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We report results for the interaction measure, pressure, and energy density for nonzero-temperature
QCD with 2� 1 flavors of improved staggered quarks. In our simulations, we use a Symanzik improved
gauge action and the Asqtad O�a2� improved staggered quark action for lattices with temporal extent
Nt � 4 and 6. The heavy quark mass ms is fixed at approximately the physical strange quark mass and the
two degenerate light quarks have masses mud � 0:1ms or 0:2ms. The calculation of the thermodynamic
observables employs the integral method where energy density and pressure are obtained by integration
over the interaction measure.
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I. INTRODUCTION

Ordinary hadronic matter undergoes a qualitative
change into a quark-gluon plasma (QGP) at high tempera-
tures and/or densities. The QGP is a new state of strongly
interacting matter in which the basic constituents, quarks
and gluons, are ‘‘freed’’ from the color confinement of low-
temperature hadrons. The phenomenon of color confine-
ment is attributed to the nonperturbative structure of the
QCD vacuum at zero temperature. At high temperatures
(and/or densities) this picture is modified to allow a de-
confining transition. However, the character of the QGP at
temperatures up to at least several times the transition
temperature (Tc � 170 MeV) remains nonperturbative,
since in this temperature range the strong coupling con-
stant is still of O�1�, and the fundamental degrees of free-
dom are more complex than simply free quarks and gluons.
Currently lattice QCD is the only theoretical tool that is

suitable for tackling this inherently strongly coupled sys-
tem from first principles.

The QGP is studied experimentally in heavy-ion colli-
sions at RHIC and CERN, in which the accessible tem-
perature range is up to about 3Tc [1]. The data from these
experiments are mostly interpreted through hydrodynam-
ical models [2], which take the equation of state (EOS) of
the low- and high-temperature phases as essential inputs.
The hydrodynamic models that include the QGP as the
high-temperature phase use an ideal gas EOS for quarks
and gluons which, considering the temperature range, is
bound to be an unsatisfactory approximation, perhaps ac-
counting in part for discrepancies between some of the
current predictions and the experimental data. This diffi-
culty can be addressed by a realistic lattice QCD calcula-
tion of the EOS to serve as input for the hydrodynamics
equations.

The importance of a realistic EOS of the QGP is not
limited to the heavy-ion experiments. The EOS is also
relevant to cosmology, since it is believed that the QGP
existed microseconds after the big bang. For example, the
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relic density of weakly interacting massive particles is
sensitive to the EOS of the QGP at these early stages of
the formation of the Universe [3]. Another area of potential
application of the EOS is in the study of phenomena in the
interior of dense neutron stars, where again the QGP is
likely to exist.

The determination of the EOS through numerical simu-
lation of lattice QCD is challenging, since it requires a
precise determination of differences between high- and
low-temperature quantities that have inherent ultraviolet
divergences. Thus the most extensive simulations to date
are carried out on rather coarse lattices (Nt � 4) [4,5].
Improving the gauge and fermion actions [6,7] helps re-
duce lattice artifacts as does decreasing the lattice spacing
(Nt � 6) [7,8]. It is also important to carry out simulations
with a realistic light quark spectrum [5,7].

In this paper, we report results of a simulation of the
QCD EOS at Nt � 6 with 2� 1 light flavors of O�a2�
tadpole-improved (Asqtad) staggered quarks. The gauge
action we use is a Symanzik O�a2� tadpole-improved one
as well. Preliminary accounts were given at the Lattice
2005 and 2006 conferences [7,9]. The inclusion of the
strange quark is of interest to the phenomenological studies
of the QGP since it can change the order of the phase
transition and influences strangeness production in the
heavy-ion experiments. To determine the EOS, we use
the integral method where the pressure and the energy
density are calculated through an integration over the
interaction measure [10]. The paths of the integration in
the bare parameter space are approximately trajectories of
constant physics. Along a trajectory of constant physics the
heavy quark mass (ms) would be fixed to the physical
strange quark mass and the m�=m� ratio would be kept
constant. We approximate two such trajectories for which
m�=m� � 0:3 and 0.4, which correspond to light quark
masses mud � 0:1ms and 0:2ms, respectively. Our calcu-
lations are performed at Nt � 6 for both trajectories, and
we have an additional Nt � 4 result for the mud � 0:1ms
trajectory. In this work we compare the EOS obtained
using, first, the data from the two different trajectories
and, second, from the data with different Nt. We find that
the differences are small in both cases.

