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lowest-order approximation and in the framework of k? factorization. We present estimates of cross
sections for the kinematic conditions of the Tevatron and of the LHC.
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I. INTRODUCTION

It follows from the optical theorem that total cross
sections of hadronic processes are driven by color singlet
exchanges in the t channel. Thus, pomeron exchange,
characterized by an even charge parity, gives the dominant
contribution to the sum of the direct and the crossed
amplitudes for a given hadronic process. The exchange
with the odd charge parity, i.e. that of the odderon, domi-
nates the difference between these two amplitudes. The
concept of the odderon in the description of hadronic
processes was introduced a long time ago [1]. Although
it is a partner of the pomeron, which is well known from
the study of diffractive processes, the odderon still remains
a mystery. As it differs from the pomeron only by its charge
parity, one would expect, from the point of view of general
principles based on the analyticity and the unitarity of the S
matrix, that its exchange should lead to effects of a com-
parable magnitude to those coming from pomeron ex-
change. However, the odderon still escapes experimental
verification.

In perturbative QCD, the pomeron is modeled by two
interacting gluons in a color-singlet state, whereas the
odderon is described by an analogous system formed by
three gluons. It is thus quite natural to expect that in hard
processes the effects of odderon exchange—being sup-
pressed by an additional power of the strong coupling
constant �s—are smaller than similar contributions due
to pomeron exchange. This was confirmed by QCD studies
of the diffractive exclusive �c production mediated by
odderon exchange [2–5], which led to rather small cross
sections. It was surprising, however, that a nonperturbative
description within the stochastic vacuum model of the
similar exclusive process of the �0 production [6] gave a
prediction which was disproved by experiment [7]. It was
then argued that the suppression of the �0 photoproduction
may emerge as a result of the chiral symmetry constraints
on the photon-�0 coupling [8] or of the odderon absorption
by its coupling to the pomeron [9].

A natural difficulty in detecting odderon effects in in-
clusive measurements is the fact that, in general, the odd-
eron exchange yields only a small correction to the
dominating pomeron contribution to the scattering ampli-
tude. On the other hand, this difficulty can be overcome in
some cases by studying the charge asymmetries caused by
simultaneous pomeron and odderon exchanges [10]. This
measurement looks rather promising but it was not per-
formed yet, and to this day the best, but still weak, experi-
mental evidence for the odderon was found as a difference
between the differential elastic cross sections for pp and
p �p scattering in the diffractive dip region at

���
s
p
� 53 GeV

at the CERN ISR [11]. For a detailed review of the phe-
nomenological and theoretical status of the odderon we
refer the reader to Ref. [12].

In the present paper, we study the exclusive production
of a heavy vector meson, V � J= , �, in pp and p �p
collisions: pp� �p� ! p0Vp00� �p00�; for a recent review of
meson hadroproduction, see e.g. [13]. We consider the
production of the meson in the central rapidity region,
separated (in rapidity) from the two outgoing hadrons p0

and p00� �p00� by two rapidity gaps. The vector meson results
thus from pomeron-odderon fusion. The mass of the heavy
vector meson supplies the hard scale in the process of
fusion, which may justify a description of the pomeron
and the odderon within perturbative QCD. The above
contribution competes naturally with the production of
the meson in pomeron-photon fusion, which is, however,
under much better theoretical control.

Diffractive production of the J= meson in proton-
(anti)proton collisions via pomeron-odderon fusion was
investigated already in Ref. [14] in the framework of
Regge theory. The potential contribution of the !
Reggeon to this process is expected to be strongly sup-
pressed due to the Zweig rule. The estimate of the total J= 
production cross section to be of the order of 75 nb is quite
encouraging.1

1This result does not take the pomeron-photon fusion contri-
bution into account.
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The basic technical tool for the description of the char-
monium hadroproduction which we use in the present
paper is the k?-factorization method. In the context of
the charmonium hadroproduction it was intensively used
in studies of inclusive processes [15] where it was shown
that the framework well describes the experimental data.

In this paper we estimate the pomeron-odderon and
pomeron-photon contributions to the exclusive J= and
� hadroproduction within QCD as a fundamental theory of
strong interactions. Thus the pomeron and the odderon are
described in terms of the gluonic degrees of freedom.
Moreover, our analysis is based mostly on the perturbation
theory methods, which is justified as the mass of charmo-
nium supplies to our process the necessary hard scale. Our
estimates are obtained assuming the Tevatron and the LHC
conditions. We find that the exclusive heavy vector meson
production in pp and p �p collisions may serve as a useful
tool in odderon searches. The resulting cross sections for
pomeron-odderon fusion are large enough to yield large
production rates already at the Tevatron for the J= and for
the � at the LHC. The ‘‘background’’ photon-driven sub-
process is estimated to have a similar cross section to the
pomeron-odderon contribution, and in order to clearly
isolate the odderon one should perform a careful analysis
of the transverse momentum distributions of the outgoing
particles.

The structure of the paper is the following. Section II
contains a summary of the kinematics. In Sec. III we derive
the scattering amplitudes for the two mechanisms of meson
hadroproduction. Since the calculational technique which
we use is rather well known, we present mostly final
results, whereas technical details are given in the appendix.
Section IV presents our predictions as well as their
discussion.

