
sequestered from the volume modulus T, i.e. @TP lift � 0,
the values of k2 and l2 which give �� A2m3=2 and B�
mSUSY are

 k2 �
1
2k1; l2 �

1
2�l0 � l1�: (63)

The nonperturbative � term (58) can be generated by a
confining hidden SU�Nc� gauge interaction with Nf flavors
of hidden quarks Qh �Qc

h and a singlet X. As a specific
example, let us consider a hidden sector with G � Z3

symmetry under which

 X ! ei2�=3X; HuHd ! ei2�=3HuHd;

QhQ
c
h ! e�i2�=3QhQ

c
h:

(64)

Up to ignoring irrelevant higher dimensional operators, the
hidden gauge kinetic function and superpotential invariant
under Z3 are given by

 

fh � khT � lhS0;

Wh � �1X3 � �2XQhQc
h � h1QhQc

hHuHd � h2X2HuHd:

(65)

Note that Z3 forbids a bare HuHd term in gauge kinetic
functions, Kähler potential and superpotential. The Z3

symmetry is anomalous under the hidden SU�Nc� gauge
interaction, and thus is broken by the nonperturbative
Affleck-Dine-Seiberg superpotential [49]

 WADS � �Nc � Nf�
�
e�8�2fh

det�QhQ
c
h�

�
1=�Nc�Nf�

: (66)

Then, after integrating out the confining hidden sector
while including the effect of WADS, one finds the following
effective superpotential:

 W�eff�
h � A3e�12�2�k2T�l2S0� � A2e�8�2�k2T�l2S0�HuHd;

(67)

where

 k2 �
2kh

3Nc � Nf
; l2 �

2lh
3Nc � Nf

: (68)

Since e�12�2�k2T�l2S0� �m3=2
3=2 in the unit MPl � 1 for the

rational coefficients (62), the first term of W�eff�
h can be

ignored safely.
Adding the above W�eff�

h to (39), we obtain the total
superpotential:

 WTOT � A0e�8�2l0S0 � A1e�8�2�k1T�l1S0�

� A2e�8�2�k2T�l2S0�HuHd: (69)

Let us recall that the first term in WTOT corresponds to the
flux-induced superpotential parameterized as hWfluxi �

A0e�8�2l0S0 , which reflects the fine-tuning required for a
nearly vanishing cosmological constant for an exponen-
tially red-shifted uplifting operator P lift � e�16�2l0 Re�S0�.
The second term e�8�2�k1T�l1S0� might be induced by D3
brane instanton or D7 brane gaugino condensation with
fD7 / k1T � l1S0. It should be stressed that although
each of the three terms in WTOT has a different origin,
they naturally have the same order of magnitudes.
Independently of the value of l1, T is stabilized at a vacuum
value making the first and second terms comparable to
each other. As for the � term, we could get �� A2m3=2

and B�m3=2=8�2 by assuming that the rational coeffi-
cients k2 and l2 satisfy (62).

So far, we have discussed generic mirage mediation
resulting from moduli stabilization with dilaton-modulus
mixing. Let us finally examine if this generalized setup
allows a TeV scale mirage mediation solving the little
hierarchy problem for the case that the uplifting function
is sequestered as @TP lift � 0. Here we just present a simple
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example giving the parameters in (18). The model is de-
fined by
 

fv � T;

WTOT � A0e�8�2S0 � A1e�4�2�T�2S0� � A2e�2�2THuHd;

(70)

where the nonperturbative � term is induced by hidden
SU�Nc� gauge interaction with fh � T, Nc � 3, and Nf �
1. The first term of WTOT is assumed to be induced by flux
which admits the fine-tuning for a nearly vanishing cos-
mological constant for the uplifting function given by
P lift � e�16�2 Re�S0�, where the exponential suppression of
P lift is due to the exponentially small warp factor. The
second term of WTOT might be induced by string-theoretic
instanton and/or additional hidden gauge interaction with
gauge kinetic function / T � 2S0. The uplifting function is
assumed to be sequestered from the volume modulus T,
which would be the case if it originates from a SUSY-
breaking brane at the IR end of a warped throat, so that

 @TP lift � 0: (71)

The modulus Kähler potential and the Kähler metric ofHu,
tL, and tR are chosen to be

 K0 � �3 ln�T � T	�; e�K0=3ZHu
� constant;

e�K0=3ZtL � e�K0=3ZtR � �T � T
	�1=2:

(72)

It is straightforward to see that this model gives the neces-
sary TeV scale mirage mediation parameters:

 � � 2; cHu
� 0; aHutLtR � c~tL � c~tR � 1; (73)

as well as

 �� A2m3=2; B�
m3=2

8�2 ; g�2
GUT ’ 2: (74)

This model can give either the mass patterns (I) or (II) of
(7), depending upon the choice of e�K0=3ZHd

and the
possibility of a further suppression of B.

