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The implications of the LEP Higgs bounds on the MSSM stop masses and mixing are compared in two
different regions of the Higgs parameter space. The first region is the Higgs decoupling limit, in which the
bound on the mass of the lighter Higgs ismh � 114:4 GeV, and the second region is near a nondecoupling
limit with mh ’ 93 GeV, in which the masses of all the physical Higgs bosons are required to be light.
Additional constraints from the electroweak S- and T-parameter and the decays B! Xs� and Bs !
����, which also constrain the Higgs and/or stop sector, are considered. In some regions of the MSSM
parameter space these additional constraints are stronger than the LEP Higgs bounds. Implications for the
tuning of electroweak symmetry breaking are also discussed.
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I. INTRODUCTION

The Higgs sector in the minimal supersymmetric stan-
dard model (MSSM) consists of two SU�2�L doublets, Hd
and Hu, with opposite hypercharge. Five physical states
remain after electroweak symmetry breaking. Assuming
there are no CP-violating phases, these physical states
consist of two neutral CP-even states h and H with masses
mh � mH, one neutral CP-odd state A, and two charged
states H�. The tree-level masses of h and H are bounded,
mtree
h � mZ � mtree

H , with mZ ’ 91 GeV.
Using the Large Electron Positron (LEP) collider, the

LEP Collaboration searched for these Higgs bosons and
published bounds on their masses [1]. Their results have
ruled out substantial regions of the MSSM Higgs parame-
ter space, and in much of the remaining allowed regions it
is clear that large radiative corrections to the tree-level
Higgs masses are required to satisfy the LEP bounds.
However, two very different scenarios are still possible.
One scenario is obtained in the Higgs decoupling limit in
which h behaves like the standard model (SM) Higgs and
all the other Higgs bosons become heavy and decouple
from the low energy theory. Here the bound on mh coin-
cides with the bound on the mass of the SM Higgs, namely,
mh � 114:4 GeV [2]. The other scenario is obtained in the
Higgs ‘‘nondecoupling’’ limit in which H behaves like the
SM Higgs and the Higgs sector is required to be light. It
allows for 93 GeV & mh < 114:4 GeV, where the value of
93 GeV is the (somewhat model dependent) lower bound
that the LEP Collaboration has obtained for mh assuming
various decay scenarios for h and a variety of different
‘‘benchmark’’ parameter choices for the MSSM parame-
ters. Ifmh is near 93 GeV, it seems to naı̈vely require much
smaller radiative corrections to the tree-level Higgs mass
than when mh is near 114.4 GeV. Since the dominant
radiative corrections to the tree-level CP-even Higgs
mass matrix, which determines mh and mH, come from
loops involving the top quark and stop squarks, one might

naı̈vely suspect that mh near 93 GeV allows for much
smaller stop masses than mh near 114.4 GeV. Moreover,
larger stop masses would in general imply a more fine-
tuned MSSM, and one might therefore suspect that the
MSSM is less fine-tuned formh near 93 GeV. In this paper,
we present lower bounds on the stop masses consistent
with the LEP Higgs bounds, both in the Higgs decoupling
region, with mh � 114:4 GeV, as well as near the Higgs
nondecoupling region, with mh ’ 93 GeV. We compare
the constraints on the stop masses in these two regions of
the Higgs parameter space and show that in certain regions
of the MSSM parameter space the lower bounds on the stop
masses are not significantly different from each other.
Furthermore, although there are regions in which the lower
bounds are smaller, there are also regions in which they are
larger.

There are other constraints on new physics that may
further tighten bounds on the stop or Higgs sector. These
additional constraints include the electroweak S- and
T-parameter, and the decays B! Xs� and Bs ! ����.
In this paper, we discuss the regions of the MSSM parame-
ter space in which these additional constraints are impor-
tant in restricting the stop and/or Higgs sector further.

The outline of this paper is as follows. In Sec. II, we
investigate the LEP constraints on the neutral MSSM
Higgs sector and its implication for the stop sector in
more detail. This will allow us to obtain a simple numerical
estimate of the lower bound on the stop masses in a
particular limit of the MSSM parameter space. This esti-
mate is independent of the size of mh. Section III contains
the main results of this paper. We give lower bounds on the
stop masses consistent with the LEP Higgs bounds. The
analysis will include all the important radiative corrections
to the CP-even Higgs mass matrix, and we discuss the
importance of the top mass, the stop mixing, the gaugino
masses, and the supersymmetric Higgsino mass parameter
(�) on the lower bounds of the stop masses. In addition, we
present results on how the lower bounds on the soft stop
masses vary in the decoupling limit as a function of mh. In
Sec. IV, we discuss how other constraints on new physics*rouven@physics.rutgers.edu
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impact the results in Sec. III. In particular, we investigate
the effect of the electroweak S- and T-parameters, B!
Xs�, and Bs ! ����. Section V contains a discussion of
the implications of our analysis for electroweak symmetry
breaking and the supersymmetric little hierarchy problem.
In Sec. VI, we summarize the results of this paper.
Appendix A gives the relevant background to understand
the LEP results for the MSSM Higgs sector. In
Appendix B, we review the quasifixed point for the stop
soft trilinear coupling, At. The trilinear coupling is the
main ingredient in determining the amount of stop mixing,
and we use the quasifixed-point value for At in some of the
main results of this paper.

II. LEP CONSTRAINTS ON THE HIGGS SECTOR
AND IMPLICATIONS FOR THE MSSM STOP

SECTOR

In this section, we first review the LEP Higgs con-
straints, before going on to discuss the implications of
these constraints for the stop sector.

A. Constraints from LEP on the MSSM Higgs sector

The LEP Collaboration searched for the production of
Higgs bosons in both the Higgsstrahlung [e�e� ! Z!
Zh (or ZH)] and pair production [e�e� ! Z! Ah (or
AH)] channels. The results from these channels have been
used to set upper bounds on the couplings ZZh (ZZH) and
ZAh (ZAH) as a function of the Higgs masses. These
couplings are proportional to either sin2��� �� or
cos2��� ��. Here � is determined from the ratio of the
two vacuum expectation values vu � hRe�H0

u�i and vd �
hRe�H0

d�i as tan� 	 vu=vd, and � is the neutral CP-even
Higgs mixing angle.

Within the MSSM, the results from the Higgsstrahlung
channel give an upper bound on sin2��� �� and cos2���
�� as a function of mh and mH, respectively, (see Fig. 2 in
[1]). The pair-production channel, on the other hand, gives
an upper bound on cos2��� �� and sin2��� �� as a
function of mh �mA and mH �mA, respectively, (see
Fig. 4 in [1]). Appendix A contains a review on how these
functions of � and � appear in the MSSM, and why LEP
bounds them.

The LEP results from the Higgsstrahlung channel put
several interesting bounds on mh, mH, and sin2��� ��. In
the decoupling limit, h behaves like the SM Higgs so that
sin2��� �� ! 1 and the bound on its mass is given by

 mh � 114:4 GeV; sin2��� �� ! 1: (1)

If mh is less than 114.4 GeV, smaller values of sin2���
�� are required in order to suppress the production of h in
the Higgsstrahlung channel and to allow it to have escaped
detection. For mh ’ 93 GeV, sin2��� �� needs to be less
than about 0.2, so that cos2��� �� * 0:8 (from Fig. 2 in
[1]). Larger values of cos2��� ��, however, increase the

HZZ coupling so that now mH needs to be large enough to
suppress the production of H in the Higgsstrahlung chan-
nel, and allow it, in turn, to have escaped detection. We find
that mH * 114:0 GeV (from Fig. 2 in [1]). If sin2��� ��
is even smaller and approaches zero, i.e. cos2��� �� ! 1,
it is H which behaves like the SM Higgs so that the bound
on its mass is given by mH � 114:4 GeV (this will be
referred to as the Higgs nondecoupling limit).

In Sec. III, we present lower bounds on the stop soft
masses for two regions in the Higgs parameter space.
These two regions are given by Eq. (1) and by

 mh ’ 93 GeV; cos2��� �� � 0:8;

mH � 114:4 GeV:
(2)

[We choosemH in Eq. (2) to be at least above 114.4 GeV, in
order to allow the full range 0:8 � cos2��� �� � 1.]

We note that the bounds given in the previous para-
graphs assume that the MSSM Higgs boson h decays like
the SM Higgs boson (see [1]). If we assume different Higgs
decay branching ratios, somewhat different bounds can be
obtained. For example, assuming h decays completely into
� �� gives a stricter bound on the hZZ coupling for a wide
range of mh. The LEP Collaboration even considered the
extreme case in which the Higgs decays invisibly. In this
case, the bound on the hZZ coupling as a function of mh is
in general not much worse than if we assume that the Higgs
decays like a SM Higgs. In fact, for some range of mh the
bound is even stricter if we assume that the Higgs decays
invisibly [3].

The lower bound on mh is also model dependent. For
example, in [1], figures are presented that show excluded
regions in the MSSM parameter space for a variety of
benchmark scenarios that consist of different choices for
the MSSM parameters. The LEP Collaboration found that
the lower bound on mh can be slightly less than 93 GeV in
certain cases. Moreover, the authors in [4] claim that there
are certain regions in parameter space for which the ZZh
coupling and the h=A! b �b branching ratios are both sup-
pressed and that this allowsmh to be substantially less than
93 GeV.

B. Implications for the MSSM stop sector

Since the tree-level mass of the lighter neutral Higgs is
bounded above by mZ, it is clear that substantial radiative
corrections are required to push the lighter Higgs mass
above 114.4 GeV in the Higgs decoupling limit.

