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I. INTRODUCTION

The nucleon form factors of the energy-momentum
tensor (EMT) [1] were subject to modest interest in litera-
ture for a long time—probably because the only known
process, where they (in principle) could directly be ‘‘mea-
sured’’ is elastic scattering of gravitons off the nucleon.
The situation changed, however, with the advent of gener-
alized parton distribution functions (GPDs) [2–5] acces-
sible in hard exclusive reactions [6–14], see [15–20] for
reviews. The form factors of the quark part of the EMT of
QCD—we use the notation MQ

2 �t�, J
Q�t�, and dQ1 �t�, see

the definition below in Eq. (1)—appear as certain Mellin
moments of the unpolarized quark GPDs.

The form factor MQ
2 �0� is known at zero-momentum

transfer from inclusive deeply inelastic scattering experi-
ments, telling us that quarks carry only about half of the
momentum of (a very fast moving) nucleon, and that the
rest is carried by gluons. The appealing perspective is to
access by means of GPDs information on JQ�t�, which—
after extrapolating to zero-momentum transfer t � 0—
would reveal how much of the nucleon spin is due to
quarks [3]. The third form factor, d1�t�, is equally interest-
ing—promising to provide information on the distribution
of strong forces in the nucleon [21,22] similarly as the
electromagnetic form factors contain information about the
electric charge distribution [23]. The information content
encoded in GPDs is, however, larger than that; see
Refs. [24–26].

In this work we study the form factors of the EMT in the
framework of the chiral quark-soliton model (CQSM)
[27,28]. The model provides a field theoretic description
of the nucleon in the limit of a large number of colors Nc,
where the nucleon appears as a chiral soliton of a static
background pion field [29]. Numerous nucleonic proper-
ties, among others, form factors [30–33], usual quark, and
antiquark distribution functions [34–39] and GPDs [40–
46] have been described in this model without adjustable
parameters. As far as those quantities are known an agree-
ment with phenomenology was observed typically to
within an accuracy of (10–30)%.

Our study provides several new results. In particular, we
compute the spatial density distributions and mean square

radii of the operators of different components of the
energy-momentum tensor and its trace. This provides in-
sights not only on, for example, how the ‘‘mass’’ or the
‘‘angular momentum’’ are distributed in the nucleon. Of
particular interest are the results for the spatial distribution
of strong forces in the nucleon. As a by-product we learn
how the soliton acquires stability in the CQSM. We also
observe a physically appealing connection between the
criterion for the stability of the nucleon and the sign of
the form factor d1�t� at zero-momentum transfer.

We present results for the form factors which are of
practical interest especially in the case of JQ�t�. As ex-
clusive reactions yield information on JQ�t� only at finite
t < 0, some guidance from reliable model calculation
might be of interest for the extrapolation t! 0 required
to conclude how much quarks contribute to the nucleon
spin.

We explore the chiral character of the model to study
chiral properties of the form factors. In particular, we
derive the leading nonanalytic chiral contributions to the
form factors in the largeNc limit. These nonanalytic (in the
current quark mass) terms are model-independent. In fact,
our results coincide with results from chiral perturbation
theory [47–49], provided one takes into account that the
latter is formulated for finite Nc � 3 [50,51].

The implicit pion mass dependence of the form factors is
of interest in the context of the chiral extrapolation of
lattice QCD data [52–57]. This topic can be addressed in
the CQSM [58] which will be done in a separate work [59].

For completeness we remark that the general chiral
structure of the pion EMT was discussed in chiral pertur-
bation theory and/or chiral models in [60–62]. Issues of
pion EMT form factors in lattice QCD were addressed in
[63,64].

The paper is organized as follows. Section II provides a
general discussion of the EMT form factors. Section III
introduces the model. In Sec. IV we derive the model
expressions for the form factors and discuss the numerical
results for the densities of the static EMT in Secs. V, VI,
and VII. In Sec. VIII we present the results for the form
factors and conclude our findings in Sec. IX. The appen-
dices contain a digression on alternative notations, a dis-
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cussion of general properties of the densities of the static
EMT, technical details on the model expressions, and
explicit proofs for the consistency of the model.

II. FORM FACTORS OF THE ENERGY-
MOMENTUM TENSOR

The nucleon matrix element of the symmetric energy-
momentum tensor of QCD is characterized by three scalar
form factors [1,3]. The nucleon matrix elements of the
quark and gluon parts of the symmetric QCD energy-
momentum tensor can be parameterized as [3,21] (see
Appendix A for an alternative notation)

 

hp0jT̂Q;G�� �0�jpi� �u�p0�
�
MQ;G

2 �t�
P�P�
MN

�JQ;G�t�
i�P�����P�������

2MN

�dQ;G1 �t�
�����g���2

5MN
� �c�t�g��

�
u�p�:

(1)

Here T̂Q�� (T̂G��) is the quark (gluon) part of the QCD
energy-momentum tensor. The nucleon states and spinors
are normalized by hp0jpi � 2p0�2��3��3��p0 � p� and
�u�p�u�p� � 2MN where we suppress spin indices for brev-
ity. The kinematical variables are defined as P �
�p� p0�=2, � � �p0 � p�, t � �2. The form factor �c�t�
accounts for nonconservation of the separate quark and
gluon parts of the EMT and enters the quark and gluon
parts with opposite signs such that the total (quark�
gluon) EMT is conserved.

The nucleon form factors of the EMT are related to the
unpolarized GPDs Hf�x; �; t� and Ef�x; �; t�, which are
defined as

 Z d�
2�

ei�x
�

p0; s0
�������� � q

�
�
�n
2

�
n6
�
�
�n
2
;
�n
2

�
 q

�
�n
2

���������p; s
�

� Hq�x; �; t� �u�p0; s0�n6 u�p; s�

� Eq�x; �; t� �u�p0; s0�
i���n���

2MN
u�p; s�; (2)

where �z1; z2� denotes the gauge link, and the renormaliza-
tion scale dependence is not indicated for brevity. The
lightlike vector n� satisfies n�p0 � p� � 2, and the skew-
edness parameter � is defined as n� � �2�. To be spe-
cific, the form factors in Eq. (1) are related to the second
Mellin moments of the unpolarized GPDs in (2) through
[3]

 

Z 1

�1
dxx

X
f

Hf�x; �; t� � MQ
2 �t� �

4

5
dQ1 �t��

2; (3)

 

Z 1

�1
dxx

X
f

Ef�x; �; t� � 2JQ�t� �MQ
2 �t� �

4

5
dQ1 �t��

2:

(4)

Adding up Eqs. (3) and (4) one recovers the spin sum rule
[3] promising to access JQ�0�, i.e. the total (spin�
orbital angular momentum) contribution of quarks to the
nucleon spin, through the extraction of GPDs from hard
exclusive processes and extrapolation to the unphysical
point t � 0. The sensitivity of different observables to
the total angular momentum of, in particular, the u flavor,
were exposed in the model studies [17,65]. For gluons
there are definitions and expressions analog to (2)–(4).
Equations (3) and (4) are special cases of the so-called
polynomiality property of GPDs [15] stating that the Nth
Mellin moments of GPDs are polynomials in even powers
of � of degree less or equal to N:

 

Z 1

�1
dxxN�1H�x; �; t� � h�N�0 �t� � h

�N�
2 �t��

2 � . . .

�

�
h�N�N �t��

N for N even
h�N�N�1�t��

N�1 for N odd;

(5)

 

Z 1

�1
dxxN�1E�x; �; t� � e�N�0 �t� � e

�N�
2 �t��

2 � . . .

�

�
e�N�N �t��

N for N even
e�N�N�1�t��

N�1 for N odd;

(6)

where flavor indices are suppressed for brevity. For a spin 1
2

particle, the coefficients in front of the highest power in �
for even moments N are related to each other and arise
from the so-called D term Dq�z; t� with z � x=� [66,67],
which has finite support only for jxj< j�j, according to

 hq�N�N �t� � �eq�N�N �t� �
Z 1

�1
dzzN�1Dq�z; t�: (7)

The form factors of the EMT in Eq. (1) can be inter-
preted [21] in analogy to the electromagnetic form factors
[23] in the Breit frame characterized by �0 � 0. In this
frame one can define the static energy-momentum tensor
for quarks (and analogously for gluons)

 TQ���r; s� �
1

2E

Z d3�
�2��3

exp�i�r�hp0; S0jT̂Q���0�jp; Si;

(8)

with the initial and final polarization vectors of the nucleon
S and S0 defined such that they are equal to �0; s� in the
respective rest frame, where the unit vector s denotes the
quantization axis for the nucleon spin.

The components of TQ0k�r; s� and "ijkrjT
Q
0k�r; s� corre-

spond, respectively, to the distribution of quark momentum
and quark angular momentum inside the nucleon. The
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components of �TQik �
1
3�ikT

Q
ll ��r; s� characterize the spa-

tial distribution of ‘‘shear forces’’ experienced by quarks
inside the nucleon. The respective form factors are related
to TQ���r; s� by

 JQ�t� �
2t
3
JQ

0
�t� �

Z
d3re�ir�"ijksirjT

Q
0k�r; s�; (9)

 dQ1 �t� �
4t
3
dQ

0

1 �t� �
4t2

15
dQ

00

1 �t�

� �
MN

2

Z
d3re�ir�TQij �r�

�
rirj �

r2

3
�ij
�
; (10)

 M2�t� �
t

4M2
N

�
M2�t� � 2J�t� �

4

5
d1�t�

�

�
1

MN

Z
d3re�ir�T00�r; s�; (11)

where the prime denotes derivative with respect to the
Mandelstam variable t. Note that for a spin-1=2 particle
only the T0� components are sensitive to the polarization
vector. Note also that Eq. (11) holds for the sum T00 	

TQ00 � T
G
00 with M2�t� 	 MQ

2 �t� �M
G
2 �t� and J�t� and d1�t�

defined analogously, but not for the separate quark and
gluon contributions—since otherwise the form factor �c�t�
would not cancel out.

The form factor M2�t� at t � 0 can be connected to the
fractions of the nucleon momentum carried, respectively,
by quarks and gluons. This can be seen most conveniently
by considering (1) in the infinite momentum frame, and
one obtains

 MQ
2 �0� �

Z 1

0
dx
X
q

x�fq1 � f
�q
1 ��x�;

MG
2 �0� �

Z 1

0
dxxfg1 �x�;

(12)

where fa1�x� � Ha�x; 0; 0� are the unpolarized parton dis-
tributions accessible in inclusive deeply inelastic
scattering.

The form factors MQ;G
2 �t�, JQ;G�t�, and dQ;G1 �t� are re-

normalization scale dependent (the indication of the renor-
malization scale � is suppressed for brevity). Their
quark� gluon sums, however, are scale independent
form factors, which at t � 0 satisfy the constraints,

 M2�0� �
1

MN

Z
d3rT00�r; s� � 1;

J�0� �
Z

d3r"ijksirjT0k�r; s� �
1

2
;

d1�0� � �
MN

2

Z
d3rTij�r�

�
rirj �

r2

3
�ij
�
	 d1;

(13)

which mean that in the rest frame the total energy of the
nucleon is equal to its mass, and that the spin of the nucleon

is 1=2. The value of d1 is not known a priori and must be
determined experimentally. However, being a conserved
quantity it is to be considered on the same footing as other
basic nucleon properties like mass, anomalous magnetic
moment, etc. Remarkably, d1 determines the behavior of
the D term (and thus the unpolarized GPDs) in the asymp-
totic limit of renormalization scale �! 1 [17].