III. SPARTICLE SPECTRUM AND CONSTRAINTS
FROM ELECTROWEAK SYMMETRY BREAKING

AND FCNC

In this section we discuss the low-energy sparticle spec-
trum and the constraints from electroweak symmetry
breaking and FCNC processes in the TeV scale mirage
mediation scenario. The pattern of low-energy sparticle
masses can be obtained easily by choosing Mmir � 1 TeV
in the analytic solution (16). In Fig. 1, we show the running
of gauge coupling constants and gaugino masses. Here we
take Mmir � M0 � 1 TeV as a benchmark point. Note that
the gaugino masses are unified at Mmir, while the gauge
coupling constants are unified at MGUT ’ 2:0� 1016 GeV.
In Figs. 2 and 3, we show the running of trilinear couplings
and scalar masses for the mass pattern (I) and (II), respec-
tively. We choose ci � 1=2 for all quark and lepton super-
fields, while cHu

� cHd
� 0 for the mass pattern (I) and

cHu
� 0, cHd

� 1 for the mass pattern (II). As anticipated
from (16), the trilinear couplings and scalar masses are
unified at Mmir while the Higgs soft masses cross zero for
the case of the mass pattern (I). After taking into account
the ambiguity inMmir=M0 � O�1� and higher order effects
such as the threshold at MGUT and two-loop running, the
model of Fig. 2 gives rise to the little hierarchy jm2

Hu;Hd
j �

M2
0=8�2 at M0 � 1 TeV. For the model of Fig. 3, although

the bottom Yukawa coupling and the U�1�Y D-term con-
tribution provide additional contribution tom2

Hu
�M0�, still a

sufficient little hierarchy is realized for m2
Hu
=M2

0, while
m2
Hd
=M2

0 � 1 in this case.
In the TeV scale mirage mediation scenario, the squark/

slepton mass squares renormalized at high-energy scale,
e.g. at a scale near MGUT, are negative as was noticed in

 

FIG. 1 (color online). Running of gauge couplings and gaugino masses in TeV scale mirage mediation.
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[50], while the values at low-energy scale below 106 GeV
are positive. Such tachyonic high-energy squark/slepton
mass squares might be considered as a problematic feature
of the model. However, as long as the low-energy squark/
slepton mass squares are positive, the model has a correct
color/charge preserving (but electroweak symmetry break-
ing) vacuum which is a local minimum of the scalar
potential over the squark/slepton values j�j & 106 GeV.
On the other hand, tachyonic squark mass squares at the
RG point Q> 106 GeV indicate that there might be a
deeper color/charge breaking (CCB) minimum or an un-
bounded from below direction [51] at j�j � 106 GeV. In
such a situation, we need a cosmological scenario in which
our universe is settled down at the correct vacuum with
� � 0.

In view of the fact that the squarks and sleptons get large
positive mass squares in the high temperature limit, it is a
rather plausible assumption [52] that squark/slepton fields
are settled down at the color/charge preserving minimum
after the inflation. However, as was pointed out in [53], the
early universe might be trapped at the CCB minimum until

it becomes the global minimum at low temperatures, de-
pending upon the details of the model and also of the
inflation scenario. This should be avoided in order for
TeV scale mirage mediation to be viable. An examination
of this issue is beyond this work as it requires an explicit
scenario of early universe inflation. We thus simply assume
that TeV scale mirage mediation can be combined with a
successful early universe inflation leading to squark/slep-
ton vacuum values settled down at the color/charge pre-
serving local minimum.

Still we need to confirm that the color/charge preserving
local minimum is stable enough against the decay into
CCB vacuum. It has been noticed that the corresponding
tunnelling rate is small enough, i.e. less than the Hubble
expansion rate, as long as the RG points of vanishing
squark/slepton mass squares are all higher than 104 GeV
[52,54], which is satisfied safely by the TeV scale mirage
mediation scenario solving the little SUSY hierarchy
problem.

The analysis of electroweak symmetry breaking in TeV
scale mirage mediation is more involved because

 

FIG. 3 (color online). Running of trilinear couplings and scalar masses leading to the mass pattern (II).

 

FIG. 2 (color online). Running of trilinear couplings and scalar masses leading to the mass pattern (I).
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dm2
Hu

d lnQ
�
m2

SUSY

8�2 �m
2
Hu
; (75)

around the TeV scale, and thus the running Higgs parame-
ter m2

Hu
�Q� [m2

Hd
�Q� also for the mass pattern (I)] is rather

sensitive to the RG point Q. To express the conditions for
electroweak symmetry breaking in terms of the RG-
sensitive running parameters, one needs to include the
Coleman-Weinberg one-loop potential [55,56] which can-
cels the Q dependence coming from the running parame-
ters. This can be done efficiently [57] by replacing m2

Hd;u
in

the electroweak symmetry breaking conditions derived
from the RG-improved tree level Higgs potential with

 �m 2
Hd;u
� m2

Hd;u
�

td;u
hH0

d;ui
; (76)

where the tadpoles td;u are defined as

 td;u � �
1

32�2 Str
�
@M2

@hH0
d;ui

M2

�
ln
�
M2

Q2

�
� 1

��
; (77)

where Str stands for the supertrace and M represents the
full mass matrix after SU�2�W �U�1�Y breaking.