We now discuss why substantial radiative corrections to
the tree-level Higgs masses are also required if the lighter
Higgs mass is near 93 GeV. This is most easily seen in the
large tan� limit. In this limit, the CP-even Higgs mass-
squared matrix in the (Hd, Hu) basis is particularly simple
if we only include the tree-level pieces and the dominant
radiative corrections. Since tan� is large, the vacuum
expectation value vd vanishes in this limit, and the Higgs
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vacuum expectation value is thus completely determined
by vu. In the absence of any radiative corrections, one of
the physical Higgs mass eigenstates lies completely in the
Hu direction and thus behaves like the SM Higgs (with a
mass equal to mZ), whereas the other mass eigenstate lies
completely in the Hd direction (with a mass equal to the
mass of the CP-odd Higgs, mA). This alignment of the two
physical CP-even Higgs mass eigenstates with the Hu and
Hd direction, respectively, remains unchanged when only
the dominant radiative correction is added. The reason
for this is that, due to the large top Yukawa coupling,
the dominant radiative corrections to the Higgs sector are
to the up-type Higgs soft supersymmetry breaking
Lagrangian mass and come from loops involving the top
quark and stop squarks [5–7]. This gives a correction to the
Hu–Hu component of the CP-even Higgs mass-squared
matrix. The matrix is thus particularly simple for large
tan� and is given by

 M 2 

m2
A 0

0 m2
Z � �M

2
uu

� �
�for large tan��; (3)

where �M2
uu is the dominant top/stop correction. Since the

Hu–Hu component for large tan� gives the mass of the
physical Higgs that behaves like the SM Higgs, its value is
bounded below by 114.4 GeV, i.e.

 m2
Z � �M

2
uu * �114:4 GeV�2: (4)

The result in Eq. (4) is independent of whether the
lighter or the heavier Higgs lies in the Hu direction (this
depends on the size of mA). It also shows that the lower
bound on the size of the required radiative corrections is
fixed and independent of the mass of the lighter Higgs, at
least in the large tan� limit including only the leading
corrections. Moreover, it is mH which acquires the domi-
nant radiative corrections for mh ’ 93 GeV.

A simple estimate of the lower bounds on the stop
masses in the large tan� limit may be obtained using
Eq. (4). For large tan�, the dominant radiative correction
is given by

 �M2
uu ’

3g2m4
t

8�2m2
W

�
ln
�m2

~t

m2
t

�
�
X2
t

m2
~t

�
1�

X2
t

12m2
~t

��
; (5)

where mt is the top mass, g is the SU�2�L gauge coupling,
and mW is the mass of the W-bosons [5–7]. Furthermore,
Eq. (5) assumes that the stop soft masses are equal to m~t,
with m~t � mt. The stop mixing parameter is given by
Xt 	 At �� cot� ( ’ At for large tan�), where At denotes
the stop soft trilinear coupling and� is the supersymmetric
Higgsino mass parameter. The dependence on the top mass
to the fourth power is particularly noteworthy. The first
term in Eq. (5) comes from renormalization group running
of the Higgs quartic coupling below the stop mass scale
and vanishes in the limit of exact supersymmetry. It grows
logarithmically with the stop mass. The second term is
only present for nonzero stop mixing and comes from a

finite threshold correction to the Higgs quartic coupling at
the stop mass scale. It is independent of the stop mass
for fixed Xt=m~t, and grows linearly as �Xt=m~t�

2 for small
Xt=m~t.

It is apparent from Eq. (5) that the mixing term is
important for determining lower bounds on the stop
masses. Using Eq. (5) and assuming no mixing (Xt 	 0),
we require m~t * 570 GeV in order to satisfy the LEP
bound in (4). This value was obtained using a running
top mass of mt�mt� ’ 167 GeV [8,9]. The second (mixing)
term in Eq. (5), however, reaches a maximum of 3 for Xt 	���

6
p
m~t, called maximal mixing. In order for the logarithm of

the first term to be of the same order, m~t needs to be about
750 GeV. Thus the mixing term alone is more than enough
to give the required radiative corrections to satisfy the LEP
bound. Mixing in the stop sector therefore allows for much
smaller stop masses.

There are other radiative corrections to the Higgs masses
which are important, including negative radiative correc-
tions that come from charginos, for example. In Sec. III, we
include all the important radiative corrections to determine
more accurate lower bounds on the stop masses. For ex-
ample, for no stop mixing and tan� 	 50, a more accurate
lower bound is given bym~t * 980 GeV, assuming a physi-
cal top mass of 173 GeV, � 	 200 GeV, and a bino and
wino mass of 100 GeV and 200 GeV, respectively. This
shows the importance of including higher order corrections
to the Higgs sector. Moreover, the lower bound is approxi-
mately the same for mh ’ 93 GeV and for mh �
114:4 GeV, as expected for large tan�.

The above discussion assumes that tan� is large. In
Sec. III, we obtain lower bounds on m~t also for small and
moderate values of tan�, for which the off-diagonal ele-
ments in the Higgs mass matrix become important. In
general, we find that the stop masses and/or mixing have
to be sizeable for all values of tan� and for both the Higgs
decoupling and nondecoupling regions. However, depend-
ing on the size of the stop mixing, the lower bounds on the
stop masses for moderate values of tan� can be smaller for
mh ’ 93 GeV than for mh � 114:4 GeV (see also [10]).
Moreover, for small values of tan�, the lower bounds on
the stop masses become larger for mh ’ 93 GeV than for
mh � 114:4 GeV.

III. LOWER BOUNDS ON THE STOP MASSES

In this section, we present lower bounds on the stop
masses consistent with the LEP Higgs bounds, and we
discuss their dependence on some of the other MSSM
parameters. In particular, we set lower bounds on the
left-handed and right-handed stop soft mass, m~tL and m~tR ,
respectively, taking both equal to a common value, which
we denote by m~t. We denote the lower bound on m~t
consistent with the LEP Higgs bounds by m~t;min. We con-
sider the two scenarios given in Eqs. (1) and (2), namely,
the Higgs decoupling limit with mh � 114:4 GeV
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(Sec. III A), and near the Higgs nondecoupling limit with
mh ’ 93 GeV, and the additional constraints cos2���
�� � 0:8 and mH � 114:4 GeV (Sec. III C). In addition,
in Sec. III B, we give lower bounds on the stop soft masses
as a function of the physical Higgs boson mass mh in the
decoupling limit. All the lower bounds on the stop masses
that we present are consistent with the 2� constraint on �	
(which is related to the electroweak T-parameter). In
Sec. IV, we discuss the importance of this parameter, as
well as others, in constraining the stop masses.

A. Lower bounds on the stop masses for
mh � 114:4 GeV

For a given set of parameters, we minimize m~t by
starting it at the lowest value that gives physical stop
masses above 100 GeV and increasing it until mh is above
114.4 GeV. We choose the physical stop mass to be at least
100 GeV since this bound is illustrative of the actual,
slightly model-dependent, lower bound obtained from the
Tevatron [11]. The Higgs masses were calculated with
version 2.2.7 of the program FEYNHIGGS which includes
all the important radiative corrections to the Higgs sector
[12–15]. We set mA 	 1000 GeV to ensure that we are in
the Higgs decoupling limit.

In Fig. 1, we show m~t;min as a function of tan� for stop
mixing Xt=m~t 	 0, �1, and �2. All squark, slepton, and
gaugino soft masses are equal to m~t, � 	 200 GeV, mt 	
173 GeV, and all the soft trilinear couplings are equal to
the stop soft trilinear coupling, At 	 Xt �� cot�. The
lower solid line shows the maximal-mixing scenario,1 Xt 	
2m~t, which approximately maximizes the radiative correc-
tions to the Higgs sector for a given set of parameters [19].
The dotted-dashed line shows the no-mixing scenario,
Xt 	 0, which approximately minimizes the radiative cor-
rections to the Higgs sector for a given set of parameters.
The lower dashed line shows the results for Xt 	 m~t. An
intermediate-mixing scenario with Xt 	 �m~t is repre-
sented by the upper dashed line. We choose this scenario
since At has a strongly attractive infrared quasifixed point
at At 	 �M3, see Appendix B. Thus, At prefers to be
negative due to renormalization group evolution from the
high scale down to the low scale (we choose the convention
in which M3 is positive). In addition, we consider a sce-
nario which maximizes the Higgs mass for negative stop

mixing, and call it natural maximal mixing. This scenario
is given by Xt 	 �2m~t and is represented by the upper
solid line in the figure.

A feature that is common to all the curves is that m~t
becomes very large for small tan�. This is because the
tree-level contribution to the Higgs mass in the decoupling
limit is given by mtree

h ’ j cos2�jmZ, and goes to zero as
tan� approaches 1. Larger radiative corrections, and thus
larger stop masses, are therefore required for smaller tan�
to push mh above 114.4 GeV.

Figure 1 clearly shows that mixing in the stop sector has
a large impact on the values of m~t;min, with larger mixing
allowing much smaller values of m~t;min (see also [20,21]).
For large tan�, the difference in m~t;min between no mixing
and maximal mixing is about 1000 GeV, with m~t;min 	
1260 GeV for tan� 	 50 in the no-mixing case.

A plot of the two physical stop masses, m~t1 and m~t2 ,
versus tan� is given in Fig. 2 for no mixing and for natural
maximal mixing. For no mixing, there is no discernible
difference in the two stop masses since the only difference
that arises is from small SU�2�L and U�1�Y D-term quartic
interactions. For appreciable mixing, the two physical stop
masses are split by an amount that is on the order of
�

����������
mtXt
p

. For Xt 	 �2m~t and tan� � 7, m~t;min is small
enough that the lighter physical stop mass is all the way
down at its experimental lower bound of roughly 100 GeV.
For this range of tan�, we find that m~t is larger than that
which is required to get mh just above 114.4 GeV, and thus
mh is several GeV above 114.4 GeV here.

The current value of the top mass from the CDF and D0
experiments at Fermilab is mt 	 171:4� 2:1 GeV [22].
The values obtained for m~t;min are, however, extremely
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FIG. 1 (color online). Minimum stop soft masses, m~t � m~tL 	
m~tR , for mh � 114:4 GeV as a function of tan� for stop mixing
Xt=m~t 	 0, �1, �2. All squark, slepton, and gaugino soft
masses are equal to the stop soft masses, � 	 200 GeV, mA 	
1000 GeV, mt 	 173 GeV, and all soft trilinear couplings are
equal to At 	 Xt �� cot�.

1The word ‘‘maximal’’ refers to the size of the radiative
corrections, not to the amount of mixing. Maximal mixing in
FEYNHIGGS is obtained by setting Xt ’ 2m~t, and not Xt 	

���
6
p
m~t

as in Sec. II B. In the former case, Xt is defined in the on-shell
scheme used in the diagrammatic two-loop results incorporated
into FEYNHIGGS, whereas in the latter it is defined in the MS
scheme used in the renormalization-group approach. Moreover,
mh is not symmetric with respect to Xt in the full two-loop
diagrammatic calculation in the on-shell scheme. For example,
mh can be up to 5 GeV larger for Xt 	 �2m~t than for Xt 	
�2m~t. The difference arises from nonlogarithmic two-loop
contributions to mh, see [16–18].
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sensitive to slight variations in the value of the top mass
(see also [20]). It is thus illustrative to plot m~t;min as a
function of tan� for various amounts of stop mixing and
for three choices of the top mass: 168 GeV, 173 GeV and
178 GeV. The plots are shown in Figs. 3–5 for Xt=m~t 	 0,
�1, and�2, respectively. These plots again assume that all
squark, slepton, and gaugino soft masses are equal to m~t,
� 	 200 GeV, and all the soft trilinear couplings are equal
to At.