The form factor d1�t� is connected to the distribution of
pressure and shear forces experienced by the partons in the
nucleon [21] which becomes apparent by recalling that
Tij�r� is the static stress tensor which (for spin 0 and 1=2
particles) can be decomposed as

 Tij�r� � s�r�
�rirj
r2 �

1

3
�ij

�
� p�r��ij: (14)

The functions p�r� and s�r� are related to each other due to
the conservation of the total energy-momentum tensor by
the differential equation

 

2

3

@s�r�
@r
�

2s�r�
r
�
@p�r�
@r

� 0: (15)

Hereby p�r� describes the radial distribution of the ‘‘pres-
sure’’ inside the hadron, while s�r� is related to the distri-
bution of the ‘‘shear forces’’ [21]. Another important
property which can be directly derived from the conserva-
tion of the EMT is the so-called stability condition.
Integrating

R
d3rrk�riTij� 	 0 by parts one finds that the

pressure p�r� must satisfy the relation

 

Z 1
0

drr2p�r� � 0: (16)

Further, it is worthwhile noticing properties which follow
from the conservation of the EMT; these are discussed in
Appendix B. Here we only mention that one can express
d1�t� in terms of p�r� and s�r� as (notice the misprint in
Eq. (18) of [22])

 d1�t� � 5MN

Z
d3r

j2�r
						
�t
p
�

t
s�r�

� 15MN

Z
d3r

j0�r
						
�t
p
�

2t
p�r�;

d1 � �
1

3
MN

Z
d3rr2s�r� �

5

4
MN

Z
d3rr2p�r�:

(17)

Let us review briefly what is known about d1. For the
pion d1;� can be calculated exactly using soft pion theo-
rems, and one obtains 4

5d
Q
1;� � �M

Q
2;� [66]. For the nu-

cleon the large-Nc limit predicts [17]

 jdu1 � d
d
1j � O�N2

c� 
 jdu1 � d
d
1j � O�Nc�; (18)

which is in agreement with lattice QCD [54–56]. The
constant dQ1 � du1 � d

d
1 is found negative on the lattice

[54–56]. From model calculations in the CQSM it was
estimated that dQ1 � �4:0 at scales of few GeV2 [40,68]. In
a simple ‘‘liquid drop’’ model d1 is related to the surface
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tension of the ‘‘liquid’’ and comes out negative [21]. Such
a model is, in particular, applicable to large nuclei.
Predictions for the behavior of the cross section of deeply
virtual Compton scattering off nuclei made on the basis of
this model [21] have been confirmed in realistic models for
nuclei [69]. In particular, also the D terms of nuclei were
found negative [69]. Interestingly, HERMES data [10,14]
favor a negativeD term though this observation depends to
some extent on the model for the small-x behavior of GPDs
[19].

Finally, let us discuss an interesting connection of the
constant d1 and the mean square radius hr2

Fi of the trace of
the total EMT operator. Because of the trace anomaly [70–
73], the latter is given by

 T̂ �
� 	

	
2g
F��F�� � �1� 
m�

X
a

ma
� a a: (19)

For notational simplicity let us introduce the scalar form
factor F�t�

 hp0jT̂�
��0�jpi � MN �u�p0�u�p�F�t�; (20)

which can be expressed in terms of the form factors in (1)
as

 F�t� � M2�t� �
t

4M2
N

�2J�t� �M2�t�� �
3t

5M2
N

d1�t�: (21)

It satisfies F�0� � 1 and its derivative at t � 0 defines the
mean square radius of the EMT trace operator

 hr2
Fi � 6F0�0� � 6

�
M02�0� �

3d1

5M2
N

�
: (22)

Analogously, one may define the mean square radius hr2
Ei

of the energy density operator T̂00 for which one finds from
Eq. (11) the following result:

 hr2
Ei � 6

�
M02�0� �

d1

5M2
N

�
: (23)

Exploring (23) we see that hr2
Fi is related to the mean

square radius of the energy density hr2
Ei as follows:

 hr2
Fi � hr

2
Ei �

12d1

5M2
N

: (24)

Since d1 is observed to be negative, one has hr2
Fi> hr

2
Ei.

III. THE NUCLEON AS A CHIRAL SOLITON

The effective theory underlying the CQSM was derived
from the instanton model of the QCD vacuum [74,75]
which assumes that the basic properties of the QCD vac-
uum are dominated by a strongly interacting medium of
instantons and anti-instantons. This medium is diluted with
a density proportional to ��av=Rav�

4 where �av � 0:3 fm is
the average instanton size and Rav the average instanton

separation. It is found �av=Rav �
1
3 [74–76]; see [77] for

reviews.
Because of interactions with instantons in this medium,

light quarks acquire a dynamical (‘‘constituent’’) quark
mass which is strictly speaking momentum dependent, i.
e.M � M�p�, and drops to zero for momenta p
 ��1

av . At
low momenta below a scale set by ��1

av � 600 MeV, the
dynamics of these effective quark degrees of freedom is
governed by the partition function [78,79]

 

Zeff �
Z

D D � DU exp�iSeff� � ; ;U��;

Seff� � ; ;U� �
Z

d4x � �i@6 �MU
5 �m� :

(25)

Here we restrict ourselves to two light flavors, U �
exp�i�a�a� denotes the chiral pion field with U
5 �
exp�i
5�a�a�, and m � mu � md is the current quark
mass neglecting isospin breaking effects. The smallness
of the instanton packing fraction �av=Rav plays an impor-
tant role in the derivation of (25) from the instanton vac-
uum model.

In practical calculations it is convenient to replace M�p�
by a constant massM � M�0� � 350 MeV following from
the instanton vacuum [77] and to regularize the effective
theory by means of an explicit (e.g. proper-time, or Pauli-
Villars) regularization with a cutoff of O���1

av � whose
precise value is fixed to reproduce the physical value of
the pion decay constant f� � 93 MeV given by a logarith-
mically UV-divergent expression in the effective theory
(25). For most quantities the effects of different regulariza-
tions are of O�M2�2

av� / �
4
av=R

4
av, i.e. parametrically small.

The CQSM is an application of the effective theory (25)
to the description of baryons [27,28]. The Gaussian inte-
gral over fermion fields in (25) can be solved exactly. The
path integral over pion field configurations, however, can
be solved only by means of the saddle-point approximation
(in the Euclidean formulation of the theory). This step is
strictly justified in the large-Nc limit. In the leading order
of the large-Nc limit the pion field is static, and one can
determine the spectrum of the one-particle Hamiltonian of
the effective theory (25)

 Ĥjni � Enjni; Ĥ � �i
0
k@k � 
0MU
5 � 
0m:

(26)

The spectrum consists of an upper and a lower Dirac
continuum, distorted by the pion field as compared to
continua of the free Dirac-Hamiltonian Ĥ0 [which follows
from Ĥ in (26) by replacing U
5 ! 1] and of a discrete
bound state level of energy Elev, if the pion field is strong
enough. By occupying the discrete level and the states of
the lower continuum each by Nc quarks in an antisymmet-
ric color state, one obtains a state with unity baryon num-
ber. The soliton energy Esol is a functional of the pion field
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 Esol�U� � Nc

�
Elev �

X
En<0

�En � En0
�

�
reg
: (27)

Esol�U� is logarithmically divergent, see Appendix D for
the explicit expression in the proper-time regularization.
By minimizing Esol�U� one obtains the self-consistent
solitonic pion field Uc. This procedure is performed for
symmetry reasons in the so-called hedgehog ansatz

 �a�x� � earP�r�; U�x� � cosP�r� � i�aear sinP�r�;

(28)

with the radial (soliton profile) function P�r� and r � jxj,
er � x=r. The nucleon mass MN is given by Esol�Uc�. The
self-consistent profile satisfies Pc�0� � �� and behaves as

 

P�r� � �
A

r2 �1�m�r� exp��m�r� at large r;

with A �
3gA

8�f2
�
; (29)

where gA � 1:26 is the axial coupling constant and the
pion mass m� is connected to m in (25) by the Gell-Mann-
Oakes-Renner relation for small m. In the large-Nc limit
the path integral over U in Eq. (25) is solved by evaluating
the expression at Uc and integrating over translational and
rotational zero modes of the soliton solution in the path
integral. In order to include corrections in the 1=Nc expan-
sion, one considers time dependent pion field fluctuations
around the solitonic solution. In practice, hereby one re-
stricts oneself to time dependent rotations of the soliton
field in spin- and flavor-space which are slow due to the
large moment of inertia of the soliton, I � O�Nc�, given by

 I �
Nc
6

X
m;non
n;occ

hnj�ajmihmj�ajni
Em � En

��������reg
: (30)

As indicated, I is logarithmically divergent and has to be
regularized. In (30) the sum goes over occupied (‘‘occ’’)
states n which satisfy En 
 Elev, and over nonoccupied
(‘‘non’’) states m which satisfy Em > Elev.

IV. FORM FACTORS OF THE ENERGY-
MOMENTUM TENSOR IN THE CQSM

The gluon part of the EMT is zero in the effective theory
(25), since there are no explicit gluon degrees of freedom.
Consequently in the model the quark energy-momentum
tensor is conserved by itself, and the form factor �c�t� in
Eq. (1) vanishes. This is demonstrated explicitly in
Appendix C. The nucleon matrix elements of the effective
operator for the quark energy-momentum tensor (we omit
in the following the index Q) is given by the path integral

 

hp0jT̂���0�jpi � lim
T!1

1

Zeff

Z
d3xd3yeip

0y�ipx

�
Z

D D � DUJN0 ��T=2; y�T̂eff
���0�

� JyN�T=2;x� exp�iSeff� � ; ;U��; (31)

where JN�x� denotes the nucleon current; see [28,30,31] for
explicit expressions. The symmetric energy-momentum
tensor for quarks in the effective theory (25) is given by
(the arrows indicate on which fields the derivatives act)

 T̂ eff
���x� �

1
4

� �x��i
� ~@� � i
� ~@� � i
�@
 �

� i
�@
 �
� �x�: (32)

For the calculation of the EMT nucleon matrix elements
in the model we have to evaluate consistently the nucleon-
bispinor expressions appearing on the right-hand side of
Eq. (1) in the large-Nc limit where p0 � MN � O�Nc� and
jpij � O�N0

c� such that jtj � M2
N . Keeping in mind that in

the large-Nc limit the form factors behave as [17]

 M2�t� � O�N0
c�; J�t� � O�N0

c�; d1�t� � O�N2
c�;

(33)

we obtain from (1) the following relations for the form
factors:

 hp0; S03jT
00
effjp; S3i � 2M2

N�S03S3

�
M2�t� �

t

5M2
N

d1�t�
�
;

(34)

 hp0; S03jT
ik
effjp; S3i � 2�S03S3

��i�k � �ik�2�d1�t�; (35)

 hp0; S03jT
0k
effjp; S3i � �iMN"

klm�l�mS03S3
J�t�: (36)

The expressions for M2�t� and d1�t� could, of course, be
separated which we shall do more conveniently at a later
stage. Evaluating the respective components of the EMT in
(31) yields [vacuum subtraction analog to (27) is implied]

 hp0; S03jT̂
00
effjp; S3i � �S03S3

2MNNc
X
n;occ

Enhnje
i�x̂jnijreg;

(37)

 

hp0; S03jT̂
ik
effjp; S3i � �S03S3

2MNNc
X
n;occ

1

4
hnj�fei�x̂; 
0
ip̂kg

� �i$ k��jnijreg; (38)

 

hp0; S03jT̂
0k
effjp; S3i � �lS03S3

MNNc
4I

X
m;occ
j;non

hmj�ljji
Em � Ej

� hjj�fei�x̂; p̂kg

� �Em � Ej�
0
kei�x̂�jmijreg: (39)
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These expressions are logarithmically divergent and have
to be regularized appropriately; see Appendix D for details.