Keeping this in mind, let us start with the RG-improved
tree level scalar potential of the neutral Higgs bosons in the
MSSM:

 V � �m2
Hd
� j�j2�jH0

dj
2 � �m2

Hu
� j�j2�jH0

uj
2

� �B�H0
dH

0
u � H:c:� � 1

8�g
2
2 � g

2
Y��jH

0
dj

2 � jH0
uj

2�2:

(78)

This Higgs potential leads to hH0
d;ui � 0 if the D-flat

direction is stable,

 m2
Hd
�m2

Hu
� 2j�j2 � 2jB�j> 0; (79)

and also the configuration H0
d;u � 0 is a saddle point,

 �m2
Hd
� j�j2��m2

Hu
� j�j2� � jB�j2 < 0: (80)

At the minimum of the potential, MZ and tan� �
hH0

ui=hH0
di are determined as

 

M2
Z

2
�
m2
Hd
�m2

Hu
tan2�

tan2�� 1
� j�j2;

1� tan2�
tan�

jB�j � m2
Hd
�m2

Hu
� 2j�j2;

(81)

which correspond to the electroweak symmetry breaking
conditions in the MSSM.

The second of the above electroweak symmetry break-
ing conditions has a solution only when

 

m2
Hd
�m2

Hu

jBj2
�

1

8

�
1� tan2�

tan�

�
2
: (82)

We then find

 

j�j �
1� tan2�

4 tan�
jBj

�

�
1�

����������������������������������������������������������������
1� 8

�
tan�

1� tan2�

�
2 m2

Hd
�m2

Hu

jBj2

vuut �
; (83)

where the minus sign is allowed only for m2
Hd
�m2

Hu

 0.

In the expansion in powers of 1= tan�, these two solutions
can be approximated as

 j�j �

8><
>:

tan�
2 jBj
1�O� 1

tan2�
��

1
tan�

m2
Hd
�m2

Hu

jBj 
1�O� 1
tan2���; �m

2
Hd
�m2

Hu

 0�:

(84)

Combining with the first condition of (81), we can find the
required jBj for given m2

Hd;u
and tan�. The mass pattern (I)

favors the first solution because m2
Hd
�m2

Hu
tends to be

negative due to the large negative anomalous dimension of
Hu. On the other hand, the mass pattern (II) favors the
second solution because the first solution requires a too
small jBj to allow the solution itself. This makes the two
mass patterns behave in a qualitatively different manner. In
particular, they require a quite different size of jBj:

 Pattern �I�: jBj ’
2j�j
tan�

�
MZ

tan�
;

Pattern �II�: jBj ’
1

tan�

m2
Hd
�m2

Hu

j�j
�

1

tan�
M2

0

MZ
:

(85)

In mirage mediation, even when one has a mechanism to
eliminate the contribution of O�m3=2� to B as the one
discussed in the previous section, it is hard to control jBj
to make it significantly smaller thanM0 �m3=2=4�2. Note
that generically B can receive a contribution of
O�m3=2=8�2� from a threshold effect at the UV cutoff
scale. As a result, the mass pattern (I) might involve an
additional fine-tuning to make jBj as small as required. On
the other hand, the mass pattern (II) fits well to the natural
prediction B�M0 which yields tan��M0=MZ �

���������
8�2
p

.
In the following, we ignore this potential fine-tuning for the
mass pattern (I), and we compare its phenomenological
aspects with those of the mass pattern (II).

Our theoretical framework for mirage mediation can
predict the soft parameters at TeV with a precision of
O�M0=

���������
8�2
p

�. As a result, it provides only an order of
magnitude prediction for the soft parameters which have a
size of O�M0=

���������
8�2
p

� at TeV, i.e. mHu
, mHd

, B in the mass
pattern (I) and mHu

in the mass pattern (II). For these small
parameters, we take a phenomenological approach treating
them as free input parameters defined at the electroweak
scale within the range of O�M0=

���������
8�2
p

� as suggested by the
mirage mediation scheme. To give a precise meaning to

TEV SCALE MIRAGE MEDIATION AND NATURAL LITTLE . . . PHYSICAL REVIEW D 75, 095012 (2007)

095012-11



those input parameters, we define them at Q � M0=
���
2
p

in
the DR scheme [58].

The coupling constants and soft terms in the Higgs
potential (78) are running parameters and the result of
analysis depends on the RG point Q at which the potential
is minimized. To deal with the Higgs parameters which
have a size of O�M0=

���������
8�2
p

�, we need to reduce this
renormalization scale dependence by including the
Coleman-Weinberg one-loop effective potential [55,56]:

 �V1 �
1

64�2 Str
�
M4

�
ln
�
M2

Q2

�
�

3

2

��
: (86)

This one-loop correction can be effectively included in
(81) [57] by replacing m2

Hd;u
with �m2

Hd;u
defined in (76).