II. THE INTEGRAL METHOD FOR THE EOS
DETERMINATION

In this section we give a brief description of the formal-
ism of the integral method as applied to the specific im-
proved actions that we use. The analytic form of the EOS is
derived from the following thermodynamics identities:

 "V � �
@ lnZ
@�1=T�

��������V
;

p
T
�
@ lnZ
@V

��������T
�

lnZ
V
;
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d lnZ
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where " is the energy density, p is the pressure, and I is the
interaction measure. The spatial volume is V � N3

s a
3 for

lattice spacing a, and the temperature is T � 1=�Nta�. The
derivative of the partition function Z with respect to the
logarithm of the lattice spacing, lna, should be understood
as taken along a trajectory of constant physics. In the
explicit form of the partition function

 Z �
Z
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�
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X
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the gauge action is given by Sg � Spl � Srt � Spg, with

 Spl � �
X
x;�<�

�1� P��� Srt � �rt

X
x;�<�
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X
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The real parts of the traces of the 1	 1 plaquette—P��,
the 1	 2 and 2	 1 rectangle sum—R��, and the 1	 1	
1 parallelogram—C���, are all divided by the number of
colors. The gauge couplings in the above are defined as

 � � 10=g2 �rt � �
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0
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for �s � �4 ln�u0�=3:0684 and u0 � hPi1=4. The fermion
matrix M�amf;U; u0� corresponds to the Asqtad staggered
action for a specific flavor f.

Using the identities in Eq. (1) and the explicit form of Z,
we obtain the EOS expressions
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 pa4 � �
Z lna

lna0

I�a0��a0�4d lna0 (5)

 "a4 � �I � 3p�a4: (6)

The various fermionic and gluonic observables in the EOS
are calculated at nonzero temperature (fixed Nt < Ns) and
on zero-temperature lattices (Nt 
 Ns). The symbol � in
the EOS expressions denotes their nonzero and zero-
temperature differences. All measurements are taken along
a trajectory of constant physics, which we parametrize with
the lattice spacing a. The couplings �, �rt, �pg, masses
amf, and tadpole factor u0 are all functions of lna along
this trajectory. We use these functions to determine the
derivatives of the bare parameters with respect to lna as
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needed for the EOS. The lower integration limit, lna0, in
Eq. (5) should be taken at a coarse enough lattice spacing
that the pressure difference is negligible.

III. SIMULATIONS ON TRAJECTORIES OF
CONSTANT PHYSICS

As already mentioned in the previous sections, for our
simulations we use the one-loop Symanzik improved
(Lüscher-Weisz) gauge action and the Asqtad quark action
[11–13]. Both actions are tadpole improved and the leading
discretization errors are O�a2�s; a

4�. There are many fea-
tures of the Asqtad action that make it well suited for high-
temperature studies. It has excellent scaling properties
leading to faster convergence to the continuum limit and
the dispersion relations for free quarks are much better than
the ones for the standard Wilson or staggered actions.
Another very important property of the Asqtad action is
the much reduced taste symmetry breaking compared with
the conventional staggered action. All this translates into
decreased lattice artifacts above the phase transition.

It would seem important for studying the strange quark
physics of the plasma that the kaon mass be heavier than
the pion. In the staggered fermion scheme each meson state
appears in a taste multiplet of 16. With improvement of the
fermion action the splittings are considerably reduced. The
splittings in meson mass squared are expected to vanish in
the continuum limit as a2�2

V . Shown in a log-log plot in
Fig. 1 are pion taste splittings relative to the Goldstone
pion mass for five lattice spacings. The solid line shows the
expected scaling slope. The trend is consistent with the
scaling prediction. Shown also are splittings of the lowest
member of the kaon multiplet, relative to the Goldstone
pion mass for the two choices of mud=ms in the thermody-
namics study. The vertical lines locate the lattice spacing at
the crossover temperature Tc (about 190 MeV for our
unphysical light quark masses) for various Nt. Note that
the temperature then increases as we move to the left. Our
nonzero-temperature studies are at Nt � 4 and 6. At Nt �
4 the lightest kaon at Tc has approximately the same mass
as the lowest non-Goldstone pion. As the figure shows, at
Nt � 4 the kaon and pion taste multiplets are nonoverlap-
ping at approximately T 
 2Tc. At the Nt � 6 crossover,
the situation has improved and the multiplets are nonover-
lapping at approximately T 
 4Tc=3. Clearly, Nt � 8
would be even better for this action.

At Nt � 6 the taste splitting is about half as large as at
Nt � 4. One of our goals was to determine to what extent
the increase in Nt from 4 to 6 influences the EOS.

In our simulations we use the dynamical R algorithm
[14] with step size equal to the minimum of 0.02 and
2amud=3. For some runs the step size was chosen to be
even smaller. Our aim is to generate zero- and nonzero-
temperature ensembles of lattices with action parameters
chosen so that a trajectory of constant physics (m�=m� �

const) is approximated. Along the trajectory, the heavy

quark mass is tuned to the strange quark mass within
20%. We work with two such trajectories: mud � 0:2ms
(m�=m� � 0:4) and mud � 0:1ms (m�=m� � 0:3) as
shown in Fig. 2.