Noteworthy, the matrix elements for the components
T̂00

eff and T̂0k
eff related toM2�t� and d1�t� are spin independent

and receive contributions from leading order of the
large-Nc expansion. In contrast to this, in order to address
T̂0k

eff connected to J�t� one needs matrix elements involving
nucleon spin flip which appear only when considering
1=Nc (‘‘rotational’’) corrections. Inserting the results
(37)–(39) into Eqs. (34)–(36) yields

 M2�t� �
t

5M2
N

d1�t� �
Nc
MN

X
n;occ

Enhnje
i�x̂jnijreg; (40)

 d1�t� �
5MNNc

4t

X
n;occ

hnjf
0�p̂; ei�x̂gjnijreg; (41)

 

J�t� �
iNc"

klm�k

8It

X
n;occ
j;non

hnj�ljji
Ej � En

hjj�fei�x̂; p̂mg

� �En � Ej�ei�x̂
0
m�jnijreg: (42)

The derivation of Eqs. (40)–(42) follows closely the deri-
vation of the model expressions for electromagnetic [30] or
other form factors, and we omit the details here. Instead,
we demonstrate explicitly in Appendices E, F, G, and H
that one obtains the same expressions for the form factors
from the model expressions for GPDs via the sum rules (3)
and (4).

We introduce the Fourier transforms of the form factors
which are radial functions (‘‘densities’’) defined as

 �E�r� � Nc
X
n;occ

En�
�
n�r��n�r�jreg; (43)

 p�r� �
Nc
3

X
n;occ

��n�r��
0�p̂��n�r�jreg; (44)

 

�J�r� � �
Nc
24I

X
n;occ
j;non


abcra��j �r��2p̂
b

� �En � Ej�

0
b��n�r�

hnj�cjji
Ej � En

��������reg
; (45)

where it is understood that p̂j 	 i
2 �r

 j
� ~rj�, and which

allow us to reexpress M2�t�, J�t�, and d1�t� in (40)–(42) as

 M2�t� �
t

5M2
N

d1�t� �
1

MN

Z
d3r�E�r�j0�r

						
�t
p
�; (46)

 d1�t� �
15MN

2

Z
d3rp�r�

j0�r
						
�t
p
�

t
; (47)

 J�t� � 3
Z

d3r�J�r�
j1�r

						
�t
p
�

r
						
�t
p : (48)

Here jk�z� denote Bessel functions with j0�z� �
sinz
z and

j1�z� � �j00�z�.
The densities (43)–(45) are convenient not only because

their numerical evaluation is more economic than the
direct calculation of the form factors (40)–(42). These
densities are interesting objects by themselves, and it is
instructive to discuss their theoretical properties in detail
which we shall do in the following. Simultaneously we will
present the numerical results for the densities.

For the numerical calculation we employ the so-called
Kahana-Ripka method [80], whose application to calcula-
tions in the CQSM is described in detail e.g. in Ref. [31],
and use the proper-time regularization. The latter allows us
to include effects of symmetry breaking due to an explicit
chiral symmetry breaking current quark mass m in the
effective action (25) and to study in the model how ob-
servables vary in the chiral limit. (For a study—in the
spirit of [58]—of observables at pion masses as large as
they appear in present day lattice calculations, the reader is
referred to [59].)

TABLE I. The pion mass dependence of different quantities computed in the CQSM: the energy density in the center of the nucleon
�E�0�; the mean square radii hr2

Ei and hr2
Ji as defined in Eqs. (51) and (56); the pressure p�0� in the center of the nucleon; the zero of the

pressure defined as p�r0� � 0; the constant d1; the dipole masses of the form factors M2�t�, J�t�, and d1�t� as defined in Eq. (71); and
the mean squared radius of the trace of the EMT (22). In the chiral limit J�t� and d1�t� have infinitely steep slopes at t � 0. In these
cases dipole fits do not provide useful approximations and are undefined (labeled by ‘‘—’’ in the table). The proper-time regularization
can be applied, in principle, to any m� [58]. The Pauli-Villars regularization is applicable only for m� � 0 [81].

m� �E�0� hr2
Ei hr2

Ji p�0� r0 d1 Dipole masses Mdip in GeV for hr2
Fi

MeV GeV=fm3 fm2 fm2 GeV=fm3 fm M2�t� J�t� d1�t� fm2

Proper-time regularization:
0 1.54 0.79 1 0.195 0.59 �3:46 0.867 — — 1.01

50 1.57 0.76 1.42 0.202 0.59 �3:01 0.873 0.692 0.519 0.95
140 1.70 0.67 1.32 0.232 0.57 �2:35 0.906 0.745 0.646 0.81

Pauli-Villars regularization:
0 0.75 0.86 1 0.332 0.63 �4:75 0.804 — — 1.24
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In order to explore effects of different regularizations,
we perform also a calculation with the Pauli-Villars regu-
larization method which, however, is applicable only in the
chiral limit [81]. All results are summarized in Table I.

V. ENERGY DENSITY

The density �E�r� is just the energy density T00�r� in the
static energy-momentum tensor (8). By using the ortho-
normality of the single-quark states

R
d3r��n�r��n0 �r� �

�nn0 and comparing to Eq. (27) we find that

 

Z
d3r�E�r� � Nc

X
n;occ

En
Z

d3r��n�r��n�r�jreg � MN:

(49)

The normalization (49) ensures the correct constraint of the
form factorM2�t� at t � 0. In fact, by taking in Eq. (46) the
limit t! 0 [notice that d1�t� takes a well-defined finite
value for t! 0, see below] we obtain

 M2�0� �
1

MN

Z
d3r�E�r� � 1: (50)

This is the consistent constraint in the model for M2�t� at
t � 0, cf. Eq. (12), since there are no gluons in the effective
theory such that consequently the entire momentum of the
nucleon is carried by quarks and antiquarks [34].

Figure 1(a) shows the normalized density �E�r�=MN as a
function of r for the physical situation with a pion mass of
140 MeV. In this case in the model the nucleon mass is
about 1250 MeV. This overestimate of the physical nucleon
mass of O�300 MeV� is typical for the soliton approach
and its origin is well understood [82]. In the center of the
nucleon one finds �E�0� � 1:7 GeV fm�3 or 3:0�
1015 g cm�3. In order to gain some intuition about this
number we remark that this corresponds roughly to 13
times the equilibrium density of nuclear matter.

It is instructive to consider the energy density in the
chiral limit. The result is shown in Fig. 1(b) where we
compare 4�r2�E�r�=MN as functions of r for m� � 0 and
140 MeV. The curves are normalized such that one obtains
unity when integrating over r. Figure 1(b) shows that with
decreasing m� the energy density is spread more widely.
This can be quantified by considering the m� dependence
of the mean square radius of the energy density (23)
defined as

 hr2
Ei �

R
d3rr2�E�r�R
d3r�E�r�

; (51)

and which increases in the chiral limit, see Table I. This is
an intuitively expected feature. As the pion mass decreases,
the range of the ‘‘pion cloud’’ increases and the nucleon
becomes ‘‘larger.’’

The popular idea of the nucleon consisting of a ‘‘quark
core’’ surrounded by a ‘‘pion cloud’’ is strictly speaking
well defined in models only. Here, in the CQSM, we shall
associate the contribution of the discrete level as ‘‘quark
core’’ and the contribution of the negative continuum states
as ‘‘pion cloud.’’ From the long-distance behavior of the
soliton profile (29) one finds in the chiral limit
 

�E�r� �
f2
�

4
trF�r

kU�r�rkUy�r�� � . . .

!
r!large

3
�

3gA
8�f�

�
2 1

r6
; (52)

where trF is the trace over flavor indices of the SU(2)
matrices and the dots in the intermediate step denote terms
which contain higher U-field derivative terms and vanish
faster at large r than the displayed leading term. The result
(52) can be read off from Eq. (7.8) of [34]. At m� � 0 the
decay of �E�r� at large r is exponential due to the corre-
sponding behavior of the soliton profile (29). This dimin-
ishes the ‘‘range of the pion cloud’’ and reduces hr2

Ei.

 

 0

0.5
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 0  0.5  1  1.5

(a)
ρE(r)      T00(r)
           =              in fm-3

  MN         MN

r in fm
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 0.5
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 0  0.5  1  1.5

(b)
4πr2ρE(r)
                     in fm-1

     MN

r in fm

mπ = 0
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FIG. 1 (color online). (a) The normalized energy density �E�r�=MN of the nucleon as a function of r for the physical situation with
m� � 140 MeV. The curve is normalized such that it yields unity upon integration over the entire volume. (b) The normalized energy
density 4�r2�E�r�=MN as a function of r in the chiral limit and for m� � 140 MeV. The curves are normalized such that one obtains
unity upon integration over r.
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These observations can be further quantified by consid-
ering the chiral expansion of (51) which gives, see
Appendix I,

 hr2
Ei � hr

�2
Ei �

81g2
A

64�f2
�MN

m� � . . . (53)

Here and in the following the � above a quantity denotes its
value in the chiral limit, and the dots denote terms vanish-
ing faster in the chiral limit than the respective leading
term. Considering the noncommutativity of the limits
Nc ! 1 and m� ! 0 (see the discussion below in
Sec. VIII) Eq. (53) agrees with chiral perturbation theory
[48].

The term linear in m� in Eq. (53), i.e. the leading non-
analytic (in the current quark mass m / m2

�) contribution
to the mean square radius of the energy density accounts
almost entirely for the reduction of hr2

Ei from m� � 0 to
140 MeV; see Table I.1 At the physical pion mass we find
hr2
Ei � 0:67 fm2. This value is similar to the electric charge

radius of the proton. In fact, we observe a qualitative
similarity of the energy density and electric proton charge
distributions in the model [30,31].

VI. ANGULAR MOMENTUM DENSITY

Taking in Eq. (48) the limit t! 0 yields

 J�0� �
Z

d3r�J�r�; (54)

which shows in which sense it is adequate to refer to �J�r�
as the ‘‘angular momentum density.’’ In order to see that
J�0� � 1

2 , i.e. that the constraint (13) is satisfied in the
CQSM we insert (45) in the above equation and obtain
 

2J�0� �
Nc
12I

X
n;occ
j;non


abchjj�2p̂ar̂b� �En� Ej�

0
ar̂b�jni

�
hnj�cjji
Ej� En

��������reg

�
Ref: �44�Z 1

�1
dxx

X
f

�Hf �Ef��x; �; 0� 	
Ref: �44�

1: (55)

In the intermediate step in Eq. (55), we recovered the
model expression for the second moment of

P
f�H

f �

Ef��x; �; t� at t � 0; see Appendix C of [44]. This sum
rule, which follows from adding up Eqs. (3) and (4), was
explicitly proven to be satisfied in the model in [44]. In the
model the entire nucleon spin is due to the spin and orbital
angular momentum of quarks and antiquarks, and hence

2J�0� � 1 [44]. This again is a correct and consistent result
since there are no explicit gluon degrees of freedom in the
CQSM.