Taking c~q;~u;~d � 1=2 in (16), we obtain
 td
hH0

di
� ��m2

Hd
� �B� � sgn�B�� tan�;

tu
hH0

ui
� ��m2

Hu
� �B� � sgn�B��

1

tan�
;

(87)

where
 

�m2
Hd;u
� �

M2
0

8�2

�
2�Hd;u

ln
�
M0���
2
p
Q

�
� �3g2

2 � g
2
Y� ln�

���
2
p
�

�
1

2
�3y2

b;t � 3g2
2 � g

2
Y�

�
;

�B� �
�M0

8�2

�
��Hd

� �Hu
� ln

�
M0���
2
p
Q

�

� �3g2
2 � g

2
Y� ln�

���
2
p
� �

1

2
�3g2

2 � g
2
Y�

�
:

(88)

In the following numerical analysis, we use the electro-
weak symmetry breaking condition (81) supplemented by
the replacement

 m2
Hd;u
! �m2

Hd;u
� m2

Hd;u
�

td;u
hH0

d;ui
; (89)

which eliminates the sensitivity to the renormalization
pointQ as the Q dependence fromm2

Hd;u
and B is cancelled

by the Q dependence of td;u=hH0
d;ui. In this regard, the

following estimate turns out to be useful:

 �m 2
Hu
� m2

Hu
jQ��M0=

��
2
p
� � 0:95

M2
0

8�2 : (90)

In the model of the mass pattern (I), m2
Hd;u

are free
parameters of O�M2

0=8�2� at the weak scale. If tan� is
not too small, the first condition of (81) is approximated as

 

M2
Z

2
� � �m2

Hu
� j�j2 � �m2

Hu
�

tu
hH0

ui
� j�j2:

This leads to an upper bound of m2
Hu

,

 m2
Hu

& �
M2
Z

2
�

tu
hH0

ui
; (91)

which is saturated when � � 0. Combining this with the
second condition of (81), we find

 m2
A �

1� tan2�
tan�

jB�j � �m2
Hd
� �m2

Hu
�M2

Z

� m2
Hd
�m2

Hu
�

td
hH0

di
�

tu
hH0

ui
�M2

Z * 0; (92)

where mA is the running pseudoscalar Higgs mass which is
of O�MZ� in this case. In Fig. 4, we show the parameter
region leading to the correct electroweak symmetry break-
ing on the planes of �m2

Hu
;M0� and �m2

Hu
; tan�� for a

benchmark scenario satisfying m2
Hd
=m2

Hu
� �Hd

=�Hu
.

In Fig. 5, we present similar plots for the mass
pattern (II). In this case, B is of O�M0�, which would be
naturally achieved by the nonperturbative mechanism dis-
cussed in the previous section, and also m2

Hd
� M2

0 and
m2
Hu
�M2

0=8�2 at TeV under the choice cHd
� 1 and

cHu
� 0. Then the electroweak symmetry breaking condi-

tions lead to

 

FIG. 4 (color online). Electroweak symmetry breaking, Higgs boson masses and the degree of fine-tuning in the mass pattern (I).
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M2
Z

2
�

�m2
Hd

tan2�
� �m2

Hu
� j�j2 �

�
1�

�m2
Hd

jBj2

� �m2
Hd

tan2�
� �m2

Hu
:

(93)

Note that mA ’ M0 in the case of the mass pattern (II).
Let us now estimate quantitatively the degree of fine-

tuning for the electroweak symmetry breaking. Among the
various possible measures of fine-tuning, we choose the
sensitivity of M2

Z against a variation of the input parameter
fag � f�2; B;m2

Hd;u
g [3]:

 �a �
@ lnM2

Z

@ lna
: (94)

We then find

 

��2 � �
2j�j2

M2
Z

�
2tan2�

�tan2�� 1�2

�
1�

4 tan�

tan2�� 1

j�j
jBj

�

�

�
1�

tan2�� 1

tan�
jB�j

M2
Z

�
;

�jBj �
4tan2�

�tan2�� 1�2

�
1�

tan2�� 1

tan�
jB�j

M2
Z

�
;

�m2
Hd
� �

2m2
Hd

M2
Z

1

�tan2�� 1�2

�

�
tan2�� 1�

2tan3�

tan2�� 1

M2
Z

jB�j

�
;

�m2
Hu
� �

2m2
Hu

M2
Z

tan2�

�tan2�� 1�2

�

�
tan2�� 1�

2 tan�

tan2�� 1

M2
Z

jB�j

�
;

(95)

where we have taken account of the� andB dependence of
tan�. For the mass pattern (I), �a are simplified as

 

��2 � �
2j�j2

M2
Z

�O

�
1

tan2�

�
;

�jBj �
4

tan2�

�
1�

2j�j2

M2
Z

�
�O

�
1

tan4�

�
;

�m2
Hd
� �

2m2
Hd

M2
Ztan2�

�
1�

M2
Z

j�j2

�
�O

�
1

tan4�

�
;

�m2
Hu
� �

2m2
Hu

M2
Z

�O

�
1

tan2�

�
:

(96)

The above results show that �jBj and �m2
Hd

are subdomi-

nant compared to ��2 ��m2
Hu

if jBj could be made to be

small enough to give tan2��M2
Z=jBj

2 � 1. Note that
�jBj measures the sensitivity of M2

Z to jBj under the as-
sumption that jBj is as small asMZ= tan�, not the degree of
fine-tuning required to get such a small jBj. ��2 increases
with j�j, but the degree of fine-tuning can be made to be
better than 10%, i.e. j��1

�2 j> 0:1, for j�j & 200 GeV. This

is typically realized for a natural range of m2
Hu

and M0 as
shown in the left panel of Fig. 4. We also plot in Fig. 4 the
lightest Higgs mass using FEYNHIGGS1.2.2 [59]. The LEP
bound on the physical Higgs boson mass, mh0 >
114:4 GeV, can be satisfied with a fine-tuning of �2 better
than 10%.

