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We compute the ratio of pseudoscalar decay constants fK=f� using domain-wall valence quarks and
rooted improved Kogut-Susskind sea quarks, at a lattice spacing of b� 0:125 fm. By employing
continuum chiral perturbation theory, we extract the Gasser-Leutwyler low-energy constant L5 and
extrapolate fK=f� to the physical point. We find fK=f� � 1:218� 0:002�0:011

�0:024 where the first error is
statistical and the second error is an estimate of the systematic due to chiral extrapolation and fitting
procedures. This value agrees within the uncertainties with the determination by the MILC collaboration,
calculated using Kogut-Susskind valence quarks, suggesting that systematic errors arising from the choice
of lattice valence quark are small.
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I. INTRODUCTION

Recently, lattice QCD calculations have been quite suc-
cessful in determining the hadronic matrix elements and
low-energy constants required for precisely extracting
Cabibbo-Kobayashi-Maskawa (CKM) matrix elements,
such as Vbc and Vus, from experimental data [1–7]. In
particular, lattice determinations of the pseudoscalar decay
constants [1] fK and f�, when combined with the experi-
mentally measured branching fractions for K ! � ������
and �! � ������, provide important theoretical input into
establishing the value of Vus [3], the charged-current ma-
trix element for s! u transitions. Precise determinations
of Vus and Vud, together with the fact that the square of Vub
is negligibly small, provide for a clean test of the unitarity
of the CKM matrix, and therefore facilitate a low-energy
probe for physics beyond the standard model with three
generations of quarks.

Recent developments in improving the Kogut-Susskind
(KS) action [8–13] have allowed for the computation of
quantities in full QCD, with two light and one strange
dynamical quark flavors [14], near the physical point.
Although such calculations currently represent the most
accurately calculated predictions of QCD, one should keep
in mind that there may be uncontrolled errors due to the
fact that KS fermions naturally appear with four copies
(tastes). In order to use them in computations with one or
two flavors, one must take fractional powers of the KS
fermionic determinant, which may lead to errors arising
from nonlocalities. While this problem remains under in-
vestigation, there exists significant evidence that, in prac-
tice, this procedure is benign. The low-energy effective

field theories describing quantities computed on the lattice
with KS fermions which are used to perform chiral and
continuum extrapolations, and also to determine finite-
volume effects, are complicated by the taste structure,
which introduces new low-energy constants [15,16] be-
yond those that appear in the low-energy effective field
theory of QCD. Using the LHPC mixed-action calcula-
tional scheme [17,18], one can alleviate the above-
mentioned problems, as flavor symmetry and chiral sym-
metry (up to exponentially small corrections) can be pre-
served in the valence sector by the use of domain-wall
fermions [19–23]. Even in this scheme, the finite lattice-
spacing corrections due to the sea of KS fermions are
involved [24,25], but they are O�g2b2� (where g is the
QCD coupling constant and b is the lattice spacing) and
in some cases they may be negligible as was observed in
the case of I � 2 �� scattering [26] and the more recent
exploration of the Gell-Mann-Okubo relation for octet
baryons [27], and calculation of the strong isospin breaking
in the nucleon [28].

In the calculation described here, we use the MILC
rooted KS 2� 1 dynamical fermion lattices
[11,13,14,29] at a lattice spacing of b� 0:125 fm and
domain-wall valence quarks [19–23] to compute the pseu-
doscalar decay constants fK and f�, and, in particular, the
ratio of the two. As any deviation from unity in the ratio of
the decay constants results from the breaking of SU�3�
flavor symmetry, contributions from finite lattice spacing
must be accompanied by SU�3� breaking quantities, and
therefore are suppressed beyond the naive O�g2b2�. It
follows that it is appropriate to employ continuum SU�3�
chiral perturbation theory to extrapolate the lattice data to
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the physical values of the light-quark masses, and to make
a prediction for fK=f�. This calculation provides an im-
portant test of the systematics involved in the earlier cal-
culations of the same quantity by MILC [1,2]. Significant
differences between the two extrapolations would indicate
an uncontrolled systematic associated with the species of
valence quarks employed in the calculation. In this paper
we obtain a result that is consistent with the MILC result,
and, consequently, we find no evidence of a significant
systematic error in the lattice calculation of fK=f� due to
finite lattice-spacing effects.