All three figures show that m~t;min is extremely sensitive
to small changes inmt for small tan�. For intermediate and
vanishing stop mixing, this sensitivity persists for large
tan�. For example, in the no-mixing case for tan� 	 50,

we find m~t;min ’ 870 GeV, 1260 GeV, and 2570 GeV for
mt 	 178 GeV, 173 GeV, and 168 GeV, respectively. The
very large value ofm~t;min formt 	 168 GeV is particularly
noteworthy, especially if the central value of the measured
top mass keeps decreasing slightly as more data from the
Tevatron becomes available.

So far we assumed that the gaugino masses are all equal
to m~t. The b-ino and W-ino masses, M1 and M2, as well as
� contribute to the Higgs masses at one loop, whereas the
gluino mass, M3, only appears at two loops (see e.g.
[9,13,23] and references therein). Since large values of
M1, M2, and � can give important negative contributions
to the Higgs masses [24], smaller values of m~t;min are
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FIG. 3 (color online). Minimum stop soft masses, m~t � m~tL 	
m~tR , for mh � 114:4 GeV as a function of tan� for vanishing
stop mixing (Xt 	 0) for a top quark mass of mt 	 168, 173,
178 GeV. Other parameters are as given in Fig. 1.
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FIG. 5 (color online). Minimum stop soft masses, m~t � m~tL 	
m~tR , for mh � 114:4 GeV as a function of tan� for natural
maximal stop mixing (Xt=m~t 	 �2) for a top quark mass of
mt 	 168, 173, 178 GeV. Other parameters are as given in Fig. 1.
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FIG. 4 (color online). Minimum stop soft masses, m~t � m~tL 	
m~tR , for mh � 114:4 GeV as a function of tan� for intermediate
stop mixing (Xt=m~t 	 �1) for a top quark mass of mt 	 168,
173, 178 GeV. Other parameters are as given in Fig. 1.
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FIG. 2 (color online). Minimum physical stop masses, m~t1 and
m~t2 , for mh � 114:4 GeV as a function of tan� for vanishing
stop mixing (Xt 	 0) and natural maximal stop mixing
(Xt=m~t 	 �2). Other parameters are as given in Fig. 1.
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possible for smaller values ofM1,M2, and�. For example,
setting M1 	 100 GeV, M2 	 200 GeV and M3 	
800 GeV, we find in the no-mixing case for tan� 	 50
that m~t;min ’ 760 GeV, 980 GeV, and 1410 GeV for mt 	
178 GeV, 173 GeV, and 168 GeV, respectively. This may
be compared with the values given in the previous para-
graph for the case where all the gaugino masses are equal
to m~t. Thus, setting the b-ino and W-ino masses to smaller
values decreases the size ofm~t;min, especially ifmt is small.
However, the large value of m~t;min for mt 	 168 GeV is
still noteworthy.

We show a further example of how a different choice for
M1 and M2 affects m~t;min in Fig. 6 for the no-mixing and
natural-maximal-mixing scenario. For each scenario, this
figure shows a case for which M1 and M2 are both large
(M1 	 M2 	 800 GeV) or both small (M1 	 100 GeV,
M2 	 200 GeV). In both cases, M3 is fixed to be
800 GeV, � 	 200 GeV, mt 	 173 GeV, all squark and
slepton soft masses are equal to the stop soft masses, and
all the soft trilinear couplings are equal to At. The plots
show thatm~t;min is smaller for smaller values ofM1 andM2.
For example, m~t;min is about 160 GeV smaller in the no-
mixing case for tan� 	 50 when choosing the smaller set
of values forM1 andM2, and the difference inm~t;min grows
as tan� decreases. For natural maximal mixing, no differ-
ence can be seen for most tan� values, since here the
condition m~t1 � 100 GeV again requires larger values of
m~t;min than the conditionmh � 114:4 GeV. However, there
is a difference in m~t;min for smaller tan�, which again
grows as tan� decreases.

Figure 6 also shows how a change in the gluino mass,
M3, affectsm~t;min. In general,mh tends to be maximized for

M3 ’ 0:8m~t [13]. In this figure, we compare m~t;min for two
different gluino masses, namely, M3 	 800 GeV and
M3 	 1500 GeV. The figure shows that the effect is not
very large for this choice of parameters. However, the
gluino mass can significantly affect the Higgs masses,
and therefore m~t;min, for large tan� and large and negative
�.

The variation ofmh as a function of� does not generally
exceed about 3 GeV [13]. However, it can become very
large if one includes the all-order resummation of the tan�
enhanced terms of order O��b��s tan��n�, where �b 	

2
b=4� and 
b is the bottom Yukawa coupling [25–31].

This resummation is included in FEYNHIGGS. The origin of
the enhancement is a change in the bottom Yukawa cou-
pling due to a loop containing, for example, a gluino and a
sbottom squark. The leading corrections to the bottom
Yukawa coupling can be incorporated into the one-loop
result for the Higgs masses by the use of an effective
bottom mass,meff

b . Large j�j tan� can substantially change
the effective bottom mass meff

b from its MS value. Positive
� can substantially decrease meff

b , making the sbottom/
bottom sector corrections to mh negligible. Negative � on
the other hand can substantially increase meff

b , making the
sbottom/bottom sector corrections to mh important. The
bottom/sbottom corrections to mh are negative in the latter
case. Larger stop masses are then required for large and
negative � as tan� increases to enhance the positive
radiative corrections from the stop/top.

This effect can be seen in Fig. 7 where we compare � 	
�200 GeV and � 	 �500 GeV for natural maximal stop
mixing. This figure again assumes that all squark, slepton,
and gaugino soft masses are equal to the stop soft masses,
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FIG. 6 (color online). Minimum stop soft masses, m~t � m~tL 	
m~tR , for mh � 114:4 GeV as a function of tan� for various
values of the b-ino, W-ino, and gluino soft masses, M1, M2,
M3. The upper three lines are for vanishing stop mixing (Xt 	 0)
and the lower three for natural maximal stop mixing (Xt=m~t 	
�2). Other parameters are as given in Fig. 1.

 

0 10 20 30 40 50
0

200

400

600

800

1000

1200

1400

1600

1800

2000

tanβ

m
 t (

G
eV

)

µ = +200 GeV
µ = −500 GeV
µ = +500 GeV

m
t
 = 173 GeV 

{M
1
, M

2
, M

3
} = {100, 200, 800} GeV 

X
t
 = −2 m

 t
~ 

~
 

FIG. 7 (color online). Minimum stop soft masses, m~t � m~tL 	
m~tR , for mh � 114:4 GeV as a function of tan� for natural
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100 GeV, M2 	 200 GeV, M3 	 800 GeV. Other parameters
are as given in Fig. 1.
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mt 	 173 GeV, and all the soft trilinear couplings are
equal to At. For large tan�, slightly larger m~t;min are
required for � 	 �500 GeV than when � is positive
(the effect would be stronger for even larger negative �).
Note that for small values of tan� there is a region for
which m~t is larger for both � 	 �500 GeV and � 	
�500 GeV than for � 	 200 GeV. As we discussed
above, this is because larger chargino and neutralino
masses decrease the size of mh.

Since the gluino mass also enters the equation that
determines meff

b , it can have a significant impact on mh

for large tan� and large negative values of � as demon-
strated in [31]. Thus, some nonnegligible dependence of
m~t;min on the gluino mass is expected for negative and large
�.

B. Lower bounds on the stop masses as function of the
Higgs mass

In this section, we present lower bounds on the stop soft
masses, m~t � m~tL 	 m~tR , as a function of the Higgs mass,
mh. We assume the decoupling limit (mA 	 1000 GeV),
and we set all squark and slepton soft masses equal to the
stop soft masses, � 	 200 GeV, mt 	 173 GeV, M1 	
100 GeV, M2 	 200 GeV, M3 	 800 GeV, tan� 	 30,
and all the soft trilinear couplings equal to At. We allow
mh to range from 100 GeV upwards. This means that the
values obtained for m~t in the range mh
100 114:4� GeV
will be lower than those consistent with the LEP results,
since we set no additional constraints on cos2��� �� and
mH. However, the main point here is to show the depen-
dence ofm~t onmh without any other constraints. The lower
bounds on m~t are required to give physical stop masses not
less than 100 GeV.

We show the results for different amounts of stop mixing
in Fig. 8. This figure shows how an increase in mh requires
an exponential increase inm~t. In addition to the no-mixing,
intermediate-mixing, and natural-maximal-mixing cases,
we also include the mmax

h benchmark scenario (Xt 	
�2m~t) (but with � 	 �200 GeV, not � 	 �200 GeV)
[24]. This benchmark scenario is designed to maximize the
Higgs mass for a given set of parameters. Moreover, we
choose M3 	 800 GeV for all cases, with the exception of
the latter one. In the latter benchmark scenario, we choose
the benchmark value M3 	 0:8m~t instead, which gives
slightly higher values for mh [24].

It is clear from the figure that there is some value of
mh at which a further small increase in mh would require
an extremely large increase in the stop masses. It is in-
structive to obtain the values of mh from the figure if, for
example, m~t 	 3000 GeV. We find for no stop mixing,
mh ’ 121 GeV, for intermediate stop mixing, mh ’
126 GeV, for natural maximal stop mixing, mh ’
131 GeV, and for the mmax

h benchmark scenario, mh ’
134 GeV (see also [32], for example, and references
therein).

Since At and M3 most naturally have the opposite sign
due to renormalization group running and the presence of a
strongly attractive quasifixed point (see Appendix B), a
negative value of At is more natural. For negative At, the
upper bound of mh in the MSSM is around 131 GeV.

C. Lower bounds on the stop masses for mh ’ 93 GeV

In this section, we present results for the minimum stop
soft masses, m~t � m~tL 	 m~tR , as a function of tan�, for
various choices of the other MSSM parameters, and con-
sistent with the following set of constraints on the Higgs
sector obtained by LEP: mh ’ 93 GeV, cos2��� �� �
0:8, and mH � 114:4 GeV [see Eq. (2)].