For the mass pattern (II), the fine-tuning parameters are
well approximated as
 

��2 �
2j�j2

M2
Z

�
jBj2

m2
Hd

� 1
�
�O

�
1

tan2�

�
;

�jBj �
4m2

Hd

M2
Ztan2�

�O

�
1

tan2�

�
;

�m2
Hd
� �

2m2
Hd

M2
Ztan2�

�O

�
1

tan2�

�
;

(97)

where we have ignored the piece of O�m2
Hu
=m2

Hd
�, and the

 

FIG. 5 (color online). Electroweak symmetry breaking, Higgs boson masses and the degree of fine-tuning in the mass pattern (II).
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expression for �m2
Hu

is the same as the one for the mass

pattern (I). In Fig. 5, we show the parameter region for
which j��1

�2 j> 0:1 and j��1
jBj j> 0:1. Note that j�j can be

significantly bigger than MZ while keeping j��2 j � O�1�
if jBj2 ’ m2

Hd
. This might open up an interesting possibility

to raise j�j, thus raising the Higgsino mass, without caus-
ing a serious fine-tuning.

Let us finally discuss the constraints coming from vari-
ous FCNC processes. In the mass pattern (I), all Higgs
bosons and Higgsino have a light mass around a
few hundred GeV. On the other hand, in the mass
pattern (II), Higgs bosons other than the lightest one have
a mass close to 1 TeV, while the Higgsino mass is around a
few hundred GeV. In both cases, light particles can con-
tribute to various FCNC processes through the flavor mix-
ing in the F-term contribution of the squark masses
induced by the Cabibbo-Kobayashi-Maskawa quark-
mixing matrix. This consideration results in some con-
straints on the model, particularly for the large tan� region,
and provides an opportunity to test the model with future
experimental and theoretical improvements. In Figs. 6 and
7, we plot the constraints from b! s� for the mass
patterns (I) and (II), respectively. The current world aver-
age of the b! s� branching ratio is given by [60]

 

B�b! s��E�>1:6 GeV � �3:55� 0:24�0:09
�0:10 � 0:03� � 10�4;

(98)

where E� denotes the photon-energy cut. Theoretical pre-
diction of the SM is estimated as [61]3

 B�b! s��E�>1:6 GeV � 3:57� 0:30� 10�4: (99)

In Figs. 6 and 7, we plot the 2-� range by combining all the
experimental and theoretical errors in quadrature:

 2:75� 10�4 <B�b! s��E�>1:6 GeV < 4:35� 10�4:

(100)

In all plots, we choose a positive sign for � for which the
charged Higgs and chargino contributions to b! s� tend
to cancel each other. Negative � gives a much stronger
constraint due to the constructive interference.

In the mass pattern (I), both charged Higgs and chargino
have a light mass, and their contributions to b! s� com-
pete to each other depending on the stop mass in the
chargino contribution. The left panel of Fig. 6 shows that
a large fraction of �m2

Hu
;M0� leading to electroweak sym-

metry breaking gives a b! s� branching ratio within the
allowed range (100). As the chargino contribution is en-
hanced by tan�, the balance with the charged Higgs con-
tribution is somewhat sensitive to the value of tan�. In the
right panel of Fig. 6 which is for the case of M0 � 1 TeV,
the upper left (lower right) region with large (small) tan� is
disfavored by b! s� due to the excessive chargino
(charged Higgs) contribution which gives a too small
(large) branching ratio.

In the mass pattern (II), only the chargino contribution to
b! s� is relevant. Then the small M0 ( & 800 GeV) and
large tan� ( * 15) regions in the left and right panels of
Fig. 7 are disfavored by giving a too small b! s� branch-
ing ratio. In the right panel, the disfavored region quickly
goes up and disappears if we increase M0. Compared to the
SM, the mass pattern (II) generically gives a smaller
(larger) branching ratio for �> 0 (�< 0).

In the mass pattern (I), Higgs-mediated FCNC can give a
sizable effect in large tan� regime [64] since all Higgs
bosons have a relatively light mass. We calculated Bs !
�� rate [65] and also the double penguin contribution to
�mBs in Bs- �Bs mixing [66]. In the right panel of Fig. 6, we

 

FIG. 6 (color online). Constraints from FCNC and the muon g� 2 in the mass pattern (I).

3Theoretical uncertainty quoted here is inherited mostly from
input parameters. It has been argued that the photon-energy cut
introduces another uncertainty of similar size, which can be
improved by perturbative calculation [62]. Recent NNLO calcu-
lation claims a central value 1:4� lower than the experimental
world average [63].
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plot contours for the branching ratio of Bs ! ��. The
SM prediction is chirality suppressed, BSM�Bs ! ��� �
3:46� 10�9; however, this is not the case for supersym-
metric contribution. Current experimental bound, B�Bs !
���< 1:0� 10�7, excludes a region above tan� ’ 30 for
M0 � 1 TeV. If the upper bound is improved to 1:0�
10�8, the excluded region comes down to tan� ’ 20. The
branching ratio reaches to 5� 10�9 around tan� ’ 10.
However, we note that it is rather unlikely that tan� *

10 in the mass pattern (I) as it requires a very small jBj �
MZ= tan�.