II. KINEMATICS

We study the processes of hadroproduction shown in
Fig. 1,

 h�pA� � h�pB� ! h�pA0 � � V�p� � h�pB0 �; (1)

where h and V denote an (anti)proton and a J= (or �)
meson, respectively. In the high-energy limit we neglect
the mass of the (anti)proton h and we identify the momenta
pA and pB with two lightlike Sudakov vectors, p2

A � p2
B �

0, so that the scattering energy squared equals s � �pA �
pB�

2 � 2pA � pB.
The momenta of the outgoing particles are parametrized

as

 

pA0 � �1� xA�pA �
l2

s�1� xA�
pB � l?

with l2 � �l? � l?;

pB0 �
k2

s�1� xB�
pA � �1� xB�pB � k?;

(2)

and

 

p � �ppA � �ppB � p?;

�p � xA �
k2

s�1� xB�
� xA;

�p � xB �
l2

s�1� xA�
� xB;

p? � l? � k?;

(3)

which lead to the mass-shell condition for the vector
meson, V � J= , �,

 m2
V � sxAxB � �l� k�

2: (4)

III. THE IMPACT-FACTOR REPRESENTATION OF
SCATTERING AMPLITUDES

It is well known that at high energies and for small
momentum transfers a natural framework to calculate the
scattering amplitude of the process (1) is the
k?-factorization method, see e.g. [16], [2–4], and refer-
ences therein. According to this approach, the amplitude is
represented as convolutions, over two-dimensional trans-
verse momenta of t-channel partonic Reggeons, of the
impact factors describing scattered nucleons and of the
effective production vertex of the vector meson. The lead-
ing power of s contributing to the scattering amplitude
comes from t-channel exchanges of gluonic Reggeons.

In the lowest-order approximation, the contributions to
the production of J= from pomeron-odderon fusion are
shown in Figs. 2(a) and 2(b). The pomeron and the odderon
are described in this approximation as noninteracting lon-
gitudinally polarized exchanges of two and three gluons,
respectively. The two gluons from the odderon which
couple to the effective production vertex of the J= will
involve the symmetric constants dabc of the color algebra.
The competing production process of J= from pomeron-
photon fusion is illustrated in Figs. 3(a) and 3(b).

Let us first consider proton-proton scattering. The
impact-factor representation of the diagrams shown in
Fig. 2(a) reads (see Appendix A 1 for details)

h(p ) h(p  )

h(p  h(p  )

A A’

B B’) k

l
V(p)

FIG. 1. Kinematics of the exclusive meson production in pp
(p �p).
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MPO � �is
2 � 3

2!3!

4

�2��8
Z d2l1
l21

d2l2
l22

�2�l1 � l2 � l�

�
d2k1

k2
1

d2k2

k2
2

d2k3

k2
3

�2�k1 � k2 � k3 � k�

� �2�k3 � l1�k
2
3�

�1�3 ���1�2
P �l1; l2�

���1�2�3
P �k1;k2; k3� ���2�1�2

J= �l2; k1; k2�: (5)

Here ��1�2
P �l1; l2� denotes the impact factor of the proton,

scattered via pomeron exchange. The gluons forming the
pomeron with the momenta l1, l2 carry the color indices
�1, �2, respectively. The corresponding impact factor of
the proton, scattered via odderon exchange, is denoted as
��1�2�3
P �k1; k2; k3�. Again, �1, �2, �3 are the color indices

of gluons with the momenta k1, k2, k3. The effective
production vertex of the J= meson is denoted
��2�1�2

J= �l2; k1; k2�. It results from the fusion of a gluon
with the momentum and the color index �l2; �2� from the
pomeron with two gluons �k1; �1� and �k2; �2� of the odd-
eron. In order to keep the notation of momenta li and kj
most symmetric, we introduced an additional, artificial
vertex (denoted by the cross in Fig. 2) �2�k3 �
l1�k

2
3�

�1�3 connecting the spectator gluons �l1; �1� and
�k3; �3�. The ratio 2�3

2!3! �
1
2 is a combinatorial factor. The

factors 1
2! and 1

3! correct the overcounting of diagrams
introduced by factorization in the scattering amplitudes
of the impact factor with pomeron and odderon exchanges,
respectively. The factor 2 � 3 � 6 accounts for all possibil-
ities to build the spectator gluon from the momenta li and
kj.

The proton impact factors ��1�2
P �l1; l2� and

��1�2�3
P �k1; k2; k3� are ‘‘soft,’’ nonperturbative objects,

therefore to determine their form we need some nonper-
turbative model of nucleon structure. In our estimates we
use the phenomenological eikonal model of impact factors
proposed by Fukugita and Kwieciński [17] (the FK model).
The impact factors can be determined in two steps. First,

the impact factors of a single quark are calculated in the
way described in Refs. [2–4,16]. Although these calcula-
tions are now quite standard, nevertheless in order to make
our paper self-contained and to fix the normalization of the
impact factors and of the production vertices, we present
some technical details in the appendix. The quark impact
factor corresponding to the pomeron exchange as in
Fig. 2(a) reads (see Appendix A 2 for details)

 ��1�2
q �l1; l2� � � �g2 � 2� �

��1�2

2Nc
� � ��s � 8�2 �

��1�2

2Nc
;

(6)

whereas the corresponding expression with the odderon
exchange has the form

 ��1�2�3
q �k1; k2; k3� � i �g3�2��2

d�3�2�1

4Nc

� i ��3=2
s 25�7=2 d

�3�2�1

4Nc
; (7)

with ��s—the effective coupling constant in the soft region,
��s � �g2=�4�� and d�3�2�1 the symmetric structure con-
stants of the color SU�3� group. The value of the effective
coupling constant ��s in Eqs. (6) and (7) is one of the main
sources of theoretical uncertainties in our estimates and we
shall return to this problem in the final discussion.