II. DETAILS OF THE LATTICE CALCULATION

Our computation uses the mixed-action lattice QCD
scheme developed by LHPC [17,18] using domain-wall
valence quarks from a smeared source on Nf � 2� 1
asqtad-improved [11,13] MILC configurations generated
with rooted1 KS sea quarks [14] that are hypercubic
smeared (HYP smeared) [38–41]. In the generation of
the MILC configurations, the strange-quark mass was fixed
near its physical value, bms � 0:050 (where b� 0:125 fm
is the lattice spacing2), determined by the mass of hadrons
containing strange quarks. The two light quarks in the
configurations are degenerate (isospin symmetric). As
was shown by LHPC [17,18], HYP smearing allows for a
significant reduction in the residual chiral symmetry break-
ing at a moderate extent Ls � 16 of the extra dimension
and domain-wall height M5 � 1:7. In order to reduce the
time required for propagator generation by a factor of 2, the
time direction of MILC lattices was reduced by a factor of
2, from 64 down to 32. As the gauge fields are no longer
antiperiodic in the time direction, a Dirichlet boundary
condition is imposed on the propagator in the time direc-
tion, while retaining periodic boundary conditions in the
spatial directions. This also allowed us to recycle propa-
gators computed for the nucleon structure function calcu-

lations performed by LHPC. The impact of the Dirichlet
boundary condition on correlation functions falls exponen-
tially with the distance in the time direction to the bound-
ary and did not restrict the extraction of physics from the
calculation. For bare domain-wall fermion masses we used
the tuned values that match the KS Goldstone pion to few-
percent precision. For details of the matching see
Refs. [17,18]. The parameters used in the propagator cal-
culation are summarized in Table I. All propagator calcu-
lations were performed using the CHROMA software suite
[42,43] on the high-performance computing systems at the
Jefferson Laboratory (JLab).

In order to be able to extract the pseudoscalar decay
constants from the amplitude of the pseudoscalar correla-
tors, CP�t�, as was done in [44,45], both the smeared-
smeared and smeared-point pseudoscalar correlation func-
tions are computed. If the amplitudes of the pseudoscalar
ground state are Ass

P and Asp
P for the smeared-smeared

and smeared-point correlators, respectively, the pseudosca-
lar decay constant is recovered from

 fP �
Asp

P���������
Ass

P

p
���
2
p
�mdwf

1 �mdwf
2 � 2mres�

m3=2
P

(1)

where mdwf
1 and mdwf

2 are the domain-wall fermion masses
used in constructing the pseudoscalar meson andmres is the
residual chiral symmetry breaking parameter computed
from the chiral Ward-Takahashi identity as in [44,45] and
shown in Table I. The dependence of mres on the valence
mass is negligible compared to the statistical errors of the
calculation. It is useful to construct an ‘‘effective’’ decay
constant directly from the lattice data at each time slice.
Hence we form

 fEFF
P �

CSP
P �t�

t�1CSS
P �t� 1�t=2

CSS
P �t�

�t�1�=2CSP
P �t� 1�t

�

���
2
p
�mdwf

1 �mdwf
2 � 2mres�

	log�CSP
P �t�C

SP
P �t� 1��1�
3=2

; (2)

which is independent of t at large times where the corre-
lation functions behave as

 CSP
P �t� !Asp

P e
�mPt; CSS

P �t� !Ass
Pe
�mPt: (3)

TABLE I. The parameters of the MILC gauge configurations and domain-wall propagators used in this work. The subscript l denotes
the light quark (up and down), and s denotes the strange quark. The superscript dwf denotes the bare quark mass for the domain-wall
fermion propagator calculation. The last column is the number of configurations times the number of sources per configuration.

Ensemble bml bms bmdwf
l bmdwf

s 103 � bmres
a # of propagators

2064f21b676m007m050 0.007 0.050 0.0081 0.081 1:604� 0:038 468� 3
2064f21b676m010m050 0.010 0.050 0.0138 0.081 1:552� 0:027 658� 4
2064f21b679m020m050 0.020 0.050 0.0313 0.081 1:239� 0:028 486� 3
2064f21b681m030m050 0.030 0.050 0.0478 0.081 0:982� 0:030 564� 3

aComputed by the LHP collaboration.

1For recent discussions of the ‘‘legality’’ of the mixed-action
and rooting procedures, see Refs. [30–37].