Recently a finite value of �mBs has been measured at
Tevatron with an unprecedented accuracy [67]:

 �mBs � 17:31�0:33
�0:18 � 0:07 ps�1: (101)

A double Higgs penguin contribution to �mBs can poten-
tially cause a significant deviation from the SM prediction
in the large tan� regime [68,69]. We examined an impact
of this measurement on the mass pattern (I); however, we
could not obtain a constraint stronger than the one from
Bs ! ��. This is mainly due to a large ambiguity in
hadronic parameters which determines the SM prediction.
This uncertainty can be reduced if we consider the ratio
�mBs=�mBd ; however, in this case the dependence on the
poorly known unitarity angle �3 (�) introduces another
source of ambiguity [70]. Considering the accuracy of the
measurement, future progress in the lattice calculation of
the involved hadronic parameters and also a precise deter-
mination of the unitarity angle might make �mBs a strong
probe for the mass pattern (I). For the mass pattern (II),
these Higgs-mediated processes do not lead to any signifi-
cant deviation from the SM predictions.

Anomalous magnetic moment of the muon provides a
powerful tool to test new physics around the electroweak
scale. Since the first report by BNL E821, the SM predic-
tion has been carefully examined and refined including the
semiempirical estimation of a hadronic vacuum polariza-
tion by dispersion relation and also the model dependent

estimation of hadronic light-by-light contribution. See
[71,72] for recent progress. Using the data set from e�e�

collisions for the hadronic vacuum polarization, Passera
[72] quotes the SM prediction as

 aSM
� � �11 659 184:5� 6:9� � 10�10; (102)

while the latest experimental value is reported as [73]

 aexp
� � �11 659 208:0� 6:0� � 10�10: (103)

This amounts to 2:6� deviation from the SM4:

 �a� � aexp
� � aSM

� � �23:5� 9:1� � 10�10: (104)

Analysis based on 
 decays shows 0:7� deviation; how-
ever, this result is still under debate due to the lack of full
understanding of an isospin-breaking effect. Further theo-
retical and experimental effort will confirm or diminish the
current disagreement based on e�e�.

In the MSSM, a charged Higgs contribution to the
anomalous muon magnetic moment is suppressed by small
Yukawa couplings, and then dominant contribution comes
from chargino and neutralino loop diagrams. In the TeV
scale mirage mediation scenario, the gaugino contribution
to a� is small as the b-ino and W-ino masses are close to
M0 � 1 TeV. The Higgsino contribution is also small as it
is suppressed by small Yukawa couplings. As a result, �a�
in TeV scale mirage mediation is significantly smaller than
the value obtained in the conventional scenarios which
have light gauginos and/or stau [75]. In Figs. 6 and 7, we
plot the SUSY contribution to the muon g� 2 for the mass
patterns (I) and (II), respectively. Taking into account the
constraints from FCNC processes and the lightest Higgs
boson mass, TeV scale mirage mediation scenario predicts

 

FIG. 7 (color online). Constraints from FCNC and the muon g� 2 in the mass pattern (II).

4The latest analysis claims 3:4� deviation with a 4:1� 10�10

larger central value [74].
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 �a� & 10� 10�10 �the mass pattern �I��;

�a� & 5� 10�10 �the mass pattern �II��:
(105)

If the discrepancy between the SM prediction based on
e�e� scattering and the experimental measurement is
confirmed with the current central value, it cannot be
accommodated in the TeV scale mirage mediation setup
discussed here. In this regard, an improvement of the
theoretical and experimental errors on a� will have a
considerable impact on TeV scale mirage mediation
scenario.

IV. CONCLUSION

TeV scale mirage mediation has been proposed as a
pattern of soft SUSY-breaking terms reducing the fine-
tuning for the electroweak symmetry breaking in the
MSSM [21,22], thereby solving the little SUSY hierarchy
problem. The original proposal is based on a SUSY-
breaking uplifting potential which is difficult to give an
extradimensional interpretation [30]. In this paper, we note
that the desired form of TeV scale mirage mediation can be
achieved within a moduli stabilization scheme which has a
brane-localized (sequestered) origin of the SUSY-breaking
uplifting potential, if the holomorphic gauge kinetic func-
tions and nonperturbative superpotential depend on both
the dilaton superfield S and the volume modulus superfield
T. We also propose a nonperturbative mechanism to gen-
erate the Higgs B parameter which has a desirable size B�
mSUSY �m3=2=8�2 in mirage mediation scheme. An im-
portant feature of the scheme is that the axion components
of S and T are periodic fields; therefore, the coefficients of
S and T in gauge kinetic functions and nonperturbative
superpotential can have discrete values only. As in the case
of KKLT moduli stabilization, S is assumed to be stabilized
by flux withmS hierarchically heavier thanm3=2, while T is
stabilized by nonperturbative effects yielding mT �

m3=2 ln�MPl=m3=2�. Then, under a proper choice of the
involved discrete parameters, the TeV scale mirage media-
tion pattern of soft parameters solving the little SUSY
hierarchy problem can be obtained.