Second, the internal structure of the nucleon is taken into
account by ‘‘dressing’’ the quark impact factors with phe-
nomenological form factors. These form factors should be
chosen in a way consistent with the gauge invariance of
QCD, i.e. they should vanish when either of the momenta li
or kj vanishes. In the case of pomeron exchange, the proton
impact factor is modeled as

 ��1�2
P �l1; l2� � 3F P�l1; l2��

�1�2
q �l1; l2�; (8)

with

 F P�l1; l2� � F�l1 � l2; 0; 0� � F�l1; l2; 0�; (9)

(a)

1

1 2 3

2

2 21

p

p

k

l l

k k

1 2

3 1 2

(b)

1 2
p

k

l3

3

k

l l21

2 1 2

p
1 2

21

FIG. 2. The lowest-order diagrams defining the pomeron-odderon fusion amplitudes for vector meson production (a) MPO and
(b) MOP.
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where the function F�k1;k2; k3� is taken in the form [17]

 F�k1;k2;k3��
A2

A2� 1
2��k1�k2�

2��k2�k3�
2��k3�k1�

2�
;

(10)

with A being a phenomenological constant chosen to be
half of the � meson mass, A � m�=2 � 384 MeV. The
structure of expression (9) is quite natural: the first term on
the right-hand side (r.h.s.) of (9) corresponds to the con-
tribution in which two gluons couple to the same quark
line, the second term represents two gluons coupling to two
different quarks, whereas the factor 3 in (8) counts the
number of valence quarks inside the proton.

The corresponding expression for the proton impact
factor with the odderon exchange is constructed in a simi-
lar way, as

 ��1�2�3
P �k1;k2;k3� � 3FO�k1; k2;k3��

�1�2�3
q �k1; k2; k3�;

(11)

where the form factor FO has the form
 

FO�k1; k2; k3� � F�k � k1 � k2 � k3; 0; 0�

�
X3

i�1

F�ki; k� ki; 0� � 2F�k1; k2; k3�;

(12)

where the function F is defined by Eq. (10). Again, the first
term on the r.h.s. of Eq. (12) corresponds to a contribution
when all three gluons couple to a single valence quark, the
three terms F�ki; k� ki; 0� describe the cases when a
gluon with momentum ki and two gluons with total mo-
mentum k� ki couple to two different quarks and the last
term describes a coupling of the three gluons to the three
different valence quarks of a nucleon.

Let us also note that antiproton impact factors, i.e. ��1�2
�P

for pomeron exchange and ��1�2�3
�P for odderon exchange,

are easily obtained from the proton ones: they are given by
the same expressions, the only modification is the addi-
tional minus sign for the impact factor of odderon ex-
change, related to its opposite charge parity

 ��1�2
�P � ��1�2

P ; ��1�2�3
�P � ���1�2�3

P : (13)

The derivation of the effective production vertex of a
charmonium ��2�1�2

J= �l2; k1; k2� as a part of the impact-
factor representation (5) is one of the main results of the
present study. For that we assume that the mass mJ= of
charmonium supplies a sufficiently hard scale so we can
rely on perturbation theory. The charmonium is treated in
the nonrelativistic approximation, where the �cc! J= 
production vertex has the form

 h �ccjJ= i �
gJ= 

2
"̂	�p��p � 	�mJ= �; mJ= � 2mc;

(14)

where we assume that the �cc pair is in the color singlet
state, "	 is the polarization vector of the charmonium. The
coupling constant gJ= in (14) is expressed in terms of the

electronic width �J= e�e� of the J= ! e�e� decay

 gJ= �

�������������������������
3mJ= �J= e�e�

16��2
emQ

2
c

vuut
; Qc �

2

3
: (15)

The effective production vertex ��2�1�2

J= as drawn in
Fig. 2(a) can be viewed as being closely related to the
usual impact factor describing the transition of a virtual
photon 		 into J= via pomeron exchange. Indeed, it is a
crossed version of the latter, with the s-channel 		 replaced
by the t-channel gluon of virtuality �l22 and with two
gluons k2 and k3 in the symmetric 8S color representation,
instead of the (also symmetric) color-singlet one.
Consequently, the calculation of the ��2�1�2

J= vertex can
proceed in a way analogous to that of the impact factor
of the transition 		 ! J= [16]. We thus obtain as a result
(technical details of derivation are presented in
Appendix A 3)

 ��2�1�2

J= �l2; k1; k2� � g3 d
�1�2�2

Nc
VJ= �l2; k1; k2�

� �3=2
s 8�3=2 d

�1�2�2

Nc
VJ= �l2; k1; k2�;

VJ= �l2; k1; k2� � 4�mcgJ= 

�
�

xB"	 � pB � "	 � l2?
l22 � �k1 � k2�

2 � 4m2
c

�
"	 � l2? � "	 � pB�xB �

4k1�k2

sxA
�

l22 � �k1 � k2�
2 � 4m2

c

�
:

(16)

Let us note that, with the mass-shell condition (4) taken
into account, the expression (16) vanishes when either of
the momenta l2, k2, or k3 vanishes. This property is a
consequence of the QCD gauge invariance, that guarantees
the infrared convergence of the integrals in the impact-
factor representation (5).

The impact-factor representation of the diagrams shown
in Fig. 2(b), MOP, is obtained from the previous formulae
by the following replacement of the momenta and of the
color indices

 M OP �MPOj�li;�i�!�ki;�i�;�kj;�j�!�lj;�j�;xA$xB : (17)

Passing to a description of J= production in pomeron-
photon fusion, the impact-factor representation of the dia-
grams shown in Fig. 3(a) reads (see Appendix A 1)
 

M	P � �
1

2!
� s �

4

�2��4l2
�	
P�l�

Z d2k1

k2
1

d2k2

k2
2

� �2�k1 � k2 � k��
�1�2
P �k1; k2� ~�

�1�2

J= �l; k1; k2�:

(18)
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Here again, the factor 1
2! accounts for the overcounting of

diagrams introduced by the factorization of the scattering
amplitude involving the proton impact factor with the
pomeron exchange, Eq. (8).