The mass mA is allowed to be a free parameter, since m~t
needs to be minimized without enforcing the decoupling
limit. We vary mA between 93.5 GeV and 1000 GeV from
the bottom up for a given choice of m~t and other MSSM
parameters, until the conditions 93 GeV � mh � 95 GeV,
cos2��� �� � 0:8, and mH � 114:4 GeV are satisfied.
(The lower bound of 93.5 GeV for mA is the approximate
lower bound obtained within the same benchmark scenar-
ios as the bound on mh; it turns out that the actual values
obtained for mA are slightly larger). If these conditions
cannot all be satisfied, we keep increasing m~t until they are
satisfied. Note that we require the lower bounds on m~t to
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give physical stop masses of at least 100 GeV. We again
denote the lower bounds on m~t consistent with the LEP
Higgs bounds by m~t;min.

The Higgs masses, mh and mH, are calculated with
FEYNHIGGS, and cos2��� �� is calculated using the
FEYNHIGGS output of the radiatively corrected CP-even
Higgs mixing angle �.

In Fig. 9, we show m~t;min as a function of tan� for stop
mixing Xt=m~t 	 0, �1, and �2. All squark, slepton, and
gaugino soft masses are equal to the stop soft masses, � 	
200 GeV, mt 	 173 GeV, and all the soft trilinear cou-
plings are equal to the stop soft trilinear coupling, At. This
figure may be compared with Fig. 1 in which we require
mh � 114:4 GeV in the Higgs decoupling limit.

Next, we show m~t;min as a function of tan� for different
values of the top mass (168 GeV, 173 GeV, and 178 GeV)
and for different amounts of mixing. Figure 10 is for no
mixing, Fig. 11 is for intermediate mixing, and Fig. 12 is
for natural maximal mixing. All squark, slepton, and gau-
gino soft masses are again equal to the stop soft masses,
� 	 200 GeV, and all the soft trilinear couplings are equal
to At. These figures may be compared with the figures in
which we require mh � 114:4 GeV in the decoupling
limit, namely, Figs. 3–5, respectively.

We first compare m~t;min in the two scenarios mh ’
93 GeV and mh � 114:4 GeV for large tan�. Here, the
figures show that m~t;min is the same in the case of maximal
or natural maximal mixing. For intermediate and vanishing
stop mixing, m~t;min is only slightly smaller for mh ’
93 GeV than for mh � 114:4 GeV. Assuming mt 	
173 GeV and tan� 	 50, the difference is only about

15 GeV for Xt 	 �m~t and 70 GeV for Xt 	 0. We ex-
pected the values for m~t;min to be so similar from the
discussion in Sec. II B.

For moderate tan�, m~t;min can be substantially smaller
for mh ’ 93 GeV than for mh � 114:4 GeV. This is true,
in particular, for the no-mixing and intermediate-mixing
cases, with the difference being more pronounced for
smaller values of mt. For example, the maximum differ-

 

0 10 20 30 40 50
0

500

1000

1500

2000

2500

3000

3500

4000

tanβ

m
 t (

G
eV

) m
t
 = 168 GeV 

m
t
 = 173 GeV 

m
t
 = 178 GeV 

X
t
 = 0

~
 

FIG. 10 (color online). Minimum stop soft masses, m~t �
m~tL 	 m~tR , for mh ’ 93 GeV, mH � 114:4 GeV, and cos2���
�� � 0:8, as a function of tan� for vanishing stop mixing
(Xt=m~t 	 0) for a top quark mass of mt 	 168, 173, 178 GeV.
Other parameters are given as in Fig. 9. This figure may be
compared with Fig. 3.
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FIG. 11 (color online). Minimum stop soft masses, m~t �
m~tL 	 m~tR , for mh ’ 93 GeV, mH � 114:4 GeV, and cos2���
�� � 0:8, as a function of tan� for intermediate stop mixing
(Xt=m~t 	 �1) for a top quark mass of mt 	 168, 173, 178 GeV.
Other parameters are given as in Fig. 9. This figure may be
compared with Fig. 4.
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FIG. 9 (color online). Minimum stop soft masses, m~t � m~tL 	
m~tR , for mh ’ 93 GeV, mH � 114:4 GeV, and cos2��� �� �
0:8, as a function of tan� for stop mixing Xt=m~t 	 0, �1, �2.
All squark, slepton, and gaugino soft mass parameters are equal
to the stop soft masses, � 	 200 GeV, mt 	 173 GeV, and all
soft trilinear couplings are equal to At 	 Xt �� cot�. This
figure may be compared with Fig. 1.
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ence between m~t;min in the two scenarios is about 600 GeV
for tan� 	 12:5 if there is no mixing and mt 	 173 GeV.

As tan� decreases further, however, m~t;min for mh ’
93 GeV rises very steeply and becomes larger than for
mh � 114:4 GeV.

Understanding this behavior of m~t;min as a function of
tan� requires an understanding of the importance of the
constraints cos2��� �� � 0:8 and mH � 114:4 GeV. To
this end, we compare m~t;min versus tan� for the case that
the constraint on mH is ignored, for the case that both
constraints are ignored, and for the case consistent with
the LEP bounds that includes both constraints. We again
make the comparison for various amounts of mixing in the
stop sector. Figure 13 shows the results for no mixing,
Fig. 14 for intermediate mixing, and Fig. 15 for natural
maximal mixing. Each of these figures has three lines. The
solid line shows the results which are consistent with the
LEP bounds, i.e. it includes the two constraints cos2���
�� � 0:8 and mH � 114:4 GeV, in addition to requiring
mh ’ 93 GeV. The dashed line, on the other hand, does not
include the constraint on mH, but does require cos2���
�� � 0:8 and mh ’ 93 GeV. The dashed-dotted line only
requires mh ’ 93 GeV and ignores the constraints on
cos2��� �� and mH.

As expected, both constraints from LEP in general in-
crease m~t;min. The constraint cos2��� �� � 0:8 is more
important as tan� becomes smaller but less important as
tan� gets larger. The constraint mH � 114:4 GeV, how-
ever, is more important for larger tan� (if stop mixing is
not too large) but is less important as tan� becomes
smaller. We now explain these observations.

If the only condition ismh ’ 93 GeV, the theory tends to
be in the Higgs decoupling limit where cos2��� �� ! 0.

The reason for this is that for a given set of parameters,
including a given value of m~t, mh is maximized in the
decoupling limit. [This is also the reason why ignoring
both constraints is in general equivalent to ignoring only
the constraint cos2��� �� � 0:8 but keeping mH �
114:4 GeV as a constraint.] The constraint cos2��� �� �
0:8, however, forces all the MSSM Higgs masses to be
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FIG. 13 (color online). Minimum stop soft masses, m~t �
m~tL 	 m~tR , as a function of tan�, for no stop mixing (Xt=m~t 	

0). The solid line shows the minimum stop soft masses for mh ’
93 GeV, mH � 114:4 GeV, and cos2��� �� � 0:8, consistent
with the LEP Higgs bounds. The dashed and dashed-dotted lines
are not consistent with the LEP bounds and used for comparison.
The dashed line shows the minimum soft masses for mh ’
93 GeV and cos2��� �� � 0:8 and without a constraint on
mH . The dashed-dotted line shows the minimum soft masses
for mh ’ 93 GeV and without constraints on mH and cos2���
��. Other parameters are given as in Fig. 9.
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FIG. 14 (color online). Minimum stop soft masses, m~t �
m~tL 	 m~tR , as a function of tan�, for intermediate stop mixing
(Xt=m~t 	 �1). The other parameters and the different lines are
as for Fig. 13.
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FIG. 12 (color online). Minimum stop soft masses, m~t �
m~tL 	 m~tR , for mh ’ 93 GeV, mH � 114:4 GeV, and cos2���
�� � 0:8, as a function of tan� for natural maximal stop mixing
(Xt=m~t 	 �2) for a top quark mass of mt 	 168, 173, 178 GeV.
Other parameters are given as in Fig. 9. This figure may be
compared with Fig. 5.
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quite small. In particular, mA is forced to be relatively
small and degenerate with mh, so that larger m~t are re-
quired to obtain the same value for mh.2 Moreover, the
maximum value reached by cos2��� �� decreases as tan�
decreases. Larger radiative corrections, in particular, larger
values of m~t or more stop mixing, can increase the maxi-
mum value of cos2��� ��. However, if tan� decreases too
far, exponentially larger values of m~t are required to allow
cos2��� �� to be greater than 0.8.

For a given set of parameters, mh in general decreases as
tan� decreases. This is not the case for mH, which in
general decreases as tan� increases. This explains why
the constraint on mH is more important for larger values
of tan�. In the decoupling limit, mH is approximately
degenerate with mA, and larger values of m~t do not affect
mH much. In the nondecoupling limit, however, larger
values of m~t can increase mH. In fact, if we define mmax

h
to be equal to mh in the decoupling limit, then mH ’ mmax

h
for large tan� and cos2��� �� ’ 1. This may be ex-
plained with the formula

 m2
hsin2��� �� �m2

Hcos2��� �� 	 �mmax
h �

2; (6)

valid for large tan� [32–35], and explains why larger m~t

increases the value of mH in, or near, the nondecoupling
region (see also Sec. II B).

IV. IMPLICATIONS OF NEW PHYSICS
CONSTRAINTS FOR THE LOWER BOUNDS ON

THE STOP MASSES

In Sec. III, we presented lower bounds on the stop soft
masses that are consistent with the LEP Higgs bounds (we
again denote these bounds by m~t;min). In this section, we
consider additional constraints from the electroweak S-
and T-parameter and the decays B! Xs� and Bs !
����, which also constrain the Higgs and/or stop sector.
Some of these constraints may provide more stringent
lower bounds on the stop masses than those provided by
the constraints from LEP on the Higgs sector, or they might
indirectly constrain the Higgs sector more tightly than the
LEP results.

A. Constraints from electroweak precision
measurements: T- and S-parameters

The oblique parameters T and S parameterize new phys-
ics contributions to electroweak vacuum-polarization dia-
grams. They give a good parametrization if these diagrams
are the dominant corrections to electroweak precision ob-
servables [36]. Strong constraints on these parameters al-
ready exist [11,37].