The numerical result for the normalized angular mo-
mentum density �J�r�=JN 	 2�J�r� as a function of r for
the physical situation is shown in Fig. 2(a). (JN �

1
2 de-

notes the nucleon spin). We observe that �J�r� / r2 at
small r.

In Fig. 2(b) we compare the normalized angular mo-
mentum densities 4�r2�J�r�=JN as functions of r for
m� � 0 and 140 MeV. These curves are normalized such
that one obtains unity upon integration over r. Within the
rotating soliton picture the result is reasonable. The smaller
m�, the larger the nucleon, and the more important is the
role of the region of large r for the description of the soliton
rotation, i.e. for the spin structure of the nucleon. This is
reflected by the mean square radius of the angular momen-
tum density which we define in analogy to (51) as

 hr2
Ji �

R
d3rr2�J�r�R
d3r�J�r�

: (56)

The mean square radius of the angular momentum density
increases with decreasing m�; see Table I. In the chiral
limit �J�r� /

1
r4 at large r, i.e. hr2

Ji diverges in the chiral
limit. As a consequence J�t� has an infinitely steep slope at
t � 0 in the chiral limit; see Sec. VIII and Appendix I for
further discussions.

VII. PRESSURE, SHEAR FORCES, SOLITON
STABILITY, AND SIGN OF d1

For the pressure (44) the analogon of the ‘‘normalization
relations,’’ Eqs. (49) and (55), of the other densities is the
stability criterion (16). Integrating the r2-weighted model
expression for p�r� over r we obtain

 

Z 1
0

drr2p�r� 	
Nc

12�

Z
d3x

X
n;occ

��n�x��
0�p̂��n�x�

�
Nc

12�

X
n;occ

hnj
0�p̂jni � 0; (57)

because more generally the tensor Kij defined as

 Kij �
X
n;occ

hnj
0
ip̂jjni �
Ref: �34�

0 (58)

is zero—however, if and only if, one evaluates the expres-
sion (58) with the self-consistent profile, i.e. with that
profile which minimizes the soliton energy (27). This
was proven in Ref. [34]. Thus, the stability criterion (16)
is satisfied.

Next let us check that one obtains in the model the
correct result for the constant d1 � d1�0� defined in
Eq. (13). Expanding the expression (47) around small t
we obtain

1In the CQSM the physical value of gA is underestimated by
about 30% in the proper-time regularization in the leading order
of the 1=Nc expansion to which we work here. For consistency
we have to use here this leading order Nc model result for gA.
Including 1=Nc corrections the model describes gA more accu-
rately [31].
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 d1�t� �
15MN

2

Z
d3rp�r�

�
1

t
�
r2

3!
�O�t�

�
: (59)

Because of (57) the 1=t term drops out, and we verify in the
CQSM the relation (17) between d1 and the pressure.

Figure 3(a) shows the pressure p�r� as a function of r. In
the physical situation p�r� takes its global maximum at r �
0 with p�0� � 0:23 GeV=fm3 � 3:7 � 1034 Pa. This is
O�10–100� higher than the pressure inside a neutron star
[83]. Then p�r� decreases monotonically—becoming zero
at r0 � 0:57 fm—till reaching its global minimum at
rp;min � 0:72 fm, after which it increases monotonically
remaining, however, always negative. The positive sign of
the pressure for r < r0 corresponds to repulsion, while the
negative sign in the region r > r0 means attraction.

In Fig. 3(a) we see how the pressure depends on the pion
mass. The pressure in the center of the nucleon increases as
m� increases—obvious consequence of the fact that the
(energy) density also increases, see Table I. As a response
to the increased p�r� at small r—keep in mind the stability

condition (16)—the pressure takes also larger absolute
values in the region r > r0 where it is negative. This can
again be intuitively understood because a heavier particle
is more tightly bound, i.e. the attractive forces are stronger.
The zero of p�r� moves towards smaller values of r with
increasing m�, see Table I.

In Fig. 3(b) we show the distribution of the shear forces
s�r� obtained from our results for p�r� by solving the
differential Eq. (15). The distribution of shear forces is
always positive. It reaches for m� � 140 MeV a global
maximum at r � 0:40 fm. The position of the maximum is
weakly dependent on m�. At small r we observe s�r� / r2.

It is interesting to compare to which extent the nucleon
‘‘resembles’’ a liquid drop of radius Rd with constant
density and constant pressure p0 inside. In such a drop
the pressure and shear forces are given by [21]

 p�r� � p0��Rd � r� �
1
3p0Rd��Rd � r� and

s�r� � 
��Rd � r�;
(60)

where 
 � 1
2p0Rd denotes the surface tension. We show
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FIG. 3 (color online). (a) The pressure p�r� as a function of r for m� � 0 and 140 MeV. (b) The same for the function s�r� defined in
Eq. (14) which describes the shear forces in the nucleon and is related to p�r� by the relation (15). (c) p�r� and s�r� in a liquid drop in
units of 
=Rd as functions of r in units of Rd. Here Rd is the radius of the drop, and 
 is the surface tension. The � functions in p�r� and
s�r� in Eq. (60) are smeared for better visibility; see text.
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FIG. 2 (color online). (a) The normalized angular momentum density �J�r�=JN as a function of r for the physical situation with
m� � 140 MeV. The curve is normalized such that it yields unity upon integration over the entire volume. (b) The normalized angular
momentum density 4�r2�J�r�=JN as a function of r for m� � 0 and 140 MeV. The curves are normalized such that one obtains unity
upon integration over r.
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this situation in Fig. 3(c)—where, however, for better
visibility the � functions in (60) are smeared out. This
corresponds to allowing the density in the drop to decrease
continuously from its constant inner value to zero over a
finite ‘‘skin’’ [of the size � 1

10Rd in Fig. 3(c)].
Comparing the liquid drop picture to the results from the

CQSM we observe a remote qualitative similarity. In con-
trast to the liquid drop, the density ‘‘inside’’ the nucleon is
far from being constant, see Fig. 1(a), and one cannot
expect the pressure in the nucleon to exhibit a constant
plateau as in the liquid drop. Still the pressure exhibits the
same qualitative features. The shear forces become maxi-
mal in the vicinity of what can be considered as the ‘‘edge’’
of the object. This is the case, in particular, for the liquid
drop. However, the edge of the nucleon is far more diffuse,
and the distribution of shear forces s�r� is widespread. Of
course, the nucleon can hardly be considered a liquid drop.
Such an analogy might be more appropriate for nuclei [21].
Nevertheless this comparison gives some intuition on the
model results—in particular, about the qualitative shape of
the distributions of pressure and shear forces.

Next let us discuss how the stability condition (57) is
satisfied. Figure 4(a) shows r2p�r� as a function of r. The
shaded regions have the same surface areas but opposite
sign and cancel each other—within numerical accuracy

 

Z r0

0
drr2p�r� � 2:61 MeV;

Z 1
r0

drr2p�r� � �2:63 MeV:
(61)

In order to better understand how the soliton acquires
stability, it is instructive to look in detail how the total
pressure is decomposed of the separate contributions of the
discrete level and the continuum contribution. Figure 5
shows that the contribution of the discrete level is always
positive. This contribution corresponds in model language
to the contribution of the ‘‘quark core’’ and one expects a
positive contribution (‘‘repulsion’’) due to the Pauli prin-
ciple. At large r the discrete level contribution vanishes

exponentially since the discrete level wave-function does
so [28].

The continuum contribution is throughout negative—as
can be seen from Fig. 5 and can be understood as follows.
The continuum contribution can be interpreted as the effect
of the pion cloud which in the model is responsible for the
forces binding the quarks to form the nucleon, i.e. it
provides a negative contribution to the pressure corre-
sponding to attraction. In the chiral limit the continuum
contribution exhibits a powerlike decay which dictates the
long-distance behavior of the total result for the pressure at
large r as follows:

 p�r� � �
�

3gA
8�f�

�
2 1

r6
; s�r� � 3

�
3gA

8�f�

�
2 1

r6
; (62)

where for completeness we quote also the result for s�r�.
For m� � 0 the continuum contribution exhibits an expo-
nential decay at large r due to the Yukawa tail of the soliton
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FIG. 5 (color online). The pressure p�r� as a function of r for
m� � 140 MeV. Dotted line: contribution of the discrete level
associated with the quark core. Dashed line: continuum contri-
bution associated with the pion cloud. Solid line: the total result.
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FIG. 4 (color online). (a) r2p�r� as a function of r from the CQSM at the physical value ofm�. The shaded regions have—within the
numerical accuracy of about half percent—the same surface areas. This shows how the stability condition

R
1
0 drr2p�r� � 0 in Eq. (57)

is realized. (b) The same as (a) but with an additional power of r2 and the prefactor 5�MN . Integrating this curve over r yields d1

according to (17). The plot shows that one obtains a negative sign for d1 as a consequence of the stability condition (16) shown in
Fig. 4(a).
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profile (29)—like the contribution of the discrete level,
however, it still dominates the behavior of the total result.
Figure 5 reveals that the actual cancellation between the
different contributions leading to (57) are even more im-
pressive than we could guess considering the numbers in
Eq. (61). For m� � 140 MeV we obtain the following
numbers and see that the two contributions cancel each
other within numerical accuracy

 

Z 1
0

drr2p�r�jlev � 26:69 MeV;

Z 1
0

drr2p�r�jcont � �26:71 MeV:
(63)

Finally, we discuss the relation of stability and the sign
of the constant d1. By comparing Figs. 4(a) and 4(b) we
immediately understand that in the CQSM the constant d1

takes a negative value

 d1 < 0: (64)

This result is presumably of general character. In fact, the
observation (64) follows naturally from our intuition on the
pressure and shear forces distributions we gained from our
study. It seems physically intuitive that in a mechanically
stable object the following conditions hold:

 �I� for a stable object the pressure has the shape p�r�

8><
>:
>0 for r < r0

� 0 for r � r0

<0 for r > r0

;

�II� distribution of shear forces satisfies for all r s�r�> 0:

From (I) and the stability criterion (16) we conclude that
d1 /

R
1
0 drr4p�r�< 0 as illustrated in Figs. 4(a) and 4(b).

The same conclusion follows from (II) using d1 /
�
R
1
0 drr4s�r�< 0 in (17).

Of course, one can imagine a pressure distribution with
more zeros and a different shape than in (I) still yielding
(64). However, (I) is the simplest case which one may
expect to hold for a ground state—like the nucleon. Such
a ground state object is characterized by having one ‘‘sur-
face’’ only, although a quite smeared out one in the case of
the nucleon, hence the condition (II). A more complicated
distribution of the pressure—with more zeros, i.e. also
more maxima and minima—would imply an object with
several (smeared out) surfaces, which follows from the last
condition in Appendix B.

The conjecture (64) is—besides being physically ap-
pealing—in agreement with all available information on
d1, see Sec. II. One may therefore suspect that (64) is a
general theorem which connects the stability of an object
to the sign of its constant d1. However, such a theorem—if
it exists—remains to be rigorously proven for the general
case.