2The lattice spacing has been determined to be [1] b �
0:1243� 0:0015 fm using the Sommer scale-setting procedure,
and [26] b � 0:1274� 0:0007� 0:0003 fm using the pion de-
cay constant. In this work quantities in physical units were
obtained using b � 0:125 fm.
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III. ANALYSIS AND CHIRAL EXTRAPOLATION

To determine the pseudoscalar decay constants, the cor-
relation functions for the K� and �� were computed with
both smeared and point sinks on each ensemble. In order to
extract the amplitudes for the smeared-smeared and
smeared-point correlation functions, a single exponential3

with a common mass was fit by �2 minimization to each
data set, i.e. a three parameter fit was performed with
variables Ass

P , Asp
P and m� (or mK). The central value

and uncertainty of each parameter were determined by the
jackknife procedure over the ensemble of configurations.
The decay constant was extracted by jackknifing over the
appropriate combination of quantities, as given in Eq. (1).
In Fig. 1 we present the lattice data using effective fK=f�
plots according to Eq. (2), along with the fits. The results of
the lattice calculation of the decay constants and meson
masses are tabulated in Table II.

A. Chiral extrapolation at next-to-leading order

In SU�3� chiral perturbation theory (�PT) Gasser and
Leutwyler [48–50] showed that the ratio of the kaon to
pion decay constants is given, at next-to-leading order
(NLO) in the chiral expansion, by

 

fK
f�
� 1�

5

4
l���� �

1

2
lK��� �

3

4
l���� �

8

f2 �m
2
K

�m2
��L5��� (4)

where f is the pseudoscalar decay constant in the chiral
limit, mK is the kaon mass, m� is the pion mass, and

 li��� �
1

16�2

m2
i

f2 log
�
m2
i

�2

�
; (5)

with the index i running over the pseudoscalar states (�,K,
and �). L5��� is a Gasser-Leutwyler low-energy constant
evaluated at the �PT renormalization scale �, whose scale
dependence exactly compensates the scale dependence of
the logarithmic contributions.

In our lattice calculation we have not computed the mass
of the � meson since it involves disconnected diagrams
that require significant computer time to evaluate. Hence
we replacem� with its value obtained from the Gell-Mann-
Okubo mass relation among octet mesons,

 m2
� �

4
3m

2
K �

1
3m

2
�; (6)

which is valid to the order of �PT to which we are working.

In addition, we choose to work with� � fphy
� , the value of

the pion decay constant at the physical point. To recover
the value of the counterterm L5��� at some other renor-
malization scale, one can use the evolution [48–50]

 L5�f
phy
� � � L5��� �

3

8

1

16�2 log
�
fphy
�

�

�
: (7)

Finally, we replace the ratios �mi=f
phy
� �2 by the lattice-

computed value �mi=f��
2, which is again consistent to

the order of �PT to which we are working. Hence, the
final NLO expression to which we fit the lattice data is
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� �: (8)

Note that the only parameter to be determined by fitting at
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FIG. 1 (color online). Effective fK=f� determined from the
smeared-smeared and smeared-point correlation functions with
Eq. (2). The solid black lines and shaded regions are the fits
(with 1� errors) tabulated in Table II.

3There is no evidence of excited state contamination in the
�-correlation function, determined by performing double expo-
nential fits to the data, from time-slice 4 onward. While one
expects a contribution from 3� and �� intermediate states at
short times [46,47], we were unable to extract a mass for such
states.
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NLO is L5. It is also worth noting that the above expression
has the expected behavior that at the SU�3� symmetric
point the ratio of decay constants is unity.

For reasons that will become clear below, it is useful to
‘‘linearize’’ the fitting procedure by isolating the analytic
terms with coefficients that are to be fit to the lattice data.
We define the function

 F �

�
fK
f�
� 1� �logs

�
1

8y
; (9)

where, at NLO,

 �logs � ��NLO�
logs

�
m�

f�
;
mK

f�

�

�
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1
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�

f2
�
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�
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�
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m2
�

f2
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�
;

(10)

and the quantity y is

 y �
m2
K

f2
�
�
m2
�

f2
�
: (11)

Therefore, at NLO in the chiral expansion, the quantity F
should be the same on each of the ensembles, and equal to
the counterterm L5�f

phy
� �,

 F � L5�f
phy
� �: (12)

The calculated values of F , along with their uncertainties
determined by jackknifing over the configurations, are
shown in Table II, and in Fig. 2 we have plotted F versus
m2
�=f2