The MSSM includes new SU�2�L doublets that contrib-
ute to the T- and S-parameter (which are defined to be zero
from SM contributions alone). The T-parameter is a mea-
sure of how strongly the vector part of SU�2�L is broken,
and is nonzero, for example, for heavy, nondegenerate
multiplets of fermions or scalars. The S-parameter is a
measure of how strongly the axial part of SU�2�L is broken,
and is nonzero, for example, for heavy, degenerate multip-
lets of chiral fermions [11].

The main contribution in the MSSM to the T-parameter
in general comes from the stop/sbottom doublet [38]. In
particular, large mixing in the stop and/or sbottom sectors
can lead to large differences amongst the two stop and two
sbottom masses, which gives a large contribution to the
T-parameter. Moreover, for a given set of parameters and
fixed Xt=m~t, decreasing m~t tends to increase the value of
the T-parameter. For these reasons the T-parameter could
provide more stringent lower bounds on m~t than those
coming from the LEP Higgs bounds when the mixing in
the stop sector is large, since then the stop and sbottom
masses are split by large amounts and the LEP Higgs
constraints allow for small m~t.

We estimate the T-parameter with version 2.2.7 of
FEYNHIGGS. This program calculates �	 which measures
the deviation of the electroweak 	-parameter from unity.
The T-parameter and �	 are related by �	 	 �T, where �
is the QED coupling. All the results presented in this paper
are consistent with the 2� constraint on the upper bound of
�	, namely, �	 � 0:0026 [11]. The T- and S-parameters
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FIG. 15 (color online). Minimum stop soft masses, m~t �
m~tL 	 m~tR , as a function of tan�, for natural maximal stop
mixing (Xt=m~t 	 �2). The other parameters and the different
lines are as for Fig. 13.

2The results formA for the case consistent with the LEP results
(which includes both constraints) are mA 2 [96.1 GeV,
99.5 GeV] for natural maximal mixing, mA 2 [94.3 GeV,
97.7 GeV] for intermediate mixing, and mA 2 [95.1 GeV,
97.7 GeV] for no mixing. When the constraint on mH is ignored,
mA lies roughly in the same range. Note that from the pair-
production channel these values of mh �mA give upper bounds
on cos2��� �� consistent with cos2��� �� � 0:8, depending
on what one assumes for the Higgs decay branching ratios, see
[1].
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are correlated, so that this bound corresponds to the 2�
bound on T for S 	 0.

We find that the 2� constraint on �	 does not provide an
additional constraint on the stop masses in essentially all
the analyses presented in this paper.

For (natural) maximal stop mixing withm~t 	 m~t;min, the
value of �	 is not consistent with its 1� bound, although it
is consistent with its 2� bound (for intermediate and less
mixing, it is consistent also with the 1� bound). For
example, m~t;min 	 283 GeV for large tan� and natural
maximal stop mixing (Xt 	 �2m~t) in order to obtain
mh � 114:4 GeV in the Higgs decoupling limit (this as-
sumes all squark, slepton, and gaugino soft mass parame-
ters are equal to m~t, � 	 200 GeV, mt 	 173 GeV, and
all the soft trilinear couplings are equal to At). This gives a
value of �	 	 0:0014. Increasing m~t while keeping all
other parameters fixed decreases �	, and for m~t 	
420 GeV, �	 is consistent with its 1� upper bound of
0.0009 found in the latest PDG review [11]. With m~t 	
530 GeV, �	 is consistent with its 1� upper bound of
0.0006 found in the previous PDG review [39].3

The S-parameter in the MSSM is in general not very
important [11]. We estimated it using the formulas in [40].
Including contributions from all squarks and sleptons, the
S-parameter does not reach a value higher than about 0.05
for m~t 	 m~t;min in those cases that have large stop mixing,
with the main contribution coming from the stop/sbottom
doublet. For intermediate and vanishing mixing it is neg-
ligible. The constraint on S depends on T, but the 1� upper
bound on S is about 0.07 for T 	 0, whereas a positive
value for T allows for larger values of S. Thus the
S-parameter is a weaker constraint on the stop masses
than the LEP Higgs sector bounds.

B. Constraints from B! Xs�

New physics can contribute at one loop to the decay
B! Xs�, and can therefore be just as important as the SM
contribution mediated by a W-boson and the top quark.
This makes the decay B! Xs� an important tool in con-
straining new physics.

The SM contribution to the branching ratio B�B! Xs��
is predicted to be

 B �B! Xs��SM ’ �2:98� 0:26� � 10�4; (7)

see [41], whereas the experimental bound is given by

 B �B! Xs��expt ’ �3:55� 0:26� � 10�4; (8)

see [42]. This allows, but does not require, new physics
contributions [41].

There are several contributions to the decay B! Xs�
from the additional particles in the MSSM, which we now
discuss.

Within the Higgs sector, the charged Higgs (H�) con-
tributes at one loop to the decay B! Xs�. The contribu-
tion is larger for smaller mH� . If one only considers this
contribution, as one would in the two-Higgs-doublet model
of type II [2HDM (II)], then this sets a rather stringent
lower bound on mH� . The bound of course depends on the
SM prediction and experimental measurement of B�B!
Xs��, and in the past used to be about mH� * 350 GeV,
see [43,44] and references therein. The latest results quoted
in Eqs. (7) and (8) are expected to change this bound
slightly, but we do not explore this in more detail [41]. It
is clear, however, that this bound is much stronger than the
bound coming from a direct search of H� at LEP which is
given by mH� * 78:6 GeV [45]. Note that the charged
Higgs contribution is mostly independent of tan�; only
for very small values of tan� does it increase substantially.

The charged Higgs, thus, does not contribute much to
B! Xs� in the decoupling limit for large mA, since here
mH� is large. In the region mh ’ 93 GeV with cos2���
�� � 0:8 and mH � 114:4 GeV, however, mH� ’
125 GeV. The contribution from the charged Higgs to
B�B! Xs�� is then roughly 7:7� 10�4, more than a
factor of 2 larger than the SM contribution. We estimated
this using version 2.5.1 of the program FEYNHIGGS,4 in the
limit of large sparticle masses. Therefore, the constraint on
B�B! Xs�� rules out this region of the Higgs parameter
space if one only considers the charged Higgs contribution.

There are, however, also chargino, neutralino, and
gluino contributions to B! Xs� within the MSSM with
MFV.5 NLO contributions can be very important and need
to be included in order to get an accurate estimate of
B�B! Xs�� [44]. The contribution from a chargino to-
gether with a stop in the loop is often the most important
one. The chargino-stop contribution can become very large

3As this paper was being completed, we noticed that version
2.5.1 of FEYNHIGGS now uses sbottom masses with the SM and
MSSM QCD corrections added when calculating �	. This can
give different values of �	, especially for small sbottom masses,
and it makes �	 more sensitive to �. The results quoted in this
paragraph change as follows. For m~t 	 283 GeV, �	 	 0:0011.
Increasing m~t to 310 GeV gives �	 	 0:0009, and m~t 	
380 GeV gives �	 	 0:0006. Qualitatively the conclusions pre-
sented in this section are unaffected. We thank S. Heinemeyer
for clarifying the difference between the older and newer
versions.

4Note that FEYNHIGGS gives B�B! Xs��SM ’ 3:63� 10�4

which is larger than the latest value quoted in Eq. (7). This is
not of qualitative importance here.

5There are other possibilities for flavor violation within the
MSSM, and therefore additional contributions to B! Xs� are
possible. The additional flavor violation is small, however,
assuming that the only source of flavor violation comes from
the mixing among the squarks and assuming that this is of the
same form as the mixing among the quarks, i.e. described by the
Cabibbo-Kobayashi-Maskawa matrix. This assumption is usu-
ally called minimal flavor violation (MFV). The MSSM with
general flavor violation allows for more contributions to the
decay B! Xs�, which can sometimes weaken constraints on
parameters in the MSSM with MFV [46].
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for small chargino and small stop masses, and it is propor-
tional to tan� in the amplitude. However, it vanishes in the
limit of large stop or chargino masses. From studying the
mSUGRA model, it is known that usually the chargino-
stop contribution to the branching ratio interferes construc-
tively with the SM and the charged Higgs contribution if
the sign of �At is positive, whereas it interferes destruc-
tively if the sign of �At is negative [44].

This means that the region mh ’ 93 GeV is not neces-
sarily ruled out, since a light stop and a light chargino
could cancel the charged Higgs contribution [10,47,48].
Using version 2.5.1 of FEYNHIGGS to calculate the branch-
ing ratio of B! Xs�, we verify this claim in the case of
intermediate and larger stop mixing, at least for tan� not
too small. We find that the contribution to B! Xs� from
the chargino-stop loop can easily be large enough to inter-
fere destructively with the charged Higgs contribution and
thus give an experimentally allowed value of B�B! Xs��.
Moreover, in some cases for sizeable stop mixing, the
chargino-stop contribution can be made much larger than
the SM and charged Higgs contribution. Thus, an experi-
mentally consistent value of B�B! Xs�� can also often be
obtained by finding a chargino mass that gives a chargino-
stop amplitude equal to the negative of the charged Higgs
amplitude plus the negative of twice the SM amplitude. We
note that an experimentally consistent value for B�B!
Xs�� can always be found without requiring the stop
masses to be larger than m~t;min, but by adjusting the char-
gino mass alone.

If tan� is small enough then m~t;min becomes exponen-
tially large, and the constraint on B�B! Xs�� rules out
the mh ’ 93 GeV region since the chargino-stop contribu-
tion cannot cancel the charged Higgs contribution.