FIG. 1 (color online). Pion taste splitting relative to the
Goldstone pion mass in units of r1 � 0:318�7��4� fm vs the
lattice scaling variable �a=r1�

2�V�a�2 in a log-log plot. Here
we take �V�a� � 12�=�54 ln��3:33=a��� with � � 319 MeV.
The rising line has slope 1. The fancy diamonds locate the kaon
splittings �m2

K �m
2
G�r

2
1 for mud � 0:2ms. The fancy crosses do

the same for mud � 0:1ms. The vertical lines indicate the ap-
proximate lattice spacing at the crossover temperature for vari-
ous Nt. Data are from [15] and unpublished simulation results.
The pion taste assignments are given in the gamma matrix basis.
The taste singlet is denoted �s.

FIG. 2 (color online). Plot of the two trajectories of constant
physics in the �amud; �� plane.
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The construction of each trajectory begins with ‘‘anchor
points’’ in �, where the hadron spectrum has been previ-
ously studied and the lattice strange quark mass has been
tuned to approximate the correct strange hadron spectrum
[15]. We adjusted the value of amud at the anchor points to
give a constant (unphysical) ratio m�=m�. Between these
points the trajectory is then interpolated, using a one-loop

renormalization-group-inspired formula. That is, we inter-
polate ln�ams� and ln�amud� linearly in �. Since we have
three anchor points for themud � 0:2ms trajectory, namely
� � 6:467, 6.76, and 7.092, our interpolation is piecewise
linear. For the trajectory mud � 0:1ms, we use two anchor
points at � � 6:458 and 6.76. Explicitly the parametriza-
tion of the mud � 0:2ms trajectory is

 ams �

8><
>:

0:082 exp
�
��� 6:4674� ln�0:050=0:0820�

�6:76�6:4674�

	
� 2 �6:467; 6:76�

0:05 exp
�
��� 6:76� ln�0:031=0:05�

�7:092�6:76�

	
� 2 �6:76; 7:092�

(7)

 amud �

8><
>:

0:01675 exp
�
��� 6:4674� ln�0:010=0:016 75�

�6:76�6:4674�

	
� 2 �6:467; 6:76�

0:01 exp
�
��� 6:76� ln�0:006 73=0:01�

�7:092�6:76�

	
� 2 �6:76; 7:092�

(8)

The parametrization of the mud � 0:1ms trajectory with
� 2 �6:458; 6:76� is

 ams � 0:05 exp
�
��� 6:76�

ln�0:082=0:05�

�6:458� 6:76�

	
(9)

 amud � 0:005 exp
�
��� 6:76�

ln�0:0082=0:005�

�6:458� 6:76�

	
: (10)

For both trajectories, for values of � out of the interpola-
tion intervals, the parametrization formulas are used to
perform extrapolations. The run parameters of the two
trajectories at different Nt are summarized in Tables I, II,

TABLE I. Run parameters of the trajectory with mud � 0:1ms at Nt � 4. The asterisk
indicates parameter sets for which both zero and nonzero-temperature runs were performed.
The columns labeled ‘‘Trajectory’’ indicate the number of thermalized trajectories. The last
column shows the lattice spacing as determined from Eq. (11).

� amud ams u0 VT�0 Trajectory VT�0 Trajectory a [fm]
?6:000 0.0198 0.1976 0.8250 123 	 4 1800 124 500 0.366
?6:050 0.0178 0.1783 0.8282 123 	 4 1800 124 500 0.334
6.075 0.0169 0.1695 0.8301 123 	 4 1800 0.319
?6:100 0.0161 0.1611 0.8320 123 	 4 1800 124 500 0.306
6.125 0.0153 0.1533 0.8338 123 	 4 2800 0.293
?6:150 0.0146 0.1458 0.8356 123 	 4 3800 124 500 0.281
6.175 0.0139 0.1388 0.8374 123 	 4 3800 0.269
?6:200 0.0132 0.1322 0.8391 123 	 4 3800 124 400 0.258
6.225 0.0126 0.126 0.8407 123 	 4 3800 0.248
?6:250 0.012 0.1201 0.8424 123 	 4 3800 124 500 0.238
?6:275 0.0114 0.1145 0.8442 123 	 4 2800 124 500 0.229
?6:300 0.0109 0.1092 0.8459 123 	 4 1800 124 2100 0.220
?6:350 0.009 96 0.0996 0.8491 123 	 4 1800 124 2100 0.204
6.400 0.009 09 0.0909 0.8520 123 	 4 1800 0.190
?6:458 0.0082 0.082 0.8549 123 	 4 1800 124 2100 0.175
6.500 0.007 65 0.0765 0.8570 123 	 4 1800 0.165
?6:550 0.007 05 0.0705 0.8593 123 	 4 1800 204 2100 0.155
6.600 0.0065 0.065 0.8616 123 	 4 1800 0.145
?6:650 0.005 99 0.0599 0.8636 123 	 4 1800 244 2100 0.137
6.700 0.005 52 0.0552 0.8657 123 	 4 1800 0.129
?6:760 0.005 0.05 0.8678 163 	 4 800 243 	 64 2100 0.120
?6:850 0.004 37 0.0437 0.8710 163 	 4 800 324 300 0.109
?7:080 0.0031 0.031 0.8779 163 	 4 800 403 	 96 1500 0.086
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and III. It is apparent from Eqs. (7) and (8) that values of
the quark mass ratio mud=ms in Table III deviate slightly
from 0.2, since it was our initial intention to keep the
hadron masses constant instead. In subsequent practice,
as in the 0:1ms trajectory, we chose the more convenient
alternative of keeping the quark mass ratio fixed.