The photon coupling to the proton involves a phenome-
nological form factor, which we take as

 �	
P�l� � �ie � F�l; 0; 0�: (19)

It has a proper normalization, with the�ie coupling, when
l! 0. When the proton is replaced by an antiproton, it
changes sign

 �	
�P�l� � ��	

P�l�; (20)

similarly to the case of the odderon exchange, Eq. (13).
The effective production vertex of charmonium in

pomeron-photon fusion is, modulo a different color factor
and coupling constants, identical to the one in pomeron-
odderon fusion (16), see Appendix A 3 for details. We
obtain

 

~�
�1�2

J= �l; k1;k2� � g2eQc
2��1�2

Nc
VJ= �l; k1; k2�

� �seQc8�
��1�2

Nc
VJ= �l; k1;k2�; (21)

with VJ= �l; k1; k2� given by Eq. (16).
Also, let us note that the impact-factor representation of

the scattering amplitude corresponding to the diagrams
shown in Fig. 3(b), MP	, is obtained from (18) by the
following substitution of momenta and color indices

 M P	 �M	Pj�ki;�i�!�lj;�j�;xA$xB ; (22)

analogously to the substitution (17) in the case of pomeron-
odderon fusion.

The comparison of the impact-factor representations (5)
and (18) for the two mechanisms of hadroproduction,
together with the formulas for the impact factors and the
effective vertices, leads to the conclusion that, due to

different numbers of factors i in both amplitudes, they
differ by a relative complex phase factor ei�=2. It means
that the odderon and the photon contributions to the cross
section do not interfere.

Finally, let us mention that, by replacing mJ= , gJ= , and
Qc characterizing the charmonium J= by m�, g�, and
Qb � 1=3, the formulae of this section describe the ex-
clusive hadroproduction of the bottomonium �.

IV. ESTIMATES FOR THE CROSS SECTION AND
DISCUSSION

An evaluation of the odderon contribution to the exclu-
sive production cross sections of the heavy vector mesons
in pp and p �p collisions was performed numerically. The
starting point of this evaluation is the amplitude for
pomeron-odderon fusion

 M tot
PO �MPO �MOP; (23)

calculated separately for each of the independent polariza-
tion vectors " of the outgoing vector meson. We focused on
an unpolarized cross section, so that the cross sections were
summed over all the polarizations. We consider therefore,

 

d

dy
�
X
"

Z tmax

tAmin

dtA
Z tmax

tBmin

dtB
Z 2�

0
d�

d
�"�

dydtAdtBd�
;

(24)

where

 

d
�"�

dydtAdtBd�
�

1

512�4s2 jM
tot
POj

2; (25)

is a differential cross section for the meson polarization ",
tA � l

2, tB � k2,� is the azimuthal angle between k and l,
and y ’ 1

2 log�xA=xB� is the rapidity of the meson in the
colliding hadrons c.m. frame. The lower limits tAmin and tBmin
are set to zero for pomeron-odderon fusion. The pomeron-
photon fusion cross section, d
	=dy, may be obtained

(a)

21

p

p
2

1

1

2
~

(b)

p

p

~

1 2

1 2

1 2

FIG. 3. The lowest-order diagrams defining the pomeron-photon fusion amplitudes of the vector meson production (a) M	P and
(b) MP	.
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from Eqs. (23)–(25) by the replacements MPO !MP	,

MOP !M	P, etc. The resulting d
	
dydtAdtB

, however, exhib-
its the usual singular behavior 
1=ti, i � A, B at ti ! 0,
due to the photon propagator. A standard kinematic analy-
sis, used e.g. in the Weizsäcker-Williams approximation,
provides a lower kinematic cutoff on the photon virtuality,
giving tAmin ’ m

2
px2

A and tBmin ’ m
2
px2

B, with mp denoting the
proton mass (see, e.g. [18]). The upper limit tmax could be,
in principle, arbitrarily large, but the model of the proton
impact factor is unreliable at larger t, thus we set tmax �
1:44 GeV2.

In the model applied no QCD evolution has been taken
into account so far and the resulting unpolarized pomeron-
odderon differential cross section (25) does not depend
explicitly on the total collision energy and on the rapidity
of the produced vector meson. In order to get reliable
predictions for the cross sections this should be corrected.
In what follows, we shall take into account the effects of
Balitsky-Fadin-Kuraev-Lipatov (BFKL) evolution [19]
and the effects of soft-rescattering which tend to destroy
the rapidity gap.

We shall include the effects of the BFKL evolution of
the pomeron using a phenomenological enhancement fac-
tor E�s;mV�, with V � J= , �. Note also that the model
parameter ��s enters the pomeron-odderon fusion cross
section in the fifth power, which may lead to significant
uncertainty of the results. Thus, for clarity of the discus-
sion, the parameter ��s will be explicitly isolated in the
presentation of the numerical results. In addition, the ob-
tained formulae should be corrected for multiple soft re-
scatterings of the proton which can destroy the rapidity gap
[20]. Those effects will be expressed as a gap survival
factor S2

gap. Thus, a more realistic cross section, that takes
into account necessary phenomenological improvements
may be written as

 

d
corr

dy

��������y�0
� ��5

sS2
gapE�s;mV�

d

dy
; (26)

where d
=dy is the cross section given by (24) at ��s � 1.
The calculation is valid only in the high-energy limit,

which implicitly constrains the allowed energy and rapid-
ity range, say for xA < x0 and xB < x0, and we set x0 �
0:1. In numerical evaluations we focus on the central J= 
and � production, y ’ 0, where xA ’ xB ’ mV=