In the case of vanishing stop mixing with degenerate
stop soft masses, m~t;min is so large that the chargino-stop
contribution to B! Xs� is too small to cancel the charged
Higgs contribution. However, even in the no-mixing case
one of the stops can be chosen to be light by setting one of
the stop soft masses to a small value. In this case the other
stop soft mass needs to be very large in order for the
radiative corrections to the Higgs sector to be large enough
to satisfy the LEP bounds. One light stop, however, is able
to give a sizeable chargino-stop contribution that can can-
cel the charged Higgs contribution. For example, we find
m~t;min ’ 1100 GeV for mh ’ 93 GeV, cos2��� �� � 0:8
and mH � 114:4 GeV, with tan� 	 20, � 	 200 GeV,
mA ’ 96 GeV, and mt 	 173 GeV (this assumes that all
squark, slepton, and gaugino soft masses are equal to m~t,
and all the soft trilinear couplings are equal to At). Since
the charged Higgs then essentially provides the only con-
tribution to B! Xs� beyond that of the SM itself, the
branching ratio is again about 7:7� 10�4. However,
choosing, for example, m~tL 	 350 GeV, m~tR 	

2000 GeV, all the gaugino soft masses equal to m~tL , and
keeping all other squark and slepton soft masses equal to

1100 GeV, gives a consistent branching ratio of 3:6�
10�4.

In the Higgs decoupling limit, for which mh �
114:4 GeV, the charged Higgs contribution vanishes.
Since m~t;min is large for very small tan� or vanishing
stop mixing, the chargino-stop contribution to B�B!
Xs�� is small, and there is no inconsistency with the
experimental bound. On the other hand, m~t;min can be so
low for appreciable amounts of mixing (and if tan� is not
too small) that the chargino-stop contribution can easily be
too large. In this case, however, we can find a chargino
mass that gives a branching ratio of B! Xs� within the
experimentally allowed region, and again we find no fur-
ther constraint on m~t. We can achieve this by setting the
chargino mass to a very large value, in which case the
chargino-stop contribution becomes vanishingly small. For
negative �At, however, the chargino-stop loop interferes
destructively with the SM contribution so that we can also
adjust the chargino mass until the chargino-stop amplitude
is equal to the negative of twice the SM amplitude. This is
what happens in the case depicted in Fig. 16, where we
show the branching ratio of B! Xs� as a function of�. In
this figure, all squark, slepton, and gaugino soft masses are
equal to the stop soft masses, which are given by m~t;min 	
283 GeV,mt 	 173 GeV, tan� 	 20, Xt 	 �2m~t, and all
the soft trilinear couplings are equal to the stop soft tri-
linear coupling, At. We find an experimentally allowed
value for B�B! Xs�� in this case by choosing � ’
330 GeV. We note that � has to be chosen within about
a 30 GeV window for B�B! Xs�� to fall within the 3�
allowed region.
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FIG. 16 (color online). B�B! Xs�� versus � with stop soft
masses m~t � m~tL 	 m~tR 	 283 GeV and natural maximal stop
mixing (Xt=m~t 	 �2). All squark, slepton, and gaugino soft
mass parameters are equal to the stop soft masses, mt 	
173 GeV, mA 	 1000 GeV, tan� 	 20, and all the soft trilinear
couplings are equal to At 	 Xt �� cot�.
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C. Constraints from Bs ! ����

The decay Bs ! ���� has not yet been observed. The
SM contribution to this decay is dominated by penguin
diagrams involving the Z-boson and box diagrams involv-
ing the W-bosons [49]. (The SM Higgs does contribute to
the decay Bs ! ���� within the SM, but relative to the
dominant contribution it is suppressed by m�mb;s=m2

W ,
where m�, mb, and ms are the masses of the muon,
b-quark, and s-quark, respectively, and mW is the mass of
the W-bosons [50].) The SM contribution to the branching
ratio is quite small since it is fourth order in the weak
interactions. It is predicted to be

 B �Bs ! �����SM 	 �3:42� 0:54� � 10�9 (9)

(see [51] and references therein). This is well below the
current experimental bound from the CDF experiment at
the Tevatron given by

 B �Bs ! �����expt < 1:5� 10�7 (10)

at the 90% confidence level [51].
There are several contributions to the decay Bs !

���� from the additional particles in the MSSM, which
we now discuss.

The contributions to the decay Bs ! ���� coming
only from the MSSM Higgs sector are the same as those
found in the 2HDM (II). They can be enhanced by two
powers of tan� in the amplitude, which can compensate for
the suppression by the muon mass. One can set an approxi-
mate bound on mH� assuming this is the only contribution
within the MSSM. This bound depends on tan�, but for
tan� 	 50 one finds an experimentally allowed value for
B�Bs ! ����� if mH� * 35 GeV (see for example
[52,53]). As we discussed in Sec. IV B, within the
2HDM (II) the constraint on B�B! Xs�� alone forces
mH� to be larger than about 350 GeV. Such a large value
for mH� guarantees that B�Bs ! ����� is roughly of the
same size as the SM result even for quite large tan�, so that
it alone provides no further constraint on the parameter
space within the 2HDM (II) [54].

In the MSSM there are, however, further contributions to
the decay Bs ! ���� coming from box and penguin
diagrams that involve charginos and up-type squarks
[53–59]. The penguin diagrams also contain the neutral
Goldstone and Higgs bosons. The self-energy MSSM
Higgs penguin diagrams give the leading contribution to
B�Bs ! ����� for nonnegligible mixing in the stop sec-
tor. (In an effective Lagrangian approach these diagrams
may be viewed as inducing a nonholomorphic coupling
between down-type quarks and the up-type Higgs field.)
For large tan�, this leading contribution is roughly pro-
portional to A2

t tan6�=m4
A, and can thus be significantly

larger than the contributions from the Higgs sector alone.
Moreover, this contribution becomes small for very small
�. This contribution does not vanish for degenerate squark
masses, nor in the limit of large sparticle masses. Thus,

although the branching ratio depends on the size of the stop
masses, it is much more sensitive to the size of the Higgs
masses, tan� and the amount of stop mixing. A light Higgs
sector can give a branching ratio of Bs ! ���� that is
more than 3 orders of magnitude above the SM prediction
and thus well ruled out, especially if the stop mixing and
tan� are large. Moreover, this is the case even for large
sparticle masses. Furthermore, such large values for
B�Bs ! ����� can be reached within the MSSM without
violating any other constraints, including, for example,
those on B�B! Xs�� [54,60].

There are further contributions to B�Bs ! �����
which also have a tan6�=m4

A behavior, even assuming
that the Cabibbo-Kobayashi-Maskawa matrix is the only
source of flavor violation in the squark sector. These appear
if the left-handed up-type soft squark masses of the three
generations are not all equal, so that the left-handed down-
type soft squark mass-squared matrix has off-diagonal
terms. These lead to contributions from loops involving a
neutralino or a gluino and a down-type squark [53,55,58–
60]. Cancellations between the chargino and gluino con-
tributions can occur and the neutralino contribution,
although usually smaller, can then be important (see, for
example, [60]).

We estimated the values for B�Bs ! ����� with the
program MICROMEGA 1.3 [61,62] and the subroutine
ISABHH from ISATOOLS/ISAJET [58,63]. We find that the
branching ratio of Bs ! ���� is well within experimen-
tal limits for the region mh ’ 93 GeV, mH � 114:4 GeV,
and cos2��� �� � 0:8 in the case of no (or very little)
stop mixing and degenerate squark soft masses. For inter-
mediate mixing with degenerate squark masses nearm~t;min,
B�Bs ! ����� is consistent with experimental limits for
tan� & 20� 25. For natural maximal mixing, B�Bs !
����� is consistent with experimental limits for tan� &

15. For larger tan�, as well as for nondegenerate squark
soft masses, a scan over all relevant MSSM parameters is
necessary in order to see whether we can find an experi-
mentally consistent value of B�Bs ! ����� for such a
light Higgs sector. However, for large stop mixing, it will
become increasingly difficult to find a parameter set that
gives a branching ratio consistent with experiments as tan�
is increased. Of course, this assumes that there are no
fortuitous cancellations between the different contribu-
tions, and also that there are no other flavor-violating
contributions such as from R-parity violating couplings.
A scan over the relevant MSSM parameters, even assuming
MFV, is beyond the scope of this paper. The reader is
referred to the references found in the previous two para-
graphs, and especially [48], bearing in mind that the cur-
rent CDF bound on B�Bs ! �����, Eq. (10), is stronger
than the one used in these references.

In the Higgs decoupling limit, the dominant flavor-
violating effects involving loops of neutral Higgs bosons
decouple, and these large contributions to Bs ! ����
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become negligible. Using MICROMEGA 1.3, one may ex-
plicitly check that the decay Bs ! ���� does not provide
stronger constraints on the stop masses than do the LEP
Higgs bounds in the decoupling limit found in Sec. III A.

V. IMPLICATIONS FOR ELECTROWEAK
SYMMETRY BREAKING

In Sec. III, we presented lower bounds on the stop
masses consistent with the LEP Higgs bounds, and in
Sec. IV, we discussed whether the electroweak S- and
T-parameter and the decays B! Xs� and Bs ! ����

indirectly put further constraints on the Higgs and/or stop
sector. In this section, we look at the implications for
electroweak symmetry breaking.

The mechanism of radiative electroweak symmetry
breaking arises rather naturally in supersymmetric exten-
sions of the standard model [64–66]. Because of the large
top Yukawa coupling, quantum fluctuations of the stop
squarks significantly modify the up-type Higgs potential,
as studied numerically for the physical Higgs boson mass
in the previous sections. The leading effect, however, is a
tachyonic contribution to the up-type Higgs soft supersym-
metry breaking Lagrangian mass. Over much of parameter
space this tachyonic contribution is sufficient to result in a
stop squark quantum fluctuation-induced phase transition
for the Higgs fields, which is generally referred to as
radiative electroweak symmetry breaking.

The leading quantum contribution to the up-type Higgs
soft mass comes from renormalization group evolution
below the supersymmetry breaking messenger scale. The
one-loop �-function for the up-type Higgs soft mass
squared is, neglecting effects proportional to gauge cou-
plings,

 16�2�m2
Hu
’ 6
2

t �m
2
Hu
�m2

~tL
�m2

~tR
� jAtj

2�: (11)

The light Higgs mass bounds require rather large stop
masses and/or stop mixing, where the stop soft trilinear
coupling is related to the mixing parameter by At 	 Xt �
� cot�. This implies that the stop contributions to the
�-function in (11) proportional to the combination �m2

~tL
�

m2
~tR
� jAtj2� are also sizeable, at least at the low scale.

Moreover, for generic parameters this combination re-
mains sizeable over the entire renormalization group tra-
jectory up to the messenger scale. For generic messenger
scale values of the up-type Higgs soft mass squared, m2

Hu
,

the large value of the combination �m2
~tL
�m2

~tR
� jAtj2�,

along with the sizeable coefficient in the �-function (11),
then imply that m2

Hu
evolves relatively rapidly under re-

normalization group evolution.
This evolution is towards tachyonic values ofm2

Hu
which

reduce the magnitude of the �-function (11). For running
into the deep infrared, the up-type Higgs mass squared
would be driven to values near the zero of the �-function
(11) for which

 m2
Hu
’ ��m2

~tL
�m2

~tR
� jAtj

2�: (12)

Although this relation is not strictly obtained with finite
running, the up-type Higgs mass squared can approach this
value for very high messenger scale. In Table I, we show
the minimum allowed values of the combination �m2

~tL
�

m2
~tR
� jAtj2�1=2 deduced from the results of Sec. III A con-

sistent with mh � 114:4 GeV in the Higgs decoupling
limit for large tan�. The minimum allowed values increase
with decreasing tan�.