For the purpose of the EOS determination, the trajecto-
ries of constant physics are most conveniently parame-
trized by the lattice spacing a, as discussed at the end of
the previous section. To calculate the various derivatives of
the bare parameters with respect to lna, we need to deter-
mine the functional dependence lna���. The lattice spac-
ing is determined using the method of Ref. [15]. On a large
set of zero-temperature ensembles the static potential is
measured to determine the modified Sommer parameter r1

[16] in lattice units. Specifically r1 is defined by
r2

1F �qq�r1� � 1. All available measurements of r1=a are
then fit to the following asymptotic-freedom-inspired

form [17,18]:

 

a
r1
�
c0f�g

2� � c2g
2f3�g2� � c4g

4f3�g2�

1� d2g
2f2�g2�

: (11)

The definition of

 f�g2� � �b0g2��b1=�2b2
0�e�1=�2b0g2� (12)

involves the universal beta-function coefficients for mass-
less three-flavor QCD, b0 and b1. The coefficients c0, c2,
c4, and d2 are

 c0 � c00 � �c01uamud � c01sams�=f�g
2�

� c02�2amud � ams�
2=f2�g2�

c2 � c20 � c21�2amud � ams�=f�g
2�

c4 � c40 d2 � d20;

TABLE II. Same as Table I but for trajectory mud � 0:1ms at Nt � 6.

� amud ams u0 VT�0 Trajectory VT�0 Trajectory a [fm]
?6:300 0.0109 0.1092 0.8459 123 	 6 3100 124 2100 0.220
?6:350 0.009 96 0.0996 0.8491 123 	 6 2900 124 2100 0.204
6.400 0.009 09 0.0909 0.8520 123 	 6 2900 0.190
?6:458 0.0082 0.082 0.8549 163 	 6 2140 124 2100 0.175
6.500 0.007 65 0.0765 0.8570 123 	 6 2900 0.165
?6:550 0.007 05 0.0705 0.8593 123 	 6 2900 204 2100 0.155
6.600 0.0065 0.065 0.8616 123 	 6 2900 0.145
?6:650 0.005 99 0.0599 0.8636 123 	 6 2900 244 2100 0.137
6.700 0.005 52 0.0552 0.8657 123 	 6 2900 0.129
?6:760 0.005 0.05 0.8678 203 	 6 1000 243 	 64 2100 0.120
?6:850 0.004 37 0.0437 0.8710 183 	 6 1300 324 300 0.109
?7:080 0.0031 0.031 0.8779 183 	 6 2200 403 	 96 1500 0.086

TABLE III. Same as Table I but for trajectory mud � 0:2ms at Nt � 6. The last row is a run
which does not lie on the trajectory and was used only for zero-temperature extrapolations.

� amud ams u0 VT�0 Trajectory VT�0 Trajectory a [fm]
?6:300 0.0225 0.1089 0.8455 123 	 6 3000 124 2100 0.224
?6:350 0.0206 0.1001 0.8486 123 	 6 3000 124 2100 0.208
6.400 0.018 86 0.0919 0.8512 123 	 6 3000 0.193
6.433 0.0178 0.087 0.8530 123 	 6 800 0.184
?6:467 0.016 76 0.0821 0.8549 163 	 6 2200 163 	 48 1225 0.176
6.500 0.0158 0.0776 0.8568 123 	 6 3000 0.168
?6:525 0.0151 0.0744 0.8580 123 	 6 3000 124 2100 0.162
6.550 0.0145 0.0713 0.8592 123 	 6 3000 0.157
?6:575 0.0139 0.0684 0.8603 123 	 6 3000 164 1760 0.152
6.600 0.0133 0.0655 0.8614 123 	 6 3000 0.147
?6:650 0.0121 0.0602 0.8634 123 	 6 3000 204 836 0.138
6.700 0.0111 0.0553 0.8655 123 	 6 3100 0.130
?6:760 0.01 0.05 0.8677 203 	 6 1935 203 	 64 825 0.121
?6:850 0.008 98 0.0439 0.8710 123 	 6 3000 243 740 0.110
7.092 0.006 73 0.031 0.8781 123 	 6 3000 0.086
7.090 0.0062 0.031 0.8782 283 	 96 565
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where c00 � 46:766�447�, c01u � 0:526�122�, c01s �
0:1817�708�, c02 � �0:004 03�204�, c20 �
�4:702�175� 	 105, c21 � 3:321�511� 	 103, c40 �
3:943�84� 	 105, and d20 � 1:276�484� 	 103. The fit
has �2=dof � 1:3 and a confidence level of approximately
0.13. This parametrization provides a determination of
r1=a along our trajectories of constant physics (Fig. 3).
Independently of the fit, the absolute scale for a is set from
a determination of the ��2S� 1S� splitting on a subset of
these zero-temperature ensembles [19,20]. An extrapola-
tion to zero lattice spacing then gives r1 � 0:318�7��4� fm
[15]. This value was used in conjunction with the above
parametrized value of r1=a to define the physical lattice
spacing in our simulations.