The electroweak symmetry breaking conditions suggest
that the TeV scale mirage mediation solving the little
SUSY hierarchy problem can give two different mass
patterns (I) and (II) at the weak scale, which differ by the
values of mHd

and B. In this paper, we analyzed the
electroweak symmetry breaking as well as the constraints
from various FCNC processes in both mass patterns. The
results are summarized in Figs. 4–7, which show that a
large fraction of the parameter space can give the correct
electroweak symmetry breaking while satisfying the
FCNC constraints with a reasonable degree of fine-tuning
better than 10%. For the mass pattern (II), j�j can be
significantly bigger than MZ while keeping the degree of
fine-tuning better than 10%, if jBj2 � m2

Hd
. This might

open up a possibility to raise j�j, thus raising the
Higgsino mass, without causing a fine-tuning problem.
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APPENDIX A

In this appendix, we summarize the notations and con-
ventions used in this paper. The quantum effective action in
N � 1 superspace can be written as

 Z
d4	

�
�3CC	e�K=3 �

1

16

�
GaW

a� D
2

@2 W
a
� � H:c:

��
�

�Z
d2	C3W � H:c:

�

�
Z
d4	

�
�3CC	e�K0=3 � CC	e�K0=3Zi�

i	e2VaTa�i �
1

16

�
GaW

a� D
2

@2 W
a
� � H:c:

��

�

�Z
d2	C3

�
W0 �

1

6
�ijk�i�j�k

�
� H:c:

�
� . . . ; (A1)

where the gauge kinetic terms are written as a D-term
operator to accommodate the radiative corrections to gauge
couplings, and the ellipsis stands for the irrelevant higher
dimensional operators. The Kähler potential K is expanded
as

 K � K0�TA; T	A� � Zi�TA; T
	
A��

i	e2VaTa�i � . . . ; (A2)

where Va and �i denote the visible gauge and matter
superfields given by
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 �i � �i �
���
2
p
	 i � 	2Fi;

Va � �	�� �	Aa� � i �	2	�a � i	2 �	 ��a � 1
2	

2 �	2Da;
(A3)

and TA � �C; T� are the SUSY-breaking messengers in-
cluding the conformal compensator superfield C � C0 �
	2FC and the modulus superfield T � T0 �

���
2
p
	 ~T �

	2FT . The radiative corrections due to renormalizable
gauge and Yukawa interactions can be encoded in the
matter Kähler metric Zi and the gauge coupling superfield
Ga which is given by

 Ga � Re�fa� ��Ga; (A4)

where fa is the holomorphic gauge kinetic function and
�Ga includes the TA-dependent radiative correction to
gauge coupling. The superpotential is expanded as

 W � W0�T� �
1
6�ijk�T��

i�j�k � . . . ; (A5)

where W0�T� is the modulus superpotential stabilizing T.
Here we do not specify the mechanism to generate the
MSSM Higgs parameters � and B, and treat them as free
parameters.

For the canonically normalized component fields, the
above superspace action gives the following form of the
running gauge and Yukawa couplings, the supersymmetric
gaugino-matter fermion coupling L� , and the soft SUSY-
breaking terms:

 

1

g2
a�Q�

� Re�Ga�;

yijk�Q� �
�ijk�������������������������

e�K0ZiZjZk
q ;

L� � i
���
2
p
��i	Ta i�a � ��aTa�i � i�;

Lsoft � �m2
i �

i�i	

�

�
1

2
Ma�

a�a �
1

6
Aijkyijk�

i�j�k � h:c:
�
;

(A6)

where Q denotes the renormalization point and

 

Ma�Q� � FA@A ln�Re�Ga��;

Aijk�Q� � �F
A@A ln

� �ijk
e�K0ZiZjZk

�
;

m2
i �Q� � �F

AFB	@A@ �B ln�e�K0=3Zi�

(A7)

for

 FT � �eK0=2�@T@ �TK0�
�1�DTW0�

	;

FC � m	3=2 �
1
3@TK0F

T �m3=2 � eK0=2W0�:
(A8)

In the approximation ignoring the off-diagonal compo-

nents of wij �
P
pqyipqy

	
jpq, the 1-loop RG evolution of

soft parameters is determined by

 

16�2 dMa

d lnQ
� 2

�
�3 tr�T2

a�Adj�� �
X
i

tr�T2
a��

i��

�
g2
aMa;

16�2
dAijk
d lnQ

�

�X
pq

jyipgj
2Aipg � 4

X
a

g2
aC

a
2��

i�Ma

�

� 
i$ j� � 
i$ k�;

16�2 dm
2
i

d lnQ
�
X
jk

jyijkj2�m2
i �m

2
j �m

2
k � jAijkj

2�

� 8
X
a

g2
aC

a
2��

i�jMaj
2 � 2g2

1qi
X
j

qjm
2
j ;

(A9)

where the quadratic Casimir Ca2��
i� � �N2 � 1�=2N for a

fundamental representation �i of the gauge group SU�N�,
Ca2��

i� � q2
i for the U�1� charge qi of �i.