VIII. RESULTS FOR THE FORM FACTORS

From the densities �E�r�, �J�r�, and p�r� which we
discussed in detail in Secs. V, VI, and VII, we obtain the
form factors of the EMT by means of Eqs. (46)–(48). The
results are shown in Fig. 7 form� � 0 and 140 MeV. In the
CQSM the form factorsM2�t�, J�t� are normalized at t � 0
as M2�0� � 2J�0� � 1 as proven in Secs. V and VI. The
numerical results satisfy these constraints within a numeri-
cal accuracy of (1–2)%; see Figs. 7(a) and 7(b).

In contrast, the normalization of the form factor d1�t� at
t � 0 is not known a priori. We find d1 � d1�0�< 0 as

anticipated in Sec. VII. The constant d1 has a well-defined
chiral limit. This can be concluded from Eq. (17) which
relates d1 to the distributions of pressure or shear forces,
and from the fact that p�r� and s�r� drop off sufficiently fast
at large r in the chiral limit; see (62).

The absolute value of d1 decreases with increasing m�
and we observe a strong sensitivity of d1 tom�. That this is
not surprising can be understood by considering the chiral
expansion of d1. Expanding d1�m�� in the model for small
m� we obtain, cf. Appendix I,

 d1�m�� � d
�

1 �
15g2

AMN

64�f2
�
m� � . . . (65)
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exact model result
chiral expansion up to O(mπ)

FIG. 6 (color online). The constant d1 as a function of m�.
Comparison of the full CQSM result, and the expansion of d1 up
the leading nonanalytic term according to Eq. (65). The square
marks the physical point.
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Thus, we see that d1�m�� receives a large leading non-
analytic contribution in the current quark mass m / m2

�,
which is the origin of the strongm� dependence of d1�m��.
The expansion (65) approximates in the model d1�m�� to
within an accuracy of 15% up to the physical point; see
Fig. 6. At the physical point the absolute value of d1 is
reduced by about 30% with respect to its chiral limit value.
The numerical results for d1 are summarized in Table I.

Next, let us focus on the derivatives of the form factors at
t � 0. From Eq. (11) we conclude that at t � 0 the slope of
the form factor M2�t� is given by

 M02�0� �
hr2
Ei

6
�

d1

5M2
N

� M
� 0

2�0� �
21g2

A

128�f2
�

m�

MN
� . . .

(66)

where the chiral expansion follows from (53) and (65). In
particular, M02�0� is well defined for all m� including the
chiral limit. The situation is different for the form factors
J�t� and d1�t�. The slope of J�t� at t � 0 can be deduced
from (48) and is given by

 J0�0� �
hr2
Ji

6
(67)

with hr2
Ji defined in (56). Since the mean square radius of

the angular momentum density diverges in the chiral limit,
see Sec. VI, so does J0�0�. See also the discussion in
Appendix I.

That also the slope of d1�t� becomes infinitely steep at
t � 0 can be understood as follows. From Eqs. (11), (14),
and (15) it follows that the derivative of d1�t� at t � 0 can
be expressed as

 d01�t�jt�0 � �
MN

42

Z
d3rr4s�r� �

MN

16

Z
d3rr4p�r�:

(68)

Since in the chiral limit p�r� and s�r� drop off as 1
r6 at large

r we see that d
� 0

1�0� diverges as m� ! 0.

To make this statement more quantitative let us expand
d1�t� in the chiral limit in the model for small t. We obtain

 d
�

1�t� � d
�

1 �
45g2

AMN

512f2
�

						
�t
p

�O�t�; (69)

which means that in the chiral limit d
� 0

1�t� / 1=
						
�t
p

at small
t. Alternatively, one may keep m� � 0, evaluate the de-
rivative of d1�t� at t � 0, and then consider small m�.
(Note that the limits m� ! 0 and t! 0 do not commute.)
Then we find that the slope of d1�t� at t � 0 diverges in the
chiral limit as

 d
�
0
1�t�jt�0 � �

3g2
AMN

32�f2
�m�

� . . . : (70)

The results (69) and (70) are derived in Appendix I. The
numerical results for J�t� and d1�t� in Figs. 7(b) and 7(c)
indicate the infinitely steep slopes at t � 0 within the
numerical accuracy.

Notice that we derived the analytical results in (65),
(66), (69), and (70) in the framework of the CQSM.
However, the leading nonanalytic terms (i.e. terms / m�)
in the chiral expansion of d1�t� in (65), (66), (69), and (70)
are dictated by chiral symmetry breaking and are indepen-
dent of the details of the chiral theory chosen to derive
them. In fact, our results (65), (66), (69), and (70) agree
with those obtained from chiral perturbation theory in
Ref. [48]—provided one takes into account an important
difference. The CQSM is formulated in the large-Nc limit
which does not commute with the chiral limit [50]. At large
Nc the masses of the nucleon and � resonance are degen-
erated: M� �MN � O�N�1

c �. Therefore, in the CQSM—
in addition to the nucleon considered in chiral perturbation
theory [48]—the � resonance contributes on equal footing
as intermediate state in chiral loops. Considering that in the
large Nc limit the pion-Delta-nucleon and pion-nucleon-
nucleon couplings are related as g�N� �

3
2g�NN (phenom-

enologically satisfied to a very good approximation), one
finds that the � resonance makes a contribution to leading
nonanalytic terms which is—for scalar-isoscalar quanti-
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FIG. 7 (color online). The form factors of the energy-momentum tensor M2�t�, J�t�, and d1�t� as functions of t for the pion masses
m� � 0, 140 MeV. All form factors can be well approximated by dipole fits, however, with the exception of J�t� and d1�t� in the chiral
limit which exhibit infinitely steep slopes at t � 0; see text.
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ties—2 times larger than that of the nucleon [51]. Hence,
our leading nonanalytic terms in Eqs. (65), (66), (69), and
(70) are 3 times larger than those obtained from chiral
perturbation theory in Ref. [48] where Nc was kept finite.2

Other examples of the derivation of leading nonanalytic
terms in chiral soliton models can be found in [33,51].

Next, we turn to the discussion of the t dependence of
the form factors and recall that in the large-Nc limit we
strictly speaking are restricted to jtj � M2

N . However, in
practice it is observed that the CQSM provides reliable
results for electromagnetic form factors up to jtj & 1 GeV2

[30,31].
Figure 7 shows the form factors of the EMT as functions

of t for jtj 
 1 GeV2 for m� � 0 and 140 MeV. For m� �

0 the form factors can be well approximated by dipole fits

 F�t� �
F�0�

�1� t=M2
dip�

2 (71)

with the values for the dipole masses quoted in Table I.
It is instructive to compare these results within the

model to the electromagnetic form factors—for definite-
ness we choose the electric form factor of the proton GE�t�
computed in the CQSM in Ref. [30]. Figure 8 shows that
J�t� and GE�t� exhibit a similar t dependence. However,
M2�t� falls off with increasing jtj slower than GE�t�, while
d1�t� shows a faster falloff.

One popular assumption in literature in the context of
modelling GPDs is to assume a generic factorized Ansatz
of the typeH�x; �; t� � H�x; ��G�t�whereG�t� denotes the
respective form factor (other approaches are discussed in
[17,19,84–87]). This assumption implies that the form
factors of the EMT should have approximately the same
t dependence as the electromagnetic form factors. Our
results indicate that this is quite a rough approximation
and support the observations that in the CQSMH�x; �; t� �

H�x; ��G�t�; see Refs. [17,40]
Let us compare our result for d1 with the result from

direct calculations of GPDs in the model [40] which yield3

dQ1 � �8:0 at the low model scale in the chiral limit. The
discrepancy with the corresponding results in Table I is due
to the fact that in [40] the momentum-dependent constitu-
ent mass M�p� was employed vs our proper-time or Pauli-

Villars regularization withM � const, and that the approx-
imative ‘‘interpolation formula’’ was used vs the exact
numerical calculation done here.

For the mean square radius hr2
Fi of the operator of the

EMT trace, see Eqs. (23) and (24), we obtain in the chiral
limit

 hr
�2
Fi � �1:0–1:2� fm2; (72)

while its value at the physical point is reduced by about
0.2 fm compared to (72); see Table I. From the chiral
expansion of hr2

Fi which follows from Eqs. (24), (53),
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FIG. 9 (color online). Mean square radius of EMT trace op-
erator vs m�.
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FIG. 8 (color online). EMT form factors as functions of t.
Dashed-dotted line: M2�t�. Long-dashed line: J�t�. Dashed
line: d1�t�; all computed here. Solid line: electric proton form
factor GE�t� from Ref. [30]. All form factors refer to the physical
pion mass and are normalized with respect to their values at t �
0.

2Actually, there is one more subtlety to be considered. In the
result for the form factor 4

5 d1�t� � C2�t� in Eq. (20) of [48] (see
Appendix A for the discussion of the notation) in addition the
constant aQ;�2 	 MQ;�

2 appears, which describes the fraction of
the pion momentum carried by quarks. In the effective theory
(25) quarks carry the entire momentum of the pion, i.e. MQ;�

2 �
1 [66].

3From this number it was estimated that d1 � �4:0 at experi-
mentally relevant scales of few GeV2 [68] in the following way.
The model predicts for the ratio dQ1 =M

Q
2 � �8:0 and experi-

mentally one finds MQ
2 � 0:5 at scales of few GeV2. This

estimate neglects strictly speaking the different evolution prop-
erties of dQ1 and MQ which is justified because uncertainties in
the model dominate.
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and (65) and reads

 hr2
Fi � hr

�2
Fi �

117g2
A

64�f2
�MN

m� � . . . ; (73)

we see that the leading nonanalytic term in (73) explains
the main portion of the observed reduction of hr2

Fi at the
physical point compared to its chiral limit value; see Fig. 9.

It is instructive to compare our result (72) for the mean
square radius of the EMT trace to the mean square radius of
the traceless part of the EMT �0:3 fm�2 estimated by means
of QCD sum rules [88]. The instanton vacuum model
provides a possible explanation why the radius of the trace
of the EMT is so much larger than the traceless part. In
chiral limit the trace part is basically the gluonic operator
F��F�� which is due to one-instanton contributions and
appears in leading order in the instanton packing fraction.
The traceless part arises from instanton-anti-instanton con-
tributions which appear at subleading order [76].

IX. CONCLUSIONS

In this work we presented a study of the form factors of
the EMT in the large-Nc limit in the framework of the
CQSM. We provided numerous checks of the theoretical
consistency of the model results. Among others, we dem-
onstrated that the same model expressions for the form
factors can be derived from the EMT and from GPDs.

We computed the spatial density distributions and mean
square radii of the operators of different components of the
EMT and its trace. Interesting results are that the energy
density related to T̂00 in the center of the nucleon is about
1:7 GeV�3, i.e. about 13 times higher than the equilibrium
density of nuclear matter. The mean square radius of the
operator T̂00 is about 0:67 fm2. For the mean square radius
of the ‘‘angular momentum distribution’’ related to the
operator T̂0k (k � 1, 2, 3) we find a much larger value
1:32 fm2.

We studied the spatial distribution of strong forces in the
nucleon as described in terms of the distributions of pres-
sure and shear forces which are defined by the spatial
components T̂jk (j, k � 1, 2, 3) of the EMT. As a by-
product of this study we learned how the soliton acquires
stability in the CQSM—namely, due to subtle balance of
repulsive forces in the center due the ‘‘quark core’’ and
attractive forces in the outskirts of the nucleon due the
‘‘pion cloud’’ which bounds the quarks in the model.