���
s
p

. We
approximate the effects of QCD evolution of the pomeron
amplitude by an exponential enhancement factor
exp���y�, where �y ’ log�x0=xA� is the rapidity evolution
length of the QCD pomeron. Thus, for the central produc-
tion one obtains

 E�s;mV� � �x0

���
s
p
=mV�

2�: (27)

The effective pomeron intercept � depends on the hard
scale involved in the process (see, e.g. [21]). Following
HERA results on the pomeron intercept in exclusive vector
meson production we take � � 0:2 (� � 0:35) for the J= 

(�) production [22,23]. Thus, E�s;mV� gives a substantial
enhancement by a factor of about 5 and 12 (about 9 and 33)
for the J= (�) production at the Tevatron and the LHC
correspondingly. For the odderon, the rapidity evolution
given by the Bartels-Kwieciński-Praszałowicz equation
[24] leads to a flat dependence on the gap size,2 so we
neglect the rapidity dependence of the odderon.

Note, that we shall not change the meson production
vertex in the pomeron-odderon fusion by including into it
an (unknown yet) analogue of the Sudakov suppression
factor for the case of three outgoing gluons. An inclusion
of the Sudakov-like form factor would be a desirable
improvement but the consistent way of taking its effects
into account requires simultaneously a more detailed
analysis of the effects of QCD evolution of proton impact
factors which is beyond the scope of this paper.

The strong coupling constant in the meson impact factor
was set to �s�mc� � 0:38 (�s�mb� � 0:21), in accordance
with the QCD running. Recall that we assume that mc �

mJ= =2 and analogously in the case of �,mb � m�=2. The
available estimates of the effective strong coupling con-
stant, ��s, of the Fukugita-Kwieciński model, yield results
with rather large spread. The constraints from the data on
the total pp and p �p cross sections gave ��s � 0:7–0:9 [17]
and a recent thorough analysis of the odderon exchange
contribution to the elastic pp and p �p scattering [27]
bounds the coupling to be much smaller, ��s ’ 0:3. Thus,
we performed an independent test of the model based on
the vector meson photoproduction data. Using the FK
model we found the following amplitude of J= photo-
production off proton in the forward direction:

 M 	 � is�eQc ��s�s�mc�gJ= 
N2
c � 1

N2
c

3 log�3m2
c=A

2�

mc�m2
c � A2=3�

;

(28)

and the t dependence (determined numerically) was found
to agree reasonably well with the experimentally measured
exp��Bt�, for moderate t, with B ’ 4:5 GeV�2. Thus, we
compared the model estimate of the J= exclusive photo-
production cross section to the data at W ’ 10 GeV,
(equivalent to pomeron x ’ x0) and we obtained ��s ’
0:6–0:7.

The estimate of uncertainties introduced by ��s and S2
gap

should be carried out together. The reason for that is that
the low value of ��s ’ 0:3 was obtained from an estimate of
the odderon exchange in which the soft gap survival factor
was neglected, thus when it was set S2

gap � 1. Therefore,
for consistency, we shall also use S2

gap � 1 in our calcu-
lation if the low value of ��s � 0:3 is taken. This combi-
nation S2

gap � 1 and ��s � 0:3 gives low cross sections and
it will be called the pessimistic scenario.

2This is true for the Bartels-Lipatov-Vacca solution [25] at
large rapidities and approximately true for the Janik-Wosiek
solution [26].
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In the optimistic scenario we shall use a large value of
the coupling, ��s � 1, combined with the gap survival
factors obtained in the Durham two-channel eikonal
model: S2

gap � 0:05 for the exclusive production at the
Tevatron and S2

gap � 0:03 for the LHC [20,28], see also
[29]. We believe that the best estimates should follow from
the central scenario defined by ��s � 0:75, S2

gap � 0:05
(S2

gap � 0:03) at the Tevatron (LHC).
We analyze the pomeron-photon contribution in a way

analogous to the pomeron-odderon contribution. In the
case of photon exchange, the pp (p �p) scatter typically at
large impact parameters and we assume that the gap sur-
vival S2

gap ’ 1 in this case.3 Thus, we arrive at the analogue
of Eq. (26) for the photon:

 

d
corr
	

dy

��������y�0
� ��2

sE�s;mV�
d
	
dy

: (29)

Numerical results for d
=dy and d
	=dy are listed in
Table I. The photon cross sections depend on the total
collision energy

���
s
p

through the kinematic dependence of
the lower cutoffs tAmin and tBmin. Thus, the photon cross
sections in Table I for the p �p and the pp case were
obtained assuming the kinematics of the central production
at the Tevatron (

���
s
p
� 2 TeV) and at the LHC (

���
s
p
�

14 TeV), respectively. Note that there is a significant dif-
ference between the pp and p �p cross sections indicating a
significant interference between the pomeron-odderon and
the odderon-pomeron contributions. We stress that the
numbers in Table I represent only partial results, and
they are displayed to provide a basis for estimates of
realistic cross sections and their uncertainties, according
to the prescription given above.

Besides the cross sections integrated over transverse
momenta, we calculated also the differential distributions
of the produced vector mesons, defined as
 

d


dydp2

��������norm
�

�
d

dy

�
�1
�
X
"

Z
k2<tmax

d2k

�
Z
l2<tmax

d2l
d
�"�

dyd2kd2l
���k� l�2 � p2�:

(30)

In Figs. 4(a) and 4(b) we show the normalized distributions
for the J= (and the �) production in p �p and pp colli-
sions, respectively. Clearly, the shapes only weakly depend
on the vector meson flavor.4 The production of vector

mesons in the forward direction (p2 � 0) is maximal for
p �p collisions and vanishes for pp collisions. This striking
difference is caused by an already mentioned interference
between the pomeron-odderon and the odderon-pomeron
contributions.