IV. EQUATION OF STATE RESULTS AND
CONCLUSIONS

In the previous sections, we have outlined the method
we follow to determine the temperature dependence of the
bulk thermodynamic quantities, namely, the interaction
measure, pressure, and energy density, which constitute
the EOS for the quark-gluon system. In this section we
present our numerical results.

According to the integral method, at the base of our
calculation is the determination of the interaction measure,
which is straightforward from Eq. (4). The nonzero-
temperature value of the interaction measure needs to be

corrected for the zero-temperature contributions. This cor-
rection is done for about half of the runs by directly
measuring the zero-temperature values of the fermionic
and gluonic observables involved in Eq. (4) and subtracting
their resultant zero-temperature contribution from the in-
teraction measure at nonzero temperature. For the rest of
the runs, the zero-temperature correction is calculated by
making local interpolations. We need to determine as well
the derivatives d�=d lna, d�rt=d lna, d�pg=d lna,
d�mfa�=d lna, and du0=d lna for each trajectory. For this
purpose we take derivatives of the ln�amud� and ln�ams�
trajectory parametrizations, using Eqs. (7)–(10), polyno-
mial fits to u0��� for both trajectories, and the a=r1 fit from
Eq. (11). Figure 4 shows the interaction measure as a
function of the temperature for both trajectories of constant
physics and Nt’s.

The pressure is obtained from the interaction measure by
integration [Eq. (5)] using the trapezoid method and Fig. 5
shows our results. Using both the interaction measure and
the pressure, we calculate the energy density [Eq. (6)]. The
results are presented in Fig. 6. The statistical errors on all of
the thermodynamic quantities are calculated using the
jackknife method, and we ignore the insignificant errors
on the derivatives of the bare parameters with respect to the
lattice scale mentioned above. The EOS data in Figs. 4–6
is corrected for the systematic errors due to the finite step
size, which are discussed later in this section and in more
detail in the Appendix, and the choice of the lower inte-
gration limit in Eq. (5).

From our results for the EOS, we find that at the highest
studied temperature (� 380 MeV for Nt � 6 and
�570 MeV for Nt � 4) the energy density is about
10%–15% below the Stefan-Boltzmann three-flavor limit,
which is evidence that strong interactions between the
plasma constituents persist in the high-temperature phase
at several times Tc. The comparison of the EOS for the two
trajectories of constant physics at Nt � 6 shows some

FIG. 3 (color online). Inverse lattice spacing in units of
f�g2�r1 vs gauge coupling � � 10=g2, based on the best fit
parametrization Eq. (11). The fitting function is evaluated along
the two lines of constant physics, namely mud � 0:1ms and
0:2ms. It is derived from 40 measured values of r1=a. Eight of
them lie on the trajectories of constant physics and are plotted
here.

FIG. 4 (color online). The interaction measure is shown for
both of the trajectories of constant physics and the different Nt.
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small differences. There is a difference in the interaction
measure maxima, with the one from the mud � 0:2ms
trajectory somewhat larger than the 0:1ms trajectory one.
Also, the pressure on the mud � 0:2ms trajectory at coarse
lattice spacing (see Fig. 5) is gradually becoming slightly
larger with temperature than that on the 0:1ms trajectory.
This result is contrary to expectation. We consider that the
cause is the accumulation of various systematic errors in
the pressure calculation which we discuss later in this
section. As a whole, the reduction of the mass of the
degenerate light quarks from mud � 0:2ms to 0:1ms does
not affect dramatically the basic thermodynamic properties
of the system. We see a lot of similarity between the EOS at
Nt � 4 and 6 for the mud � 0:1ms trajectory. The main

differences between the two available Nt results is again in
the interaction measure, where the maximum at Nt � 6 is
higher. Although the discretization artifacts at Nt � 4 are
known to be larger than in the Nt � 6 case, we find that
their effect on the EOS is not very pronounced.