We observed a physically appealing connection between
the criterion for the stability of a particle and the sign of the
constant d1, i.e. the form factor d1�t� at zero-momentum
transfer. Our observations imply that for a stable particle
one always has d1 < 0, though we cannot prove this con-
jecture for the general case. All available results for d1 in
literature are compatible with this observation.

We derived the leading nonanalytic chiral contributions
to the form factors in the large Nc limit, which agree with

results from chiral perturbation theory [47–49] provided
one takes into account that the limits Nc ! 1 andm� ! 0
do not commute [50,51].

We observed that the model results for the form factors
of the EMT can, for m� > 0, be well approximated by
dipole fits. The different form factors have different t
dependences. For JQ�t� we obtain in the model a dipole
mass similar to that of the electromagnetic form factors of
the proton. The dipole mass of M2�t� is much larger than
that, while that of d1�t� is substantially smaller. These
results are of interest for the phenomenology of hard ex-
clusive reactions, and, in particular, for the task of extrap-
olating JQ�t� to t � 0 which is necessary to extract from
data information on what portion of the nucleon spin is due
to quarks.

Our results yield in the chiral limit for the constant d1 �
��3:5–4:8� depending on the regularization and confirm
sign and—within model accuracy—magnitude of pre-
vious results [40,68]. We observe, however, also a strong
m� dependence of d1 which is dominated by a sizeable
leading nonanalytic (in the current quark mass) contribu-
tion proportional to m�. The latter is responsible for re-
ducing the absolute value of d1 by about 30% at the
physical point compared to its chiral limit value.

We estimated the mean square radius of the EMT trace
operator to be about �1 fm�2 which appears much larger
than the corresponding mean square radius of the traceless
part of the EMT found to be �0:3 fm�2 [88] and noticed that
the instanton vacuum model provides a possible explana-
tion for that.

A study of the m� dependence of the EMT form factors
in the model at larger values ofm� in the spirit of Ref. [58]
and a detailed comparison of the model results to lattice
QCD data [52–57] will be presented elsewhere [59].
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Note added.—After this work was completed the work
[95] appeared, where in particular the constant d1 was
studied. For du�d1 similar results were obtained using
somehow different model parameters. Interesting is the
estimate for the flavor combination du�d1 which was found
rather small and confirms the large-Nc prediction (18).

APPENDIX A: ALTERNATIVE DEFINITION OF
FORM FACTORS

The following alternative definition of form factors of
the EMT is commonly used in literature, see e.g. [3],
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 hp0jT̂Q;G�� �0�jpi � �u�p0�
�
AQ;G�t�


�P� � 
�P�
2

� BQ;G�t�

�
i�P���� � P������

�

4MN
� CQ;G�t�

�
���� � g���2

MN
� �c�t�g��

�
u�p�:

(A1)

By means of the Gordon identity 2MN �u0
�u �
�u0�i����� � 2P��u, Eq. (A1) can be rewritten as Eq. (1)
with
 

AQ;G�t� � MQ;G
2 �t� AQ;G�t� � BQ;G�t� � 2JQ;G�t�

CQ;G�t� �
1

5
dQ;G1 �t�: (A2)

The constraints (13) translate in this language into AQ�0� �
AG�0� � 1 and BQ�0� � BG�0� � 0. The latter constraint
means that the total nucleon ‘‘gravitomagnetic moment’’
vanishes.

In models, in which the only dynamical degrees of
freedom are effective quark degrees of freedom, the con-
straint BQ�0� � 0 must hold. Such is the situation in the
CQSM where consequently this constraint is satisfied [44].

Interestingly, it was argued [89] that also in QCD the
quark and gluon gravitomagnetic moments of the nucleon
could vanish separately, i.e. BQ�0� � 0 and BG�0� � 0.
That would imply that MQ

2 �0� � 2JQ�0� and MG
2 �0� �

2JG�0� at any scale, and not only in the asymptotic limit
of a large renormalization scale [3]; see [89] for details.

APPENDIX B: GENERAL RELATIONS FROM THE
CONSERVATION OF EMT

Here we collect some worthwhile noticing relations for
p�r� and s�r� which can be derived from the differential
Eq. (15)—i.e. which follow from the conservation of the
EMT.

(i) For any s�r� one obtains from (15) a p�r� which
automatically satisfies the stability condition (16).
Therefore, when computing these quantities, for ex-
ample, in a model, the computation of the pressure is
more important and reliable in the sense that the
result can be cross-checked by the stability condition
(16).

(ii) The pressure at the origin is connected to s�r� by the
following integral relation:

 p�0� � 2
Z 1

0
dr
s�r�
r
: (B1)

(iii) Assume that p�r� and s�r� vanish at large r faster
than any power of r to justify below integration by
parts. (In Sec. VII we have seen that this is always
the case with the exception of the chiral limit.) Then
the following relations hold between the ‘‘Mellin

moments’’ of s�r� and p�r�:

 

Z 1
0

drrNs�r� � �
3�N � 1�

2�N � 2�

Z 1
0

drrNp�r�

for N >�1;

(B2)

which are valid also for noninteger values of N.
Equation (17) quoted in Sec. II is just a special
case of (B2).

(iv) The case N � 2 in (B2) has to be treated with care.
Taking the limit N ! 2 on the right-hand side of
(B2) yields—upon use of (16)—the following re-
sult:

 

Z 1
0

drr2s�r� � �
9

2

Z 1
0

drr2�logr�p�r�: (B3)

One may worry in which units the ‘‘r’’ in ‘‘logr’’
should be provided in (B3). However, this is imma-
terial due to the stability condition (16).

(v) p�r� and r3s�r� exhibit extrema at the same r.

APPENDIX C: CONSERVATION OF EMT IN THE
CQSM

In this appendix we demonstrate explicitly that
hN0j@�T̂

��
eff jNi � 0. For that we directly evaluate in the

model matrix elements of the operator @�T̂
��
eff . For @0T̂

0�
eff a

derivation analog to that yielding (37) and (39) yields
immediately

 hN0j@0T̂
0�
effjNi � 0: (C1)

Hereby one has to consider the cases � � 0 and � � k
separately, since the respective model expressions arise
from different orders in the 1=Nc expansion.

A derivation analog to that yielding (38) gives for matrix
elements of the operator @iT̂

ik
eff the following result:

 

hN0j@iT̂
ik
effjNi � �S03S3

MNNc
2

X
n;occ

Z
d3xei�xiri

� ���n

0
i�rk�n� ��

�
n


0
k�ri�n�

� �rk��n�

0
i�n � �r

i��n�

0
k�n�

� �S03S3

MNNc
2

X
n;occ

Z
d3xei�x�K1 � K2�

(C2)

where
 

K1 � ��
�
n�r

k��i
0
iri��n�� � ��i

0
iri�n�

��rk�n�

� �rk��n���i

0
iri�n� � �r

k��i
0
i�n�
���n

K2 � �i��n
0
k�r2�n� � i�r2��n�
0
k�n: (C3)

From the single-quark equations of motion (26) one ob-
tains the identities ��i
0
iri��n � �En �M
0U
5��n
and ��r2�n� � �E2

n �M2 � iM
j�rjU
5���n which al-
low, respectively, to rewrite K1 and K2 as follows:
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 K1 � �K2 � 2M��n

0�rkU
5��n: (C4)

Thus, hN0j@iT̂
ik
eff jNi � 0 in Eq. (C2). This proves that the

form factor �c�t� in Eq. (1) vanishes in the model. This is
consistent since, due to the absence of gluons, in the
CQSM the quark part of the EMT must be conserved by
itself.

APPENDIX D: REGULARIZATION

The proper-time regularized model expressions for the
continuum contributions to the form factors (40)–(42) read

 M2�t�cont �
t

5M2
N

d1�t�cont �
Nc
MN

X
n;all

R1�En;��hnje
i�x̂jni;

(D1)

 d1�t�cont �
5MNNc

4t

X
n;all

R2�En;��hnjf
0�p̂; ei�x̂gjni;

(D2)

 J�t�cont �
iNc"

klm�k

8It

X
n;j all
n�j

R3�En; Ej;��hnj�ljji

� hjj�fei�x̂; p̂mg � �En � Ej�e
i�x̂
0
m�jni:

(D3)

The regulator functions Ri appear in the model also in the
regularizations of other quantities [31] and are defined as
 

R1�!;�� �
1

4
				
�
p

Z 1
1=�2

d�

�3=2
exp���!2�;

R2�!;�� � �
1

2

@
@!

R1�!;��;

R3�!1; !2;�� �
1

4
				
�
p

Z 1
1=�2

d�

�

�
exp���!2

1� � exp���!2
2�

�3=2�!2
2 �!

2
1�

�
!1 exp���!2

1� �!2 exp���!2
2�

�1=2�!1 �!2�

�
:

(D4)

That d1�t� is regularized ‘‘differently’’ in Eqs. (D1) and
(D2) is a peculiarity of the proper-time regularization. In
the Pauli-Villars regularization all quantities F �
fMN; I;M2�t�; J�t�; d1�t�g are regularized in the same way
as

 Freg � F�M� �
M2

M2
PV

F�MPV�; (D5)

where it is understood that the corresponding model ex-
pressions are first evaluated with the Hamiltonian (26) and
with the Hamiltonian (26) where M replaced by MPV, and
then finally subtracted according to the prescription (D5).

Notice that for the constraints (50) and (55) to be sat-
isfied by the numerical results it is of crucial importance
that M2�t� and MN as well as J�t� and I are regularized in
the same way. This is the case for both regularizations. In
order to make this apparent also for the proper-time regu-
larization we recall that in this method the regularized
model expressions for continuum contributions to the nu-
cleon mass (27) and the moment of inertia (30) are given by

 

MN;cont 	 Nc
X
En<0

�En � En0
�jreg

� Nc
X
n;all

�R1�En;�� � R1�En0
;���

Icont 	
Nc
6

X
Em>0
En<0

hnj�ajmihmj�ajni
Em � En

��������reg

�
Nc
6

X
n;m all
m�n

hnj�ajmihmj�ajniR3�En; Em;��:

(D6)

Hereby � or MPV are fixed to reproduce the physical value
of the pion decay constant f� � 93 MeV [31]. For M �
350 MeV one has � � 649 MeV in the chiral limit, and
� � 643 MeV for m� � 140 MeV. The proper-time
method can, in principle, be applied to any m� [58]. The
Pauli-Villars method can be applied unambiguously in the
chiral limit, withMPV � 556 MeV reproducing the experi-
mental value of f�. However, the method meets difficulties
in the case of a nonzero current quark mass m [81]. Notice
that � and MPV are of O���1� � 600 MeV.

APPENDIX E: MODEL EXPRESSIONS FOR d1�0�
AND d01�0� FROM THE EMT

One consequence of the conservation of the EMT, see
Sec. II and Appendices B and C, is that there are two
different expressions for d1�t�. In one d1�t� is related to
p�r� and in the other to s�r�. Both are, of course, equiva-
lent. However, this is not obvious from the explicit model
expressions.

Here we derive model expressions for d1�0� and d01�0�
from the EMT in terms of p�r� and s�r� which will be
useful below for the explicit demonstration that the ex-
pressions for d1�t� obtained from the EMT and GPDs are
equivalent.