The magnitudes of the phenomenologically improved
cross sections are summarized in Table II. They were
calculated using formulae (26) and (29) accounting for
the QCD evolution of the pomeron and the gap survival
factor, and the uncertainty of ��s was taken into account,
according to the three scenarios that we consider. Recall
that the photon and the odderon contributions do not
interfere in the lowest-order approximation and the corre-
sponding cross sections may be treated independently. As
seen from the table, the pomeron-odderon contributions are
found to be uncertain, with a multiplicative uncertainty
factor of 3–5. The ambiguities, however, cancel partially in
the ratio of the pomeron-odderon contribution to the
pomeron-photon contribution evaluated in the same sce-
nario. Thus, within the considered scenarios, the ‘‘-
odderon-to-photon ratio’’ R � �d
corr=dy�=�d
corr

	 =dy�
varies between 0.3 and 0.6 for J= production at the
Tevatron, and between about 0.06 and 0.15 at the LHC.
In the case of �, R varies between about 0.8 and 1.7 at the
Tevatron and between about 0.15 and 0.4 at the LHC. These
numbers suggest that the odderon contribution may well be
of a similar magnitude to the photon contribution at the
Tevatron and somewhat smaller than the photon contribu-
tion at the LHC.

Let us note here that the photon-mediated vector meson
hadroproduction may be calculated in a different manner
using the Weizsäcker-Williams approximation. The domi-
nance of very low virtualities in the photon propagator
permits to treat one of the protons as a source (with a
suitable form factor) of quasireal photons that collide
with the other proton and produce the vector mesons
[30,31]. In this approximation, the quasireal photon flux
is convoluted with a cross section of the meson photo-
production off the proton. The J= photoproduction was
measured rather accurately at HERA [22,23] and one may
use parametrizations of HERA data to perform necessary
extrapolations. In this approach theoretical uncertainties
and model dependencies are greatly reduced. Thus, calcu-

TABLE I. Naive cross sections d
=dy given by (24) for the
exclusive J= and � production in pp and p �p collisions by the
odderon-pomeron fusion, assuming ��s � 1 and analogous cross
sections d
=dy for the photon contribution. The numbers given
are partial results only and they must be improved phenomeno-
logically to provide reliable predictions.

d
=dy J= �
odderon photon odderon photon

p �p 20 nb 1.6 nb 36 pb 1.1 pb
pp 11 nb 2.3 nb 21 pb 1.7 pb

3A more detailed analysis of the gap survival for the photon
exchange was performed in Ref. [30]. In the same reference a
crude estimate of the pomeron-odderon fusion was obtained,
based on the assumption that the whole odderon is coupled to the
single quark (antiquark) line.

4An apparent discrepancy in the normalization of the J= and
� distributions visible in Fig. 4(b) emerges because we show
only part of the p2-distributions.
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lations based on the Weizsäcker-Williams approximation
combined with fits to the HERA data give d
=dy�p �p!
p �pJ= �jy�0 ’ 2–2:5 nb [30,31], somewhat lower than our
central scenario. For the � production at the LHC, predic-
tions of Ref. [31]: d
=dy�pp! pp��jy�0 ’ 100 pb are
larger than ours by a factor of more than three. This
suggests that the odderon exchange predictions for the �
production may also be underestimated in the central
scenario.

Our calculations indicate that the odderon-to-photon
ratio tends to be of the order of unity or smaller, which
makes it difficult to get a clear signal of the odderon from
the integrated cross sections. The ratio, however, may be
enhanced if suitable cuts on outgoing protons transverse
momenta are imposed. Namely, the photon exchange is
dominated by very small photon virtualities (as it follows
e.g. from the Weizsäcker-Williams approximation), and,
for instance for tA, tB > 0:25 GeV2 the pomeron-odderon
fusion contribution decreases by about 1 order of magni-
tude, being still visible, and the pomeron-photon fusion
contribution decreases by more than 2 orders of magnitude.
Then, the odderon contribution could well be a few times
larger than the photon contribution. Thus, a careful analy-
sis of the outgoing proton momenta distribution should
permit clear identification of the odderon and the photon
contributions.

As a final point, let us indicate briefly the possibility to
probe the odderon via the � hadroproduction at the LHC in
an asymmetric kinematic situation, using the forward de-
tectors, as for instance the planned forward proton spec-

trometer FP420 [32]. This detector may be capable of
measuring the outgoing proton energy and transverse mo-
mentum with a very good accuracy, for protons that would
lose about 1% of their energy. This corresponds to xA ’
0:01 (see Sec. II). For � production in the exclusive
process it leads to xB � m2

�=�sxA� ’ 5� 10�5. The botto-
monium emerging at the rapidity y� ’ 2:7 should be pos-
sible to detect in the ���� decay channel, and the proton
pB would escape detection. Clearly, due to the small-x
evolution of the pomeron, the dominant contribution to
the production amplitude should then come from the pom-
eron propagating across the large rapidity gap, related to
xB, and the odderon or photon should span the smaller
rapidity gap, given by xA. More precisely, for xA  xB, the
amplitudes MOP and M	P shown in Figs. 2(b) and 3(a),
respectively are enhanced by the QCD evolution by a
factor of �xA=xB�� ’ 6 with respect to the amplitude
MPO and MP	. Therefore, in this kinematics the proton
pA couples predominantly to the odderon and to the pho-
ton, and one could use the difference in l2-dependence of
the photon and the odderon exchange to cut on the proton
momentum pA0 : l2 > l2min, and filter out partially the
pomeron-photon contribution. An additional advantage of
the measurement in this asymmetric kinematics is that at
y� ’ 2:7 the pomeron evolution down to xB provides an
overall enhancement by a factor of a few of the exclusive �
hadroproduction cross section with respect to the central
production, leading to comfortably large cross sections,
well in reach of the LHC.