In mirage mediation, soft terms at MGUT are determined
by the modulus mediation of O�F

T

T � and the anomaly me-
diation of O� FC

8�2C0
� which are comparable to each other. In

the presence of the axionic shift symmetry

 U�1�T : Im�T� ! Im�T� � real constant; (A10)

which is broken by the nonperturbative term in the modu-
lus superpotential

 W0 � w� Ae�aT; (A11)

one can always make that m3=2 and FT are simultaneously
real. Also since FT

T �
m3=2

4�2 , we have

 

FC

C0

� m3=2

�
1�O

�
1

8�2

��
: (A12)

Then, upon ignoring the parts of O� F
T

8�2T�, the resulting soft
parameters at the scale just below MGUT are given by

 

Ma�MGUT� � M0 �
m3=2

16�2 bag
2
a;

Aijk�MGUT� � ~Aijk �
m3=2

16�2 ��i � �j � �k�;

m2
i �MGUT� � ~m2

i �
m3=2

16�2 M0	i �
�
m3=2

16�2

�
2

_�i;

(A13)

where

 

M0 � FT@T lnRe�fa�;

~Aijk � �F
T@T ln

� �ijk
e�K0ZiZjZk

�
� aijkM0;

~m2
i � �jF

Tj2@T@ �T ln�e�K0=3Zi� � ciM2
0;

(A14)
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and

 

ba � �3 tr�T2
a�Adj�� �

X
i

tr�T2
a��i��;

�i � 2
X
a

g2
aC

a
2��

i� �
1

2

X
jk

jyijkj
2;

	i � 4
X
a

g2
aCa2��

i� �
X
jk

aijkjyijkj2;

_�i � 8�2 d�i
d lnQ

;

(A15)

where !ij �
P
klyikly

	
jkl is assumed to be diagonal.

Note that if �ijk are T-independent constant as required

by the axionic shift symmetry U�1�T , ~Aijk �
FT@T ln�e�K0ZiZjZk�.

Let us now summarize our conventions for the MSSM.
The superpotential of canonically normalized matter
superfields is given by
 

W � yDHd �QD
c � yLHd � LE

c � yUHu �QU
c

��Hd �Hu; (A16)

where the SU�2�L product isH �Q � 
abH
aQb with 
12 �

�
21 � 1, and color indices are suppressed. Then the
chargino and neutralino mass matrices are given by

 � 1
2

~ �TMC
~ � � 1

2
~ 0TMN

~ 0 � H:c:; (A17)

where

 M C �
�M2 g2hH

0
ui

g2hH
0
di �

� �
; MN �

�M1 0 � 1��
2
p gYhH

0
di

1��
2
p gYhH

0
ui

0 �M2
1��
2
p g2hH

0
di � 1��

2
p g2hH

0
ui

� 1��
2
p gYhH

0
di

1��
2
p g2hH

0
di 0 ��

1��
2
p gYhH0

ui � 1��
2
p g2hH0

ui �� 0

0
BBBBB@

1
CCCCCA; (A18)

in the field basis

 

~ �T � �i� ~W�; i ~H�u �;

~ �T � �i� ~W�; i ~H�d �;

~ 0T � �i� ~B; ~W3; i ~H0
d; i ~H0

u�;

(A19)

for ~W� � � ~W1 � i ~W2�=
���
2
p

.
The one-loop beta function coefficients ba and anoma-

lous dimension �i in the MSSM are given by

 

b3 � �3;

b2 � 1;

b1 �
33
5 ;

�Hu
� 3

2g
2
2 �

1
2g

2
Y � 3y2

t ;

�Hd
� 3

2g
2
2 �

1
2g

2
Y � 3y2

b � y
2

;

�Qa
� 8

3g
2
3 �

3
2g

2
2 �

1
18g

2
Y � �y

2
t � y2

b��3a;

�Ua �
8
3g

2
3 �

8
9g

2
Y � 2y2

t �3a;

�Da
� 8

3g
2
3 �

2
9g

2
Y � 2y2

b�3a;

�La �
3
2g

2
2 �

1
2g

2
Y � y

2

�3a;

�Ea � 2g2
Y � 2y2


�3a

(A20)

where g2 and gY �
��������
3=5

p
g1 denote the SU�2�W and U�1�Y

gauge couplings. The 	i and _�i which determine the soft
scalar masses at MGUT are given by

 

	Hu
� 3g2

2 � g
2
Y � 6y2

t aHuQ3Uc
3
;

	Hd
� 3g2

2 � g
2
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baHdQ3Dc
3
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aHdL3Ec3
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� 16

3 g
2
3 � 3g2

2 �
1
9g

2
Y � 2�y2

t aHuQ3Uc
3
� y2

baHdQ3Dc
3
��3a;

	Ua �
16
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16
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4
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3
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�3a; (A21)

and
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4
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11
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4
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4
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11
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2

by
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3
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4
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11
18g

4
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(A22)

where
 

byt � �
16
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2
3 � 3g2

2 �
13
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(A23)
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In our convention of the gaugino masses and A parame-
ters, the 1-loop RG evolution of the stop trilinear coupling
At � AHutLtR in the MSSM is given by

 

dAt
d lnQ

�
1

8�2

�
6y2

t At � y
2
bAb

�

�
16

3
g2

3M3 � 3g2
2M2 �

13

9
g2
YM1

��
: (A24)
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