The model expression for the spatial components of the
static energy-momentum tensor (8) reads

 

Tkl�r� �
Nc
4i

X
n;occ

��n�r���
0
kr
 l
� 
0
k ~rl

� �k$ l���n�r�: (E1)

For the model expressions for the form factor d1�t� and its
derivative at t � 0 we obtain
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 d1�0� �
5NcMN

4

X
n;occ

hnjf
0�p̂; r̂2gjni

� �
NcMN

4

X
n;occ

�
n
��������
�

0
kp̂l;

�
r̂kr̂l �

r̂2

3
�kl
�
��������n

�
;

(E2)

 

d01�0� �
NcMN

96

X
n;occ

hnjf
0�p̂; r̂4gjni

� �
NcMN

56

X
n;occ

�
n
��������
�

0
kp̂l;

�
r̂kr̂l

�
r̂2

3
�kl

�
r̂2


��������n
�
: (E3)

The first relations in (E2) and (E3) are more practical for a
numerical evaluation. They follow, for example, from tak-
ing the limit �i ! 0 in (41) and making use of (16) and
hedgehog symmetry. Notice, that (E2) can alternatively be
derived from (17) and (44)—which is a cross check for the
intermediate model expressions.

In order to find the equivalent second relations in (E2)
and (E3), we inspect Eq. (9) for small momentum transfers
using for Tij�r� the model expression in (E1). This yields
 

d1�0� � t
7

3
d01�0� �O�t2� � �

NcMN

4

X
n;occ

�
n
��������
�

0
ip̂j;

�
r̂ir̂j �

r̂2

3
�ij
�

�

�
1�

r̂2t
6
�O�t2�

�
��������n
�
;

(E4)

from which we read off the desired results. The second
relation in (E3) follows also immediately from (13) and
(E1).

Comparing (E1) with the general relations for p�r� and
s�r� with Tij�r�,

 p�r� �
1

3
Tij�r��ij; s�r� �

3

2
Tij�r�

�
rirj

r2 �
1

3
�ij
�
;

(E5)

we recognize that (E2) is just Eq. (17) in the model, while
(E3) is the model version of Eq. (68).

APPENDIX F: POLYNOMIALITY OF �Hu �Hd��
�x; �; t� AT t � 0

The expression for �Hu �Hd��x; �; t�, which in the
SU(2) version of the CQSM already exhausts the sum
over quark flavors in Eq. (3), was derived, evaluated, and
discussed in [40]. With the lightlike vector n in Eq. (2)
chosen to be n� / �1; 0; 0;�1� the model expression is
given by

 

�Hu�Hd��x;�; t� �MNNc
Z dz0

2�

X
n;occ

eiz
0�xMN�En�

�

�
n
���������1�
0
3�exp

�
�i
z0

2
p̂3

�

� exp�i�x̂�exp
�
�i
z0

2
p̂3

���������n
�
: (F1)

The study of Ref. [40] was supplemented in [42] by the
explicit proof that �Hu �Hd��x; �; t� in the model satisfies
the polynomiality condition (5) at t � 0. In this appendix
we generalize the proof of Ref. [42] to t � 0.

The reason why the proof of [42] was restricted to the
case t � 0 is connected to the fact that the information on �
and t on the right-hand side of Eq. (F1) is implicitly
encoded in the 3-vector �. In the large-Nc kinematics
�3 � �2�MN and t � ��2. By keeping � � 0 and con-
tinuing analytically the moments of �Hu �Hd��x; �; t� to
the point t � 0, one obtains model expressions depending
on � only. That simplifies the situation considerably [42].

However, the proof of [42] can be generalized to t � 0
by using the following remarkable identity
 

exp�i�x� �
X1
l�0

il�2l� 1�jl�r
						
�t
p
�Pl�cos��

� Pl

�
�

2�MN						
�t
p

�
; (F2)

where r � jxj and cos� � x3=jxj and jl�z� and Pl�z� de-
note, respectively, Bessel functions and Legendre polyno-
mials. As a by-product we remark that by inserting the
identity (F2) in (F1) we see explicitly that �Hu �Hd��
�x; �; t� is a function only of � and t (and x, of course) but
not of the 3-vector �.

The identity (F2) can be derived as follows. We rewrite
the 3-vector � as � � �sin� cos�; sin� sin�; cos��

						
�t
p

where cos� � �2�MN=
						
�t
p

and � 2 �0; 2�� describes
the orientation of � in the plane perpendicular to the
spatial direction of the light-cone. Then, by using spherical
coordinates for x, we obtain

 exp�i�x� �
X1
l�0

il�2l� 1�jl�r
						
�t
p
�Pl�cos� cos�

� sin� sin� cos������: (F3)

Next we rewrite the Legendre polynomials using the addi-
tion theorem as
 

Pl�cos� cos�� sin� sin� cos������

� Pl�cos��Pl�cos��

� 2
Xl
j�1

�l� j�!
�l� j�!

Pjl �cos��Pjl �cos�� cos�l������:

(F4)
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The physical process described by the GPD does not
depend on the orientation of � in the transverse plane.
This is reflected by the fact that the matrix elements in (F1)
are independent of �. (Changes of � can be compensated
by appropriate hedgehog rotations.) Thus, we can elimi-
nate the artificial dependence on �—for example by aver-
aging the matrix elements in (F1) over �. The latter is
equivalent to taking the average over � in (F4). Inserting
the result into (F3) gives finally the identity (F2).

Notice that for 
! 0 the product �2l�
1�jl�A
�Pl�B=
� ! �AB�l=l!�O�
2�. Thus, taking the

limit t! 0 while keeping � � 0 in (F2) yields

 lim
analytical

continuation
t!0;��0

exp�i�x� �
X1
l�0

��i2�MNjxj�l

l!
Pl�cos��; (F5)

reproducing Eq. (20) of Ref. [42] which was derived
independently in a different way.

The proof of polynomiality at t � 0 given in Ref. [42] is
generalized to any t � 0 by replacing Eq. (20) in [42] by
our more general identity (F2) and repeating literally the
steps done in Eqs. (21–28) in [42]. This yields

 

Z
dxxm�1�Hu �Hd��x; �; t� �

Nc
Mm�1
N

X
n;occ

Xm�1

k�0

m� 1
k

� �
Em�1�k
n

2k
Xk�1

l�0;2;4;...

il�2l� 1�Pl

�
2�MN						
�t
p

�Xk
j�0

k
j

� �
hnj�
0
3�k

��p̂3�jjl�jx̂j
						
�t
p
�Pl�cos�̂��p̂3�k�jjni; (F6)

and explicitly demonstrates that the model expression (F1) does satisfy the polynomiality property for any t � 0. Note that
this includes also positive t allowing one to study in principle the region of timelike momentum transfers, where GPDs
‘‘become’’ nucleon-antinucleon distribution amplitudes [90,91].

APPENDIX G: M2�t� AND d1�t� FROM GPDS

In this and the following appendix we introduce labels to distinguish the model expressions for form factors derived
from GPDs and EMT—with the aim to prove finally that they are equivalent. From Eq. (F6) we read off the model
expressions for the second Mellin moment of �Hu �Hd��x; �; t�, see Eq. (3),

 M2�t�jGPD �
Nc
MN

X
n;occ

hnjEnj0�jx̂j
						
�t
p
�jni �

Nc
2MN

X
n;occ

�
n
��������
��

0
3p̂3; j0�jx̂j

						
�t
p
� �

5

2
j2�jx̂j

						
�t
p
�P2�cos�̂�


���������n
�
;

d1�t�jGPD �
75NcMN

4t

X
n;occ

hnjf
0
3p̂3; j2�jx̂j
						
�t
p
�P2�cos�̂�gjni:

(G1)

By comparing the expressions for M2�t�jGPD and d1�t�jGPD in (G1), and by exploring hedgehog symmetry we observe

 

5Nc
4MN

X
n;occ

hnjf
0
3p̂3; j2�jx̂j
						
�t
p
�P2�cos�̂�gjni �

t

15M2
N

d1�t�GPD

Nc
MN

X
n;occ

hnjEnj0�jx̂j
						
�t
p
�jni �

Nc
MN

X
n;occ

hnjEne
i�x̂jni 	

�
M2�t� �

t

5M2
N

d1�t�
�

EMT

Nc
2MN

X
n;occ

hnjf
0
3p̂3; j0�jx̂j
						
�t
p
�gjni �

Nc
6MN

X
n;occ

hnjf
0
p̂; ei�x̂gjni 	
2t

15M2
N

d1�t�EMT: (G2)

Thus, Eq. (G1) states that

 

�
M2�t� �

t

15M2
N

d1�t�
�

GPD
�

�
M2�t� �

t

15M2
N

d1�t�
�

EMT
:

(G3)

This means that the model expressions from GPDs and
from EMT are equivalent for this particular linear combi-
nation of M2�t� and d1�t�. In order to prove that this is true

also for the separate form factors we have to show explic-
itly that e.g. one can derive the same model expression for
d1�t�GPD from the EMT. One way to do this is to demon-
strate that d1�t�GPD satisfies the differential Eq. (10) de-
rived from the EMT with appropriate boundary conditions.

For that let us first remove the preference of the 3-axis
from the expression for d1�t�jGPD in (G1) which is due to
arbitrarily choosing the lightlike vector n� / �1; 0; 0;�1�;
see above. We remove this arbitrariness by averaging the
expression (G1) over directions. This yields
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0
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�giav
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1
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0
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�
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1
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and using the identity

 

�
1�

4t
3

d

dt
�

4t2

15

d2

dt2

�
j2�jx̂j

						
�t
p
�

jx̂j2��t�
�
j0�jx̂j

						
�t
p
�

15
(G5)

we see that d1�t�GPD satisfies the differential Eq. (10)
 �
d1�t� �

4t
3
d01�t� �

4t2

15
d001 �t�

�
GPD

� �
NcMN

4

X
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��������
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0
kp̂l;
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1
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� j0�jx̂j
						
�t
p
�


��������n
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2

Z
d3re�ir�TQij �r�

�
rirj �

r2

3
�ij
�
: (G6)

Next, using (G4) and expanding the expression for
d1�t�GPD in (G1) we obtain

 

d1�0�jGPD � �
NcMN

4

X
n;occ

�
n
��������
�

0
kp̂l;

�
x̂lx̂k �

1

3
jx̂j2�kl

�
��������n
�

d01�0�jGPD � �
NcMN
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X
n;occ
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n
��������
�

0
kp̂l;

�
x̂lx̂k �

1

3
jx̂j2�kl

�
jx̂j2


��������n
�
; (G7)

which coincides with the expressions obtained from the
EMT in Eqs. (E2) and (E3). This completes the proof that
one obtains the same model expressions for the form
factors d1�t� and M2�t� from GPDs and from the EMT.

APPENDIX H: J�t� FROM GPDS

Here we show that the model expression for J�t�EMT

obtained from the EMT in Eq. (42) coincides with the
model expression for J�t�GPD which results from GPDs
[3] by adding up the sum rules (3) and (4).

The model expression for �Hu �Hd � Eu � Ed��
�x; �; t�, which we shall refer to as EM�x; �; t� for brevity,
reads [44]

 

EM�x; �; t� �
iM2

NNc
2I


3ab�a

�2
?