TABLE II. Cross sections d
corr=dyjy�0 given by (26) for the exclusive J= and � production
in pp and p �p collisions by the pomeron-odderon fusion, and analogous cross sections
d
corr

	 =dyjy�0 for the photon contribution given by (29) for the pessimistic-central-optimistic
scenarios.

d
corr=dy J= �
odderon photon odderon photon

Tevatron 0.3–1.3–5 nb 0.8–5–9 nb 0.7–4–15 pb 0.8–5–9 pb
LHC 0.3–0.9–4 nb 2.4–15–27 nb 1.7–5–21 pb 5–31–55 pb
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APPENDIX A

1. Derivation of the impact-factor representation (5)
and (18)

The sum of the Feynman diagrams describing the fusion
of the pomeron (two gluons with total momentum l) with
the odderon (three gluons with total momentum k) is
written in the Feynman gauge as
 

MPO ��i
1

2!3!

Z d4l1d4l2
�2��4

�4�l1� l2� l�
d4k1d4k2d4k3

�2��8

� �4�k1� k2� k3� k�S
�1�2
�1�2�A! A0�

�
��ig�1�01�

l21� i

��ig�2�02�

l22� i
S�1�2;�1�2�3

�01�
0
2;�01�

0
2�
0
3
�J= �

�
��ig�1�01�

k2
1� i

��ig�2�02�

k2
2� i

��ig�3�03�

k2
3� i

S�1�2�3
�1�2�3 �B! B0�:

(A1)

Here S�1�2
�1�2�A! A0� is the S-matrix element describing the

transition of the hadronic state A into A0 through the
exchange of two gluons with momenta li; i � 1, 2. The S
matrix carries Lorentz and color indices �i and �i, respec-
tively. S�1�2�3

�1�2�3 �B! B0� is the S-matrix element describing
the transition of hadronic state B into B0 through the
exchange of three gluons with momenta kj; j � 1, 2, 3. It
carries also Lorentz and color indices �i and �i, respec-
tively. Finally, S�1�2;�1�2�3

�01�
0
2;�01�

0
2�
0
3
�J= � is the S-matrix element

describing the fusion of the two gluons forming the pom-
eron with the three gluons forming the odderon which
produces the J= . The S matrices in Eq. (A1) are con-
nected by the gluonic propagators in the Feynman gauge.
The factorization of the scattering amplitude MPO in
terms of the Smatrices of different subprocesses is possible
by introducing an overcounting of contributing diagrams
which gets compensated by the combinatorial factor
1=�2!3!�.

The gluonic fusion which results in the production of
J= involves only three gluons in the lowest order of
perturbation theory. It means, that in S�1�2;�1�2�3

�01�
0
2;�01�

0
2�
0
3
�J= �

one of the two gluons li together with one of three gluons
kj form the spectator gluon, disconnected from the S

matrix describing fusion. Such spectator gluon can be
formed in 2 � 3 � 6 ways and each of these possibilities
contributes equally to the scattering amplitude MPO. It
means that we can consider only one such choice, e.g. with
the spectator formed by gluons l1 and k3, and multiply the
corresponding result by 6. The formula for MPO can be
thus put in the form
 

MPO � �i
6

2!3!

Z d4l1d4l2
�2��4

�4�l1 � l2 � l�
d4k1d4k2d4k3

�2��8

� �4�k1 � k2 � k3 � k�i�2��4�4�l1 � k3�g�01�03k
2
3

� ��1�3S�1�2
�1�2�A! A0�

��ig�1�01�

l21 � i

��ig�2�02�

l22 � i

� S�2�1�2

�02;�01�
0
2
�J= �

��ig�1�01�

k2
1 � i

��ig�2�02�

k2
2 � i

�
��ig�3�03�

k2
3 � i

S�1�2�3
�1�2�3 �B! B0�: (A2)

Here, S�2�1�2

�02;�01�
0
2
�J= � is the S-matrix element of the fusion

of gluons with the momenta l2, k1, and k2. We write also
the artificial vertex i�2��4�4�l1 � k3�g�01�03k

2
3�

�1�3 to en-
sure the most symmetric notation of the different parts of
expression (A2) in the momenta li, kj.

The formula (A2) can be further rewritten by applying
standard approximations valid in Regge kinematics, i.e.
characterizing processes occurring at high energies, with
small momentum transfers. The dominant contribution in s
to the scattering amplitude is obtained from the longitudi-
nal polarizations of the t-channel gluons. It results from the
following substitution of numerators in the gluonic propa-
gators

 g�i�0i !
p�i
B p

�0i
A

pA � pB
; g�j�

0
j !

p
�j
A p

�0j
B

pA � pB
; (A3)

and leads to the highest power of large scalar products pA �
pB � s=2.

We parametrize all momenta using the Sudakov decom-
positions

 li � �lipA � �lipB � l?i;

kj � ��kjpA � �kjpB � k?j;
(A4)

so that d4li � pA � pBd�lid�lid2l?i and d4kj �
pA � pBd�kjd�kjd2k?j.