Our EOS calculation can be affected by the following
systematic errors: finite volume effects, finite step-size
effects, the error in the determination of the lower integra-
tion limit in Eq. (5), possible deviations from the trajecto-
ries of constant physics, and the uncertainties in the scale
determination from Eq. (11). First we discuss the scale
determination error. The lattice spacing is most difficult to
obtain for the Nt � 4 case in the low-temperature region,
where the lattices are coarse. We have estimated that a 5%
error on the lattice scale there gives up to a three-sigma
effect in the region of the interaction measure maximum.
This translates as well into up to two-sigma effects on the
energy density and pressure at high temperatures, since
errors accumulate in the integration needed to obtain these
quantities.

To address the question of the finite volume effects, we
have conducted a set of runs at Nt � 4 with parameters
from the mud � 0:1ms trajectory on lattices with smaller
spatial volume—Vs � 83. In Fig. 7 the thermodynamic
quantities calculated using Vs � 83 are compared with
the ones on the larger spatial volumes—Vs � 123, 163.
We find no statistically significant difference which leads
us to conclude that in our calculation the finite volume
effects are negligible.

The determination of the lower integration limit in
Eq. (5) is potentially another source of systematic error.
The lowest available temperature in our calculations is

FIG. 5 (color online). The temperature dependence of the
pressure for both of the trajectories of constant physics and the
different Nt. The continuum Stefan-Boltzmann limit for 3 mass-
less flavors is also shown.

FIG. 7 (color online). Volume dependence of results for Nt �
4 with mud � 0:1ms. Empty symbols are used for small volume
(Vs � 83) results, and filled symbols are used for large volume
(Vs � 123 or 163) results. The energy density, pressure, and
interaction measure are plotted using diamonds, squares, and
circles, respectively. The data are not corrected for any system-
atic errors. We see no statistically significant volume depen-
dence.

FIG. 6 (color online). The temperature dependence of the
energy density for both of the trajectories of constant physics
and the different Nt. To facilitate comparison with the ideal gas
case, the continuum Stefan-Boltzmann limit for 3 massless
flavors is also shown.
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around 135 MeV at Nt � 4, and 149 MeV at Nt � 6. To
estimate the pressure at these temperatures, we calculate
the pressure of an ideal Bose gas of pions with masses
similar to those in our simulations. The true Goldstone
pions on the physics trajectories have mass of �270 MeV
and the rest of the members of the pion multiplet are
heavier. We estimated the heavy pion masses using extrap-
olations of available data for the taste splitting in the pion
multiplet, summarized in Fig. 1. Including all of the pions
according to their degeneracy, we estimate p=T4�T �
135 MeV� � 0:02 and p=T4�T � 149 MeV� � 0:03 with
about 30% uncertainty in these values. Both of these
estimations are comparable or a bit larger than the size of
the statistical error on the pressure at the closest available
low temperatures. Consequently, we have corrected the
pressure and energy density by adding them to the data.
At high temperatures this correction is smaller than the
statistical error.

The error due to deviations from the trajectories of
constant physics would be largest in the Nt � 4 case, for
which the points around the transition region and at lower
temperature were obtained by extrapolations using Eqs. (9)
and (10). Indeed, a later spectrum calculation near the
transition, at � � 6:2, showed that there is about a 10%
difference from the target value for m�=m�. However,
considering that the differences between the two Nt � 6
trajectories, for which m�=m� differs by about 30%, is no
more than four sigma, we estimate the effect at about one
sigma in the transition region and smaller outside of it.

The last potentially significant source of systematic error
is the finite step size used in the R algorithm. For Nt � 4
and 6 we have carried out a set of test simulations at a
larger step size in the R algorithm to estimate their effect.
In addition, we have performed some rational hybrid
Monte Carlo (RHMC) [21] calculations to complement

our finite step-size study. Our analysis of the results is
presented in the Appendix. We find that the effect of the
step-size corrections to the gauge observables on the inter-
action measure is no larger than the size of our statistical
error along the mud � 0:1ms trajectory and negligible
along the mud � 0:2ms one. The effects of the correction
to the fermionic observables for both trajectories is small
enough to be ignored. We use the empirical formula in
Eq. (A1) with the parameters in Eq. (A2) to compute the
correction to the three gauge loop observables for the
mud � 0:1ms trajectory only. We do not correct the mud �
0:2ms trajectory for finite step-size effects due to their
smallness. Figure 8 shows the EOS for the mud � 0:1ms,
Nt � 6 case with the finite step-size correction compared
with the uncorrected case. The correction is no larger than
our statistical errors. As explained in the Appendix, we
estimate the uncertainty in the correction itself to be about
50%.
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APPENDIX: STEP-SIZE DEPENDENCE OF EOS
OBSERVABLES

With the R algorithm, the integration step size in the
molecular dynamics evolution must be chosen small
enough to achieve the desired accuracy in observables of
interest. For most practical purposes, we have found errors
at our standard small production step sizes to be insignifi-
cant. (For a recent test see Table IX of [15].) However, the
observables required for the equation of state must be
measured to a very high accuracy, since the small differ-
ences between the hot and cold measurements are sensitive
to even small systematic errors. The most important ob-
servable in this regard is the plaquette. For the present
study we have developed a rough empirical method for
estimating and correcting for these errors in our
simulations.