Z dz0

2�
eiz

0xMN

��X
m;occ
j;all

e�iz
0Em �

X
m;all
j;occ

e�iz
0Ej



1

Em � Ej
hmj�bjjihjj�1� 
0
3� exp��iz0p̂3=2�

� exp�i�X̂� exp��iz0p̂3=2�jmi � iz0
X
m;occ

e�iz
0Emhmj�b�1� 
0
3� exp��iz0p̂3=2�

� exp�i�X̂� exp��iz0p̂3=2�jmi
�
: (H1)

Integrating the xEM�x; �; t� over x yields, after substituting x! y � xMN and extending the limits of y integration to the
entire y axis which is justified in the large Nc limit due to MN � O�Nc�, the following result:
 Z 1

�1
dxxEM�x; �; t� �

iNc
2I


3ab�a

�2
?

��X
m;occ
j;all

Em �
X
m;all
j;occ

Ej



1

Em � Ej
hmj�bjjihjj�1� 
0
3� exp�i�X̂�jmi �

1

2

�X
m;occ
j;all

�
X
m;all
j;occ




�
1

Em � Ej
hmj�bjjihjj�1� 
0
3�fp̂3; exp�i�X̂�gjmi �

X
m;occ

hmj�b�1� 
0
3� exp�i�X̂�jmi
�
: (H2)

Consider the unitary transformation G5 	 
2
5�2 in the notation of [92] with the properties G5

�G�1

5 � �
��T and
G5�

aG�1
5 � ���a�T . It transforms in coordinate space the Hamiltonian (26) and its eigenstates as G5HG

�1
5 � HT and

G5�n�x� � ��n�x�. Making use of this transformation we obtain the identities
 

hjj�bjmi � hmj���b�jji;

hjj�1� 
0
3� exp�i�X̂�jmi � hmj�1� 
0
3� exp�i�X̂�jji;

hjj�b�1� 
0
3� exp�i�X̂�jmi � hmj�b��1� 
0
3� exp�i�X̂�jji;

hjj�1� 
0
3�fp̂3; exp�i�X̂�gjmi � hmj�1� 
0
3�f�p̂3; exp�i�X̂�gjji:

(H3)

One obtains

 

Z 1

�1
dxxEM�x; �; t� �

iNc
2I

1

�2
?

X
m;occ
j;non

Fmj (H4)
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with
 

Fmj �

ab3�a

Em � Ej
hmj�bjjihjj�
0
3�Em � Ej� exp�i�X̂�

� fp̂3; exp�i�X̂�g�jmi

�
1

3


abc�a

Em � Ej
hmj�bjjihjj�
0
c�Em � Ej� exp�i�X̂�

� fp̂c; exp�i�X̂�g�jmi; (H5)

where in the second step we made use of the hedgehog
symmetry. The final step necessary to recognize that (H4)
and (H5) coincide with the expression (42) is the following.
Notice that in the expression in Eqs. (H4) and (H5) there is
no more reference to the 3-direction which was picked out
by arbitrarily choosing the space direction of light-cone
vector n� along the 3-axis. Therefore, it is justified to
identify �2

? �
2
3 �2 � � 2

3 t, which finally leads us to the
result

 2J�t�GPD 	
Z 1

�1
dxxEM�x; �; t� 	 2J�t�EMT: (H6)

APPENDIX I: CHIRAL PROPERTIES OF THE
FORM FACTORS

In this appendix we study the chiral properties of the
EMT form factors and start with d1�t� because here we face
simpler expressions and the method is more easily ex-
plained. We start from the expression (G1) for d1�t�, and
rewrite its continuum contribution in terms of the Feynman
propagator, see Appendix A of Ref. [34], and expand it in
gradients of the U field. In leading order of this expansion
we obtain
 

d1�t�cont �
75f2

�MN

4t

Z
d3xj2�r

						
�t
p
�P2�cos�� trF�r

3U�

� �r3Uy� � . . . ; (I1)

where the dots denote terms containing three or more
gradients of the U field. Taking t! 0 in (I1), and using
jl�z� �

zl
�2l�1�!!�O�zl�2� for z� 1, we recover the result

for dcont
1 in Eq. (44) of Ref. [42].4

The result in Eq. (I1) can be used to study the chiral
properties of d1�t�. For that the leading large-r (long-
distance) behavior of the integrand in (I1) plays the crucial
role. Therefore, for this purpose it is legitimate to neglect
both, the discrete level contribution which has exponential
falloff at large r and higher order terms in the gradient
expansion which have additional power suppression with
respect to the leading order term in (I1).

In Eq. (G1) we have chosen as a starting point the
expression d1�t� in terms of s�r�; see Appendix G.
Therefore—after taking the flavor-trace trF in (I1), inte-
grating out the angular dependence, restoring the integral
over the full solid angle, and comparing to Eq. (17)—we
read off the expression for s�r�,

 d1�t�cont �
5MN

t

Z
d3xj2�r

						
�t
p
�s�r� with

s�r� � f2
�

�
P0�r�2 �

sin2P�r�

r2

�
� . . .

(I2)

Making use of the long-distance behavior of the profile
(29) we obtain for the large-r behavior of s�r� in the chiral
limit the result quoted in Eq. (62). The large-r behavior of
p�r� quoted there follows from (15).

In order to derive the leading nonanalytic contributions
to d1�t�we choose to work with the following analytic form
of the soliton profile

 P�r� � �2 arctan
�
R2

r2 �1�m�r� exp��m�r�
�
: (I3)

This profile was demonstrated to be a good approximation
to the true self-consistent profile [28]. Since it does not
correspond to the true minimum of the soliton energy, e.g.,
the approximate result for the pressure obtained with this
profile does not satisfy the stability condition (16).
However, all that matters for our purposes is that it exhibits
the correct chiral behavior; see (29). The ‘‘soliton radius’’
R in (I3) is connected to the constant A in (29) by A � 2R2.

Let us focus on the chiral expansion of d1�t�cont at zero-
momentum transfer. We obtain

 dcont
1 ��

4�
3
f2
�MNR3G�m�R�;

G�a� �
Z 1

0
dz

4z6�3� 6az� 7a2z2� 4a3z3� a4z4�e�2az

�z4� �1� az�2e�2az�2
:

(I4)

The zeroth order in the Taylor series of the function G�a�
around a � 0 is G�0� �

R
1
0 dz12z6=�z4 � 1�2 � 9�=

			
8
p

.
To find the linear term in the Taylor expansion of G�a�,

we proceed as follows, c.f. Appendix B of [33] for a similar
calculation. We consider G0�a� at a � 0, substitute z!
y � az, and consider then the limit a! 0. Notice that had
we decided to evaluate (I4) in a finite volume, let us say in a
spherical box of radius D, then the upper limit of the y
integration would be Dm�. Thus, before taking the chiral

4In [42] in the leading order in gradient expansion it was
estimated dLO cont

1;grad � �9:46 to be compared to dcont
1;exact � �8:34

which is the exact result obtained here in proper-time regulari-
zation, i.e. also in this case the gradient expansion provides a
useful estimate for the continuum contribution of a quantity. Let
us take here the opportunity to correct an error in [42]. The level
contribution to d1 is not zero—contrary to the claim in Eq. (43)
of [42]. Instead, it is dlev

1 � 4:88 with the self-consistent proper-
time profile. In fact, the level contribution to d1 (and to the
pressure) cannot be zero. It plays a crucial role in establishing
the stability of the soliton, see Sec. VII. We stress that reliable
results which satisfy the stability condition and all other require-
ments can only be obtained from evaluating numerically the
exact model expressions, with the correct self-consistent profile;
see Sec. VII.

K. GOEKE et al. PHYSICAL REVIEW D 75, 094021 (2007)

094021-20



limit it is crucial to take first the infinite volume limit D!
1 [33], as these two limits do not commute. This yields
G0�a�ja�0 � �8

R
1
0 dy��1� y� 2y2 � y3�e�2y � �5.

Thus, we obtain

 G�a� � G�0� � 5a� higher order terms in a: (I5)

Inserting this result in (I4) we reproduce the chiral limit
result in Eq. (46) of [42] which, however, provides just one
contribution to the chiral limit value of d1. Other contri-
butions are of importance; see Footnote 4.

The situation is different for the linear m� correction to
d1. As explained above, here the expansion (I5) provides,
in fact, the correct leading nonanalytic term in the chiral
expansion of the full expression for d1 in the model.
Combining (I4) and (I5) and eliminating R 	

									
A=2

p
in

favor of gA and f� according to (29) we obtain Eq. (65).
The result for d01�0� in (70) is obtained similarly.

To derive the small t expansion of d1�t� in the chiral limit
in Eq. (69) one can integrate (I2) exactly. The result is a
bulky and not illuminating expression which we do not
quote here. Expanding it for small t yields (69).

Let us turn to the discussion of the form factor M2�t�. At
t � 0 we have for all m� exactly M2�0� � 1; see Eq. (50).
The slope of M2�t� at zero-momentum transfer, however,
has a nontrivial chiral expansion. Because of (66) we need
for that the chiral expansion of d1�t�, see above, and that of
the mean square radius of the energy density. In the above
described way we obtain from the expression (52) for the
energy density in the leading order gradient expansion the
following contribution:

 hr2
Eipart 1 � hr

�2
Ei �

23

2
�4�f2

�R4�
m�

MN
� . . . ; (I6)

which is, however, not yet the complete result for the
following reason. The chiral expansion of the exact model
expression for the energy density (43) in the gradient
expansion contains—in addition to Eq. (52)—also the
term

 �E�r�part 2 �
m2
�f

2
�

4
trF�2�U�Uy�

� m2
�f

2
��1� cosP�r��: (I7)

This term is of ‘‘zeroth order’’ in the gradient expansion. It

arises from the current quark mass term in (25) and is
related to the nucleon-pion sigma-term in the gradient
expansion [33]. The explicit appearance of the current
quark mass has been eliminated in (I7) in favor of m2

� by
means of the Gell-Mann-Oakes-Renner relation which is
valid in the model. The m2

� term (I7) vanishes in the chiral
limit, and was therefore not displayed in (52), but it con-
tributes in linear m� order to (I6). This may not be obvious
at a first glance; however, from (I7) we obtain
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Eipart 2��4�f2

�R4m�

MN

Z 1
0

dz

�
z8�z3�2z�1�e�2z�4a4z4�1�z�4

�z4�a4�1�z�2e�4z�2

��������a�0
� . . .

�
5

2
�4�f2

�R4�
m�

MN
� . . . ; (I8)

and adding up (I6) and (I8) we obtain

 hr2
Ei � hr

�2
Ei � 9�4�f2

�R
4�
m�

MN
� . . . (I9)

It is not necessary to consider chiral corrections due to the

nucleon mass MN � M
�

N � Bm
2
� � . . . because they con-

tribute only at higher orders. (Notice that the CQSM also
consistently describes the chiral expansion of MN [33].)
Eliminating R �

									
A=2

p
in (I9) by means of (29) yields

finally the results for hr2
Ei in (53) and for M02�0� in (66).

Finally we comment on the form factor J�t�. Also in this
case the normalization is trivial, since J�0� � 1

2 , but e.g.
the chiral expansion of J0�0� � 1

6 hr
2
Ji is of interest. Here we

restrict ourselves to the mere observation that hr2
Ji diverges

in the chiral limit.
In contrast to M2�t� and d1�t�, which are nonzero in the

leading order of the large-Nc expansion, J�t� arises from
1=Nc (rotational) corrections. For such quantities the non-
commutativity of the large-Nc and chiral limit may have
more drastic implications [51]. For example, in the slowly
rotating soliton approach (as