The full Lagrangian mass squared for the up-type Higgs
is a sum of the soft mass squared and square of the super-
potential Higgs mass, m2 	 m2

Hu
� j�j2. To leading order

in 1=tan2�, and ignoring the finite quantum corrections to
the Higgs potential which are not of qualitative importance
for the present discussion, this is equal to minus half the
Z-boson mass squared in the ground state with broken
electroweak symmetry

 

1
2m

2
Z ’ ��m

2
Hu
� j�j2�: (13)

For m2
Hu

near the zero of its �-function given by (12), the
bounds given in Table I imply that obtaining the observed
value of the Z-boson mass,mZ ’ 91 GeV, requires a rather
sensitive cancellation between the up-type Higgs soft mass
and �-parameter. The numerical magnitude of this tuning
(which has come to be known as the supersymmetric little
hierarchy problem) is apparent in the numerical data in
Table I, at least for regions of parameter space which are
driven under renormalization group flow to near the zero of
the �-function (11).

The minimum allowed value of the combination �m2
~tL
�

m2
~tR
� jAtj

2� for a given lower limit on the Higgs mass
decreases with increasing stop mixing. This may be under-
stood from the leading expression for the quantum cor-
rected Higgs mass given in Eq. (5). For no stop mixing,
Xt 	 0, the leading correction to the Higgs mass squared
comes only from renormalization group running of the
Higgs quartic coupling below the stop mass scale, and is
therefore proportional to ln�m2

~t =m
2
t �. A linear increase in

the Higgs mass squared in this case requires an exponential
increase in m~t. However, the stop mixing correction to the
Higgs mass squared with Xt � 0 comes from a finite

TABLE I. Minimum allowed values of the combination
�m2

~tL
�m2

~tR
� jAtj

2�1=2 consistent with a physical Higgs boson
mass of mh � 114:4 GeV in the Higgs decoupling limit for large
tan�, taking into account only the LEP Higgs sector bounds. The
minimum allowed values increase with decreasing tan�.

Xt=m~t mt 	 168 GeV mt 	 173 GeV mt 	 178 GeV

0 3630 1780 1240
�1 1460 1000 770
�2 680 690 710
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threshold correction to the Higgs quartic coupling at the
stop mass scale and is independent ofm~t for fixed Xt=m~t. In
this case a linear increase in the Higgs mass squared only
requires a linear increase in �Xt=m~t�

2. So increasing stop
mixing allows exponentially lighter stop masses in order to
obtain a given Higgs mass. While such a decrease clearly
reduces the soft stop mass contributions to �m2

Hu
[20,67]

this is partially offset by an increase in the mixing contri-
bution from the stop trilinear coupling. From the data in
Table I, it is clear that large stop mixing can decrease the
magnitude of �m2

Hu
(11) by up to a factor of a few depend-

ing on the top mass. However, the magnitude of the total
stop contribution including mixing is still quite sizeable for
a Higgs mass bound of mh � 114:4 GeV. So large stop
mixing alone cannot appreciably ameliorate the tuning of
supersymmetric electroweak symmetry breaking or satis-
factorily solve the supersymmetric little hierarchy
problem.6

This conclusion essentially remains unchanged for a
physical Higgs boson mass of mh ’ 93 GeV with
cos2��� �� � 0:8 and mH � 114:4 GeV, as seen from
the numerical results in Sec. III C. In general, one should
bear in mind that indirect constraints on new physics,
especially from B�Bs ! �����, severely restrict the al-
lowed MSSM parameter space for mh ’ 93 GeV (see
Sec. IV). However, for less than maximal stop mixing,
the stop masses can be somewhat smaller for moderate
tan� near the Higgs nondecoupling limit than in the Higgs
decoupling limit (see also [10]). The combination �m2

~tL
�

m2
~tR
� jAtj2�1=2 is in fact the smallest in the Higgs non-

decoupling region near intermediate values for the stop
mixing and for tan� near 10. It reaches as low as about
650 GeV formt 	 178 GeV, tan� 	 10:5, Xt 	 �m~t, and
gaugino masses equal to m~t. It can be decreased slightly
further by setting the bino and wino masses to smaller
values. (For maximal stop mixing, the combination is
actually larger since here the Tevatron bound on the lighter
stop mass forces the stop soft masses to be larger than
required from the LEP Higgs bounds alone.) The combi-
nation always remains sizeable though, and thus the tuning
of electroweak symmetry breaking cannot be ameliorated
by much in the mh ’ 93 GeV region.

VI. CONCLUSIONS

The dominant radiative corrections to the tree-level
CP-even Higgs mass matrix, which determines mh and

mH, come from loops involving the top quark and stop
squarks, with larger stop masses implying larger radiative
corrections. In this paper, we presented lower bounds on
the stop masses consistent with the LEP Higgs bounds in
two different regions in the MSSM Higgs parameter space.
The one region is the Higgs decoupling limit, in which the
bound on the mass of the lighter Higgs is equal to the
bound on the SM Higgs, mh � 114:4 GeV. The other
region is near the Higgs nondecoupling limit with mh ’
93 GeV in which the Higgs sector is required to be light. In
the latter region, there are two additional constraints. One
is on the mass of the heavier Higgs, which now behaves
like the SM Higgs, i.e. mH * 114:4 GeV. The other con-
straint is on size of the coupling of the lighter Higgs to two
Z bosons which is controlled by the parameter sin2��� ��
and here needs to be less than about 0.2 [i.e. cos2���
�� * 0:8] for the lighter Higgs to have escaped detection at
LEP. We denote the lower bounds on the stop masses
consistent with the LEP Higgs bounds by m~t;min.

We presented m~t;min as a function of tan� in both these
regions in the Higgs parameter space for a variety of
MSSM parameter choices. In particular, we further eluci-
dated the importance of the top mass and stop mixing and
investigated numerically how larger top masses and more
stop mixing allow for substantially smaller values ofm~t;min.
We also showed numerically how larger gaugino masses
and larger values of � increase m~t;min. Moreover, we saw
how much m~t;min increases if � is negative compared to �
positive if both tan� and the magnitude of � are large. In
the nondecoupling region, we discussed how the con-
straints on cos2��� �� and onmH lead to increased values
for m~t;min.

We also considered how m~t;min changes as a function of
mh. Since At and M3 most naturally have the opposite sign
at low scales due to renormalization group running, a
negative value of At is more natural in a convention where
M3 is positive. For negative At and stop masses less than a
few TeV, the upper bound of mh in the MSSM is around
131 GeV.

We demonstrated that the two regions in the Higgs
parameter space have roughly the same m~t;min if tan� is
large. For moderate values of tan� and nonmaximal stop
mixing,m~t;min is larger in the Higgs decoupling region than
in the Higgs nondecoupling region. As tan� decreases,
however,m~t;min is larger in the Higgs nondecoupling region
than in the Higgs decoupling region.

We also considered additional constraints from the elec-
troweak S- and T-parameter and the decays B! Xs� and
Bs ! ����, which also constrain the Higgs and/or stop
sector.

The main contribution to the T-parameter within the
MSSM usually comes from the stop/sbottom doublet and,
for a given set of parameters, is larger for larger stop (and
sbottom) mixing as well as for smaller stop and sbottom
masses. We found that the value of the T-parameter is well

6Although this conclusion is valid for a generic choice of
messenger scale values for the sparticle masses, it is possible to
reduce the amount of tuning coming from the running of m2

Hu
by

a more judicious choice. One example is to choose negative stop
masses squared at the high scale which allows the contribution to
the tuning from the running of m2

Hu
to be arbitrarily small, as

well allow for the (natural) maximal-mixing scenario to be
radiatively generated at the low scale [68].
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within its 2� bound for stop masses equal tom~t;min. In fact,
only for maximal stop mixing do we find small enough
values form~t;min that give a contribution to the T-parameter
that does not also fall within its 1� bound. For such large
stop mixing one must then increase the stop masses by a
small amount above m~t;min to also satisfy the 1� bound on
the T-parameter.

We found that the contribution to the S-parameter is not
large, and that the S-parameter therefore does not provide
an additional constraint on the stop masses.

The indirect constraint on B�B! Xs�� in many cases
does not provide an additional constraint on the stop
masses. In the Higgs nondecoupling region for mh ’
93 GeV, the Higgs sector is required to be light, and the
charged Higgs contribution to B! Xs� is large. The
charged Higgs contribution can usually be canceled by
the chargino-stop contribution through a judicious choice
of the chargino mass. However, for vanishing stop mixing
and assuming degenerate stop soft masses,m~t;min is so large
that the chargino-stop contribution is too small to cancel
the charged Higgs contribution. For vanishing stop mixing,
we therefore require nondegenerate stop soft masses with
one light stop so that the chargino-stop contribution can be
large enough to give an experimentally consistent value for
B�B! Xs�� (the other stop must then be very heavy so
that the LEP Higgs constraints are satisfied). In the Higgs
decoupling limit, the charged Higgs contribution vanishes.
We find no further constraint on the stop masses. Even for
large stop mixing, for which m~t;min can be very small, one
can always obtain an experimentally consistent value for
B�B! Xs�� by adjusting the chargino mass.

The main contributions to the flavor-violating decay
Bs ! ���� come from flavor-violating Higgs couplings,
and these decouple in the Higgs decoupling limit. Thus, the
indirect constraint on B�Bs ! ����� is only important in
the Higgs nondecoupling region. In this region, however, it
is able to severely restrict the allowed parameter space,
since the flavor violation does not decouple in the limit of
large sparticle masses. In fact, the region for such a light
Higgs sector is ruled out if stop mixing and tan� are large,
unless there are fortuitous cancellations amongst the vari-
ous contributions, or there are additional flavor-violating
contributions from, for example, R-parity violating cou-
plings that cancel these contributions.