To estimate the step-size error within the R algorithm
requires carrying out simulations at a range of step sizes
and determining the change in the observable as the step
size tends to zero. We have carried out a number of such

FIG. 8 (color online). Effect of step-size corrections for Nt �
6 with mud � 0:1ms. We use filled (open) symbols to plot
uncorrected (corrected) results. The symbols for the energy
density, pressure, and interaction measure are diamonds, squares,
and circles, respectively.
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tests on hot and cold Asqtad lattices, measuring most of the
observables needed for the equation of state. The RHMC
algorithm, which we incorporated into our code at the end
of this study, does not suffer from such step-size errors.
Thus, for the purpose of modeling step-size corrections we
include results of some RHMC calculations. For our pre-
vious study of the equation of state with the unimproved
gauge action and naive staggered fermion action, we made
extensive measurements of the step-size dependence of the
plaquette and chiral condensate [22].

The leapfrog-inspired R algorithm is specifically de-
signed to be a second order integration algorithm. That
is, the truncation error at the end of a molecular dynamics
trajectory of fixed length decreases with the integration
step size " as "2. In Figs. 9 and 10 we show the step-size
dependence of the plaquette and chiral condensate for the
improved action for one pair of ensembles. On the larger-
volume zero-temperature lattices, we have found that the
variation of the plaquette with decreasing step size shows
more apparent curvature over this range of step sizes than
do the smaller volume high-temperature lattices.

Consequently, as shown, we fit the low-temperature results
to a quadratic in "2. Clearly both low- and high-
temperature values are subject to correction. The correc-
tions tend to cancel in the difference. For the improved
action, the slopes for all seven observables needed for the
equation of state are tabulated in Tables IV and V. For the
high-temperature ensembles the slope is determined by a
linear fit in "2. For the zero-temperature ensembles it is
determined from results at our smallest available pair of
values of "2, treating an RHMC step size as 0, of course.

The step-size correction depends largely on the size of
the fermion force, which is computed by inverting the
fermion matrix. Small eigenvalues dominate the inverse.
The smallest eigenvalue is controlled by the light quark
mass. Since the chiral condensate is also determined from
the inverse of the fermion matrix, we would expect the
chiral condensate and light quark mass to be natural pa-
rameters for the step-size error regardless of temperature.
Consequently, along a chosen trajectory of constant phys-
ics, we parametrize the step-size slope of the plaquette for
both high and low-temperature ensembles as a polynomial

FIG. 9. Plaquette (left panel) and chiral condensate (right panel) vs the squared step size "2 for the improved action for the ensemble
at � � 6:458, amud � 0:0082, and ams � 0:082. The squared step size for the production of this ensemble is 0.000 03.

FIG. 10. Same as Fig. 9 but for the ensemble at � � 6:467, amud � 0:01676, and ams � 0:0821. The squared step size for the
production of this ensemble is 0.0001.
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TABLE V. Step-size slope dO=d"2 for fermion contributions to the equation of state for the
ensembles of Table IV. Four operators O are tabulated.

Volume amud h �  iud h �  is h � dM
du0
 iud h � dM

du0
 is

R 123 	 4 0.0198 3(10) 4(5) 27(20) 45(19)
R 123 	 4 0.0161 26(21) 19(11) 66(40) 70(37)
R 123 	 4 0.0132 39(36) 26(16) 53(32) 54(29)
R 123 	 12 0.0132 15(11) 17(5) 44(17) 75(17)
H 163 	 48 0.009 96 �35�14� �4�8� 12(16) 13(17)
H 163 	 48 0.0206 �2�2� �1�2� 1(5) 0(5)
H 163 	 48 0.009 09 �3�9� 3(41) 0(18) 0(18)
H 163 	 48 0.018 86 �15�5� �7�4� 7(7) 12(7)
R 123 	 4 0.0082 1.6(1.4) 9(6) 27(19) 45(19)
H 163 	 6 0.0082 5(16) 10(8) 36(11) 44(12)
H 163 	 48 0.0082 �2�10� 3(5)
H 163 	 6 0.016 76 �13�4� �4�3� 11(2) 11(2)
H 163 	 48 0.016 76 0.7(8) 1.8(7) 9(3) 7(3)
H 163 	 48 0.007 65 �5�10� �5�8� �3�15� 15(14)
R 123 	 6 0.007 05 �20�25� �18�23� �16�25� �6�24�
R 123 	 12 0.005 �5�9� 18(6)
R 123 	 6 0.005 99 19(12) 33(20) 10(22) 5(30)
H 123 	 4 0.005 0.2(4) 0.7(3) �30�28� �73�27�
R 243 	 64 0.005 5.4(1.8) 1.1(1.6) �6:9�2:9� �2:7�3:3�
R 203 	 6 0.01 �1:5�1:3� �2:7�2:7� �12�5� �6�7�
R 203 	 64 0.01 �0:6�9� 1.2(6)
R 203 	 64 0.02 �1:1�3� �1:2�2�
R 203 	 64 0.03 �0:66�11� �0:61�9�

TABLE IV. Step-size slope dO=d"2 for gauge field contributions to the equation of state for a
variety of lattice ensembles. Three operators O are tabulated. The label R indicates values
determined exclusively from the R algorithm. The label H indicates values determined with the
aid of the RHMC algorithm.

Volume � amud ams hPi hRi hCi

R 123 	 4 6.0 0.0198 0.1976 �14�5� �12�6� �8�7�
R 123 	 4 6.1 0.0161 0.1611 �24�8� �25�9� �25�10�
R 123 	 4 6.2 0.0132 0.1322 �18�7� �22�8� �21�10�
R 123 	 12 6.2 0.0132 0.1322 �25�5� �26�5� �26�7�
H 163 	 48 6.35 0.009 96 0.0996 �5�4� �5�6� �5�7�
H 163 	 48 6.35 0.0206 0.1001 �0:6�1:3� �1:0�1:6� �1:3�1:9�
H 163 	 48 6.40 0.009 09 0.0909 �17�4� �20�5� �17�4�
H 163 	 48 6.40 0.018 86 0.0909 4(3) 5(3) 5(4)
R 123 	 4 6.458 0.0082 0.082 �11�6� �14�8� �20�9�
H 163 	 6 6.458 0.0082 0.082 �18�4� �18�4� �13�11�
H 163 	 48 6.458 0.0082 0.082 �11�4� �11�7� �14�7�
H 163 	 6 6.467 0.016 76 0.0821 �3:8�1:6� �5�2� �5�3�
H 163 	 48 6.467 0.016 76 0.0821 2.1(1.4) 3(2) 4(2)
H 163 	 48 6.50 0.007 65 0.0765 �6�5� �5�6� �4�7�
R 123 	 6 6.55 0.007 05 0.0705 1.4(9) 4(14) 6(13)
R 123 	 12 6.565 0.005 0.0484 �36�4� �46�6� �48�6�
R 123 	 6 6.65 0.005 99 0.0599 5(10) 1(13) 5(11)
H 123 	 4 6.76 0.005 0.082 22(11) 19(18) 23(16)
R 243 	 64 6.76 0.005 0.05 �11�2� �15�3� �10�3�
R 203 	 6 6.76 0.01 0.05 5(2) 4(4) 4(3)
R 203 	 64 6.76 0.01 0.05 �1:8�6� �2:9�4� �2:6�6�
R 203 	 64 6.79 0.02 0.05 1.24(12) 1.12(14) 1.23(10)
R 203 	 64 6.81 0.03 0.05 2.04(7) 2.04(9) 2.09(10)
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in the chiral condensate. For the mud � 0:1ms trajectory
we find it is modeled reasonably well by the following
quadratic form as shown in Fig. 11:

 

dP

d"2
� b�x� 0:1�2 �m�x� 0:1� � c; (A1)

where x � a3h �  iud is the light quark chiral condensate in
lattice units.

The best fit values are

 b� 250�177�; m��109�54�; c��6:1�2:7�; (A2)

for �2=df � 23=11. Thus, our empirical model explains
most of the observed variation but not all. We use it to
estimate the step-size correction along the mud � 0:1ms
trajectory. By comparison the plaquette slopes for the
mud � 0:2ms trajectory are small. If we apply a correction
according to a crude linear fit to these slopes, the effect on
the EOS is much smaller than our statistical errors. For
these reasons we chose to ignore the step-size error for this
trajectory.

The fit to the step-size correction also allows us to
estimate the error in our ability to predict the correction.
The largest error, approximately 50%, occurs at small
values of the chiral condensate. We take this as a conser-
vative estimate of the error in our correction throughout.

Table IV shows, not surprisingly, that the variation in all
three gauge loop observables is correlated. With our nor-
malization the slopes appear to be of comparable magni-
tude. This observation suggests generalizing the absolute
plaquette correction to all three gauge loops.

We also tabulate the slope of the fermion variables in
Table V. Except for the gauge contribution, all other esti-
mated corrections to the EOS are negligible compared with
our statistical errors. The gauge-action correction is
smaller than our statistical error in most cases; however,
we have included it in the EOS for the mud � 0:1ms
trajectory since, although its effect is comparable to the
statistical error, it lowers all data points consistently.
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