�. A �2 minimization is performed to extract the one
parameter L5�f

phy
� � from the data. The complete lattice data

set is not that well described by a constant value of
L5�f

phy
� �, ‘‘Fit A’’ in Fig. 2, due to the presence of

higher-order terms in the chiral expansion, or failure of
the chiral expansion at the highest pion mass. To explore
the dependence on the higher-order terms in the chiral
expansion we have sequentially ‘‘pruned’’ the data by
removing the highest mass point (bml � 0:030), and then
the two highest mass points (bml � 0:030, 0.020), and

determined L5�f
phy
� �,

4 ‘‘Fit B’’ and ‘‘Fit C’’ in Fig. 2,
respectively. The results of these fits are shown in Fig. 2
and presented in Table III. With the value of L5, we use
Eq. (8) to evaluate the ratio of the decay constants at the
physical point using the physical values for the pseudosca-
lar masses and the pion decay constant [51],

 f�� � 130:7 MeV; m� � 137:3 MeV;

mK � 495:7 MeV;
(13)

where the masses are the isospin-averaged values. We use
the Gell-Mann-Okubo mass relation to determine the �
mass that appears in the chiral contributions.

It is important to keep in mind that this determination of
L5 is only perturbatively close to the actual value of L5
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FIG. 2 (color online). F vs m2
�=f

2
� at NLO, along with the

three different fits, A, B and C. The solid bars near the y axis
denote the value of L5 and its uncertainty from the three fits. The
point denoted by the star corresponds to the experimental value.

TABLE II. Calculated quantities with fitting ranges in brackets. All errors are computed using the jackknife procedure. Values for F
are given without and with (in squiggly brackets) the log2 contribution.

Ensemble m� (GeV) m�=f� mK=f� fK=f� F � 103

m007 0.2931(15) 1.978(19) [5–16] 3.937(28) [6–16] 1.1610(54) [6–16] 5.67(6) f5:31�5�g
m010 0.3546(9) 2.337(11) [5–16] 3.958(16) [6–15] 1.1286(23) [6–15] 5.62(3) f5:13�2�g
m020 0.4934(12) 3.059(12) [7–16] 3.988(15) [7–15] 1.0751(13) [8–15] 5.68(3) f4:87�2�g
m030 0.5918(10) 3.484(10) [5–15] 4.004(12) [7–14] 1.04279(69) [10–14] 5.73(2) f4:69�2�g

4Pruning the data provides an assessment of the importance of
higher-order terms in the chiral expansion, while fitting only the
leading chiral contributions. There are a number of ways to
approach this issue. For instance, an alternate approach would be
to add a systematic error to each data point that grows with the
pion mass in a manner consistent with �PT. We find that this
provides an extrapolated value of fK=f� and L5 consistent with
pruning the data, as expected.
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which is defined in the chiral limit. In the current extrac-
tion, the strange-quark mass is held fixed near the physical
value, while the light-quark masses are somewhat lighter.

B. Incomplete chiral extrapolations at next-to-next-to-
leading order

While the full two-loop expressions for fK=f� exist in
both QCD [52] and partially quenched QCD [53], these
expressions contain many fit parameters, and therefore
fruitful use of these results must await lattice data with
better statistics and with a larger variety of quark masses.
In order to estimate systematic errors, we perform fits with
parts of the next-to-next-to-leading-order (NNLO) expres-
sion [54]. We focus on just two of the structures that enter
at NNLO, analytic terms and a double logarithm with fixed
coefficient.

1. Partial N2LO: Analytic terms only

Including only the analytic terms that enter at NNLO,
Eq. (12) becomes

 F � L5 � Csms � Clml � ~L5 � ~C�
m2
�

f2
�
; (14)

where terms higher order in the chiral expansion are not
shown. As the strange-quark mass is the same over all
ensembles, we simply absorb it into the definition of L5,
making explicit the quark mass dependence discussed
previously. Therefore fitting at NNLO holding the
strange-quark mass fixed introduces one additional fit pa-
rameter, ~C�. It is clear that the values of ~L5 and ~C�
extracted from the data are correlated, and in determining
the extrapolated value of fK=f� we explore the entire 68%
confidence-level error ellipse in the ~L5 � ~C� plane5

(shown in Fig. 4). We label this ‘‘Fit D,’’ and the results
are shown in Table IV. The data minus the NLO chiral logs,
and the fit are shown in Fig. 3. Note that the errors quoted
in Table IV and displayed in Fig. 3 are 1� errors.