In the Regge kinematics, the values of the longitudinal
Sudakov parameters of the gluons in the t channels are
strongly ordered. As a result, in the S matrix S�1�2

�1�2�A!
A0�, one can neglect the dependence on the parameters �li,
as they are much smaller than the � components of other
momenta characterizing the transition h�pA� ! h�pA0 �.
Similarly, in the S matrix S�1�2�3

�1�2�3 �B! B0� one can neglect
the dependence on �kj. On the other hand, the S matrix
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S�2�1�2

�02;�01�
0
2
�J= � depends effectively only on �l2 � �p � xA

and �k1, �k2, subject to the condition �k1 � �k2 � �p �
xB.

In the high-energy limit, the asymptotics of the scatter-
ing amplitude MPO is determined by small values of the
longitudinal Sudakov parameters. Consequently, the de-
nominators of the gluon propagators are given by contri-
butions coming only from the transverse components of the
momenta

 l2i � l2?i � �l
2
i ; k2

j � k2
?j � �k

2
j : (A5)

All the above remarks permit to represent MPO as a
convolution in transverse momenta of t-channel gluons

 

MPO ��is
6

2!3!

4

�2��8
Z d2l1
l21

d2l2
l22

�2�l1� l2� l�

�
d2k1

k2
1

d2k2

k2
2

d2k3

k2
3

�2�k1� k2� k3� k�

� �2�l1� k3�k
2
3�

�1�3

Z
d�l1S

�1�2
�1�2�A! A0�

�
p�1
B p

�2
B

s

Z
d�k3

d�k1
S�1�2�3
�1�2�3 �B! B0�

p�1
A p

�2
A p

�3
A

s

�
Z
d�k1

S�2�1�2

�02�
0
1�
0
2
�J= �

p
�02
A p

�01
B p

�02
B

s
; (A6)

which coincides with Eq. (5) if one defines the impact
factor for pomeron exchange as

 ��1�2
P �l1; l2� �

Z
d�l1S

�1�2
�1�2�A! A0�

p�1
B p

�2
B

s
; (A7)

the impact factor for odderon exchange as

 

��1�2�3
P �k1; k2; k3� �

Z
d�k3

d�k1
S�1�2�3
�1�2�3 �B! B0�

�
p�1
A p

�2
A p

�3
A

s
; (A8)

and the effective production vertex as

 ��2�1�2

J= �l2; k1; k2� �
Z
d�k1

S�2�1�2

�02�
0
1�
0
2
�J= �

p
�02
A p

�01
B p

�02
B

s
:

(A9)

It is obvious that an analogous reasoning can be applied
to the sum of diagrams describing the fusion of the photon
with the pomeron in Fig. 3(a). The analog of Eq. (A6) then

reads

 

M	P � �
s
2!

4

�2��4
�	
P�l�

l2

Z d2k1

k2
1

d2k2

k2
2

�2�k1 � k2 � k�

�
Z
d�k1

S�1�2
�1�2 �B! B0�

p�1
A p

�2
A

s

�
Z
d�k1

S�1�2

�01�
0
2
�J= �

p
�01
B p

�02
B

s
; (A10)

where we introduced the photon coupling to the proton
�	
P�l� normalized to the proton charge, �	

P�0� � �ie.
Equation (A10) coincides with the impact-factor represen-
tation Eq. (18) if the pomeron-photon effective vertex
reads

 

~�
�1�2

J= �l; k1; k2� �
Z
d�k1

S�1�2

�0�01�
0
2
�J= �

p�
0

A p
�01
B p

�02
B

s
(A11)

and if the definition of the impact factor for pomeron
exchange (A7) is used for the transition h�pB� ! h�pB0 �.

2. Derivation of the quark impact factors (6) and (7)

The quark impact factor with the exchange of the pom-
eron is defined by Eq. (A7) specified for a quark target, see
e.g. [16]. The S matrix corresponding to this transition is
described by two diagrams and their color singlet contri-
bution reads

 Z
d�l1S

�1�2
�1�2�A! A0�

p�1
B p

�2
B

s
� �i �g2 �

�1�2

2Nc

Z
d�l1

�

�
1

�l1 � i

�
1

��l1 �
l2

s�1�xA�
� i

�

� �2� �g2 �
�1�2

2Nc
; (A12)

which reproduces Eq. (6).
Similarly, the quark impact factor with the exchange of

the odderon is defined by Eq. (A8) specified for a quark
target. The S matrix corresponding to this transition is
described by six diagrams and their color singlet contribu-
tion reads
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A p
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4Nc
; (A13)

where in the last step we used the fact that �k1
� �k2

�
�k3
� � k2

s�1�xB�
. Expression (A13) reproduces Eq. (7).

3. Derivation of the effective vertices (16) and (21)

The effective vertex (A9) is given by the contribution of
the six diagrams shown in Fig. 5 with the momenta l2 �

xApA � l?, kj � �kjpB � k?j, j � 1, 2, where �k1
�

�k2
� xB. Their computation is done in a close analogy

with the calculations of impact factors [16]. Taking into
account the definition (14) of the production vertex, the
contribution of the 6 diagrams of Fig. 5 is equal to
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Calculation of the integral over �k1
, subject to the condi-

tion �k1
� �k2

� xB, leads to the result
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s
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which coincides with Eq. (16). Finally, let us note that the
only difference between the pomeron-photon effective ver-
tex (21) and the pomeron-odderon one (16) is the color
factor and the photon coupling. This results in the substi-
tution rule gd�2�1�2 ! 2eQc��1�2 , from which we recover
Eq. (21).
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FIG. 5. The six diagrams defining the effective vertex g�
2g! J= .
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Sadzikowski, Phys. Lett. B 398, 400 (1997); 411, 402(E)
(1997).

[3] R. Engel, D. Y. Ivanov, R. Kirschner, and L.
Szymanowski, Eur. Phys. J. C 4, 93 (1998).

[4] L. Motyka and J. Kwieciński, Phys. Rev. D 58, 117501
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