We note that we did not consider the constraint on the
anomalous magnetic moment of the muon, �g� 2��, since
it decouples in the limit of large sneutrino and smuon
masses. It alone is thus unable to directly provide a further
constraint on the Higgs sector or on the stop masses.

Lastly, we discussed the implications of our numerical
analysis for electroweak symmetry breaking. Large stop
mixing generically decreases the tuning of supersymmetric
electroweak symmetry breaking, but is unable to do so
sufficiently to solve the supersymmetric little hierarchy
problem. Moreover, the tuning can be ameliorated only

slightly in the mh ’ 93 GeV region compared to the mh �
114:4 GeV region (for intermediate values of the stop
mixing and moderate values of tan�), and thus the super-
symmetric little hierarchy problem cannot be satisfactorily
solved in either of the two regions.
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APPENDIX A: MIXING IN THE TWO DOUBLET
HIGGS SECTOR

In this appendix, we review the mixing in the two
doublet Higgs sector. In particular, we discuss why some
of the couplings of Higgs bosons to gauge bosons are
proportional to cos2��� �� and sin2��� ��, and we
thus explain why the LEP results bound these functions.

A Higgs sector with electroweak symmetry broken to
electromagnetism, SU�2�L �U�1�Y ! U�1�Q, by two
SU�2�L doublets, Hu and Hd, with hypercharge Y 	 �1,
respectively, has two physical scalars, h and H, a pseudo-
scalar, A, and a charged scalar, H�. The couplings of the
scalar mass eigenstates, h and H, to the gauge bosons are
determined by the associated amplitudes of the neutral
components of the gauge eigenstate doublets, H0

u and H0
d.

It is instructive to consider various vectors in the Re�H0
d� �

Re�H0
u� plane in order to describe these couplings and the

relationship between the mass and gauge interaction
eigenstates.

Electroweak symmetry is broken by the expectation
values hRe�H0

u�i 	 vu and hRe�H0
d�i 	 vd. These expecta-

tion values define a vector in the Re�H0
d� � Re�H0

u� plane
with an angle � defined by tan� 	 vu=vd as indicated in
Fig. 17. The two physical neutral CP-even scalar mass
eigenstates are fluctuations about the expectation value in
this plane and are related by a rotation to the gauge
eigenstates conventionally defined by an angle � as [69]

 

H
h

� �
	

���
2
p cos� sin�
� sin� cos�

� �
Re�H0

d� � vd
Re�H0

u� � vu

� �
: (A1)

Vectors in the Re�H0
d� � Re�H0

u� plane which are parallel
and perpendicular, Hk and H?, to the expectation value
vector may also be defined as indicated in Fig. 17
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H?
Hk

� �
	

���
2
p sin� � cos�

cos� sin�

� �
Re�H0

d� � vd
Re�H0

u� � vu

� �
; (A2)

see also [10]. The physical mass eigenstates are related to
these by a rotation

 

H
h

� �
	

sin��� �� cos��� ��
� cos��� �� sin��� ��

� �
H?
Hk

� �
: (A3)

The neutral Goldstone pseudoscalar boson, G, which is
eaten by the Z-boson, is by definition the imaginary part of
the linear combination of the components of the neutral
Higgs doublets which are aligned with the expectation
value, and the physical pseudoscalar Higgs boson, A, is
the perpendicular combination

 A 	 Im�H?�; G 	 Im�Hk�: (A4)

These states are related to the gauge eigenstates through a
rotation by the angle �

 

A
G

� �
	

���
2
p � sin� cos�

cos� sin�

� �
Im�H0

d�

Im�H0
u�

� �
: (A5)

The charged Goldstone bosons,G�, and the charged Higgs
mass eigenstates, H�, are defined similarly as

 H� 	 Im�H�?�; G� 	 Im�H�
k
�; (A6)

where H�? and H�? are defined in analogy with Eq. (A2).
We may consider Higgs decoupling limits of the two

doublet Higgs sector in which mH, mA, mH� � mh so that
only a single light Higgs doublet remains in the low energy
theory. A particular decoupling limit is one for which the
physical mass eigenstate of the light Higgs doublet is
aligned with the expectation value vector so that Hk is

the single Higgs doublet of the low energy theory and
H? contains the heavy mass eigenstates. This is the unique
decoupling limit available to the tree-level Higgs potential
of the MSSM, although other misaligned decoupling limits
may be realized for more general two doublet potentials. In
the aligned decoupling limit h 	 Hk with sin��� �� 	 1
and cos��� �� 	 0.

The couplings of physical Higgs bosons to gauge bosons
arise from the gauge kinetic terms of the Higgs fields

 �D�Hu�
�D�Hu � �D�Hd�

�D�Hd; (A7)

where D� 	 @� � ig
0 1

2YB� � igT
aWa

� is the covariant
derivative including the SU�2�L �U�1�Y gauge connec-
tions Wa

� and B�. A coupling of two gauge bosons to a
single physical Higgs boson arises from (A7) with a gauge
field in each covariant derivative, a physical Higgs boson in
one Higgs field, and an expectation value in the other Higgs
field. In terms of the Hk �H? basis these couplings are
particularly simple. Since it is only Hk which is parallel to
the expectation value, only this component appears in these
couplings

 �D�v�
�D�Hk � �D�Hk�

�D�v; (A8)

where of course D�v contains only gauge field couplings
since @�v 	 0. In terms of the physical gauge bosons, the
couplings in (A8) give rise to WWHk and ZZHk interac-
tions. In terms of the physical Higgs scalar eigenstates h
and H related to Hk in (A3), these couplings give inter-
actions WWh and ZZh proportional to sin��� �� and
interactions WWH and ZZH proportional to cos��� ��.
In the Higgs aligned decoupling limit the latter interactions
vanish since H 	 H? in this limit with cos��� �� 	 0.
Note that there are no interactions of two gauge bosons
with a single charged Higgs boson of the form W�ZH�,
since from (A6) the physical charged Higgs boson resides
in H?, while from (A8) these types of interactions arise
only forHk. This result generalizes to any number of Higgs
doublets.

A coupling of a single gauge boson to two physical
Higgs bosons arises from (A7) with a single gauge field
in one of the covariant derivatives, physical Higgs bosons
in each Higgs field, and a derivative acting on one of the
Higgs fields

 �D�H
��@�H � �@�H�

�D�H; (A9)

where the covariant derivativesD� are again understood to
only contain gauge fields here. This subset of couplings
represents the Higgs current coupling to a single gauge
boson, and therefore must contain at least one imaginary
component of a Higgs field. Now from Eqs. (A4) and (A6)
the imaginary components of the Higgs fields appear in the
physical mass eigenstates only through H?. So the cou-
plings (A9) to physical mass eigenstates are contained in

 �D�H?��@�H? � �@�H?��D�H?: (A10)

 

Re(H 0
d )

Re(H 0
u )

v

Re(H 0
u ) − vu

Re(H 0
d ) − vd

H

H

H

h

β

|α |
β − α

FIG. 17. Relationship between the Re�Hu� � Re�Hd� and
Hk �H? bases and h�H mass eigenstates for the two doublet
Higgs sector.
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In terms of the physical Z gauge boson these couplings
give rise to ZH?H? interactions. In terms of the physical
eigenstates h and H related to H? in (A3), these couplings
give the interaction ZAH proportional to sin��� �� and
ZAh proportional to cos��� ��. In the Higgs aligned
decoupling limit the latter interaction vanishes since h 	
Hk in this limit with cos��� �� 	 0.

APPENDIX B: QUASIFIXED POINT FOR THE
STOP TRILINEAR COUPLING At

The MSSM has a number of quasifixed points for vari-
ous couplings that make a relation in the low energy theory
between them and other parameters quite natural. These
couplings include the top Yukawa and top trilinear cou-
pling. Consider first the so-called Pendleton-Ross quasi-
fixed point for the top Yukawa [70]. The one-loop
�-functions for the top Yukawa 
t and SU�3�C gauge
coupling g3 in the MSSM are

 16�2�
t 	 
t�6
2
t �

16
3 g

2
3�; (B1)

 16�2�g3
	 �3g3

3; (B2)

where SU�2�L and U�1�Y gauge interactions have been
neglected in �
t . These �-functions give a one-loop
�-function for the logarithm of the ratio of couplings of

 16�2�ln�
t=g3�
	 6
2

t �
7
3g

2
3: (B3)

Vanishing of this �-function implies that the ratio of the
top Yukawa to SU�3�C gauge coupling, 
t=g3, is indepen-
dent of renormalization group scale at one loop. Since �g3

does not vanish at one loop, g3 is renormalization scale
dependent. So the vanishing of �ln�
t=g3�

defines a quasi-
fixed point for 
t rather than a scale-independent fixed-
point relation. With the above approximations the
Pendleton-Ross quasifixed point in the MSSM occurs for

 
2
t 	

7
18g

2
3: (B4)

Since �g3
is independent of 
t at one loop, and the coef-

ficient of the 
2
t term in �ln�
t=g3�

is positive, this quasifixed
point is attractive for 
t=g3 both above and below the
quasifixed-point value. Moreover, since �
t is cubic in

t, it is very strongly attractive from above.

The top trilinear coupling and gluino mass have a
similar quasifixed-point relation [71,72]. The one-loop
�-functions for the top trilinear coupling, At, and gluino
mass, M3, are

 16�2�At 	 12
2
t At �

32
3 g

2
3M3; (B5)

 16�2�M3
	 �2g2

3M3; (B6)

where SU�2�L and U�1�Y gauge interactions have been
neglected in �At . Adding these �-functions gives

 16�2��At�M3�
	 12
2

t At �
14
3 g

2
3M3: (B7)

At the Pendleton-Ross quasifixed point (B4) for the top
Yukawa in the MSSM this reduces to

 16�2��At�M3�
	 14

3 g
2
3�At �M3�: (B8)

The vanishing of �At�M3
again defines a quasifixed point

for At rather than a scale-independent fixed-point relation.
With the above approximations at the Pendleton-Ross
quasifixed point, the top trilinear then has a quasifixed
point of

 At 	 �M3: (B9)

Since the coefficient of �At�M3
is positive, this quasifixed

point is attractive. Moreover, since it is proportional to g2
3

with a sizeable coefficient it is rather strongly attractive.
Because of this it is most natural for At and M3 to have
opposite signs and be comparable in magnitude at low
scales due to renormalization group evolution. This con-
clusion is rather insensitive to messenger scale boundary
conditions for At, at least for large enough messenger
scales.
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