2. Partial N2LO: Analytic terms and double chiral logs

The full two-loop expression that contributes to fK=f�
is quite complicated. An approximation to the log2 piece at
two-loop order can be evaluated using renormalization-

TABLE IV. Results from fitting the partial NNLO chiral con-
tributions. Explanations of fits D, E, F, and G are in the text.

Fit ~L5 � 103 ~C� � 105 fK=f� (extrapolated) �2=dof

D 5.63(2) 1.40(49) 1.209(8) 0.8
E 5.53(4) �7:00�47� 1.209(7) 1.0
F 5.80(3) �8:28�35� 1.224(5) 0.5
G 5.16(5) �4:93�56� 1.205(9) 1.5
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FIG. 3 (color online). F vs m2
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2
� at NNLO. The solid bars

near the y axis denote the value of ~L5 � F �m� � 0� and its
uncertainty from the fits. The point denoted by the star corre-
sponds to the experimental value. The circles denote the lattice
data with only the NLO chiral logs subtracted, while the squares
are the lattice data with the NLO chiral logs and the NNLO log2

term subtracted.

TABLE III. Results from chiral extrapolation at one-loop or-
der in �PT. Explanations of the various fits are in the text.

Fit L5 � 103 fK=f� (extrapolated) �2=dof

A 5.68(3) 1.221(3) 3.5
B 5.65(2) 1.218(2) 1.4
C 5.63(2) 1.215(2) 0.7
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FIG. 4 (color online). 68% confidence-level error ellipses for
fits D and E described in the text.

5This results in an error that is consistent with textbook
propagation of the errors in ~L5 and ~C�.
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group techniques and is given by [54]
 

��NNLO�
log2 �

1

6144�4

�
m2
K

f2
�
�
m2
�

f2
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17
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K

f2
�
� 37
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� log2

�
M2

�2

�
; (15)

where M is a mass scale related to the Goldstone boson
masses. It would seem reasonable to choose the intermedi-
ate mass scale M �

��������������
m�mK
p

and � � f�. Of course, the
two-loop contributions vanish at the flavor SU�3� symmet-
ric point. Again, to isolate the fitting function, we subtract
��NNLO�

log2 from the lattice data, giving a fit function of the

form

 F �

�
fK
f�
� 1� ��NLO�

logs � ��NNLO�
log2

�
1

8y

� ~L5�f
phy
� � � ~C�

m2
�

f2
�
: (16)

The scale dependence of the log2 contribution requires that
the coefficients Cs and Cu in Eq. (14) be scale dependent,
and thus ~C� becomes scale dependent and the scale de-
pendence of ~L5 is modified (a higher-order effect). The
calculated values of F , along with their uncertainties
determined by jackknifing over the configurations, are
shown in Table II and plotted in Fig. 3. We anticipate
that the fit value of ~L5 should change only a small amount
from its value obtained in the NLO fits and in fit D, if the
chiral expansion is convergent. However, we expect that
the coefficient ~C� could change by an amount of order 1.
The results of fitting this functional form to the lattice data,
which we denote by ‘‘Fit E,’’ are presented in Table IV and
shown in Fig. 3 (error ellipse is shown in Fig. 4). Indeed, ~L5

is changed very little, while ~C� changes by an amount of
order 1. We also give results for fits F and G which are the
same as fit E except the argument of the log2 contribution is
chosen to be M � m� and M � mK, respectively. These
choices lead to a larger variation in ~L5 and consequently in
fK=f�.

C. Discussion

To determine fK=f� at the physical point and its asso-
ciated uncertainty we synthesize the results of the NLO and
NNLO fits. Fitting the lowest two mass points at NLO
gives fK=f� � 1:215� 0:002, while fitting the three data
points with pion masses below m� � 500 MeV gives
fK=f� � 1:218� 0:002. The difference between them is
within statistical errors (1:5�) but there appears to be a
systematic trend in the data which can be attributed to
higher orders in the chiral expansion. As we are unable
to fit the full NNLO expression to our small data set, we
can estimate the systematic uncertainty in this calculation
by looking at the range of values of fK=f� that result from
the two types of NNLO extrapolation, both with and with-

out the log2 contribution, including variation in the argu-
ment of the NNLO logarithm and including statistical
errors. The range of variation in the NNLO estimate is an
order of magnitude larger than the statistical error found
at NLO. We take this NNLO uncertainty, ��fK=f�� �
�0:011
�0:022 , to be an estimate of the systematic error in our
calculation due to the truncation of the chiral expansion.
We also assign a systematic error due to fitting procedures,
obtained by varying the fitting ranges displayed in Fig. 1,
which gives ��fK=f�� �

�0:000
�0:010 . Therefore, our final num-

ber on the MILC lattices with b� 0:125 fm is

 

fK
f�
� 1:218� 0:002�0:011

�0:024; (17)

where the first error is statistical and the second error is
systematic, with the extrapolation error and fitting error
added in quadrature. The error in this lattice QCD deter-
mination of fK=f� is clearly dominated by the systematics.

Using a similar procedure, we arrive at a value for L5:

 L5�f
phy
� � � 5:65� 0:02�0:18

�0:54 � 10�3; (18)

where the first error is statistical and the second is an
estimate of the systematic error due to omitted higher
orders in the chiral expansion. This then scales to give
L5�m

phy
� � � 2:22� 0:02�0:18

�0:54 � 10�3 at the � mass and
L5�m

phy
� � � 1:42� 0:02�0:18

�0:54 � 10�3 at the � mass. As
stated previously, this is an effective L5 as it includes the
higher-order strange-quark contribution, and lattice-
spacing artifacts.

The results for fK=f� have an additional systematic
error due to the nonzero lattice spacing which we expect
to be O��ms �mu�b2�. In principle, one can reduce this
error by fitting to the appropriate �PT formulas that in-
clude theO�g2b2� effects through the use of lattice-spacing
spurion fields, e.g. Ref. [24]. Such an analysis will account
for all lattice-spacing effects arising at this order, including
those due to flavor-symmetry breaking in the sea-quark
sector, due to Lorentz-violating interactions arising from
the lack of full Lorentz invariance on the lattice, and from
lattice-spacing shifts to the coefficients of operators ap-
pearing in the chiral Lagrangian in the continuum limit.
However, our data fit well to the continuum �PT formulas
and hence we do not expect that use of the extended �PT
formulas of Ref. [24] would significantly improve our
results with our limited data set. Our final result at a lattice
spacing of b� 0:125 fm, shown in Eq. (17), is consistent
with the MILC number [1]

 

fK
f�

��������MILC
� 1:210� 0:004� 0:013; (19)

where the first error is statistical and the second is the total
systematic error estimated by MILC. Since our valence
quarks are domain-wall fermions, in contrast with the KS
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quarks used by MILC, the discretization errors should be
different. Hence, in the absence of a conspiracy or an
accident, the agreement of our results to the few-percent
level is further confirmation that these systematic errors
due to a finite lattice spacing are small.6

It is also interesting to note that our result is in agree-
ment with the experimental number,

 

fK
f�

��������exp
� 1:223� 0:012; (20)

but our calculation has a somewhat larger systematic error
due to uncertainty in the chiral extrapolation. To make a
comparison with the experimental value, an estimate of the
lattice-spacing error in our extraction is required. A naive
estimate based upon the size of b2�2

QCD suggests that the
systematic error associated with the lattice spacing is com-
parable to the systematic error associated with the trunca-
tion of the chiral expansion, �� 0:02.

It is possible to further improve the precision of our
calculation by increasing the statistics of the lighter pion
masses, including one more point at even lighter pion
mass, and by better utilizing the power of partial quench-
ing, i.e. by computing with different valence quark masses,
away from the tuned point. We hope that with these im-
provements in place we will be able to improve upon the
MILC result.

IV. CONCLUSIONS

Existing high-precision calculations of basic standard
model quantities involve staggered valence quarks on stag-
gered sea quarks with their associated systematic errors.
Clearly, it is important to employ a variety of fermion
discretizations in order to understand and reduce one of
the inherent systematic errors in lattice QCD calculations.
We have computed fK=f� with domain-wall valence
quarks on MILC lattices with a lattice spacing of b�
0:125 fm and found results consistent with an earlier cal-
culation by MILC using KS valence quarks. It is gratifying
to find that using different fermions in the valence sector
leads to a consistent precision determination of fK=f� in
accord with basic effective field theory expectations about
the scaling of discretization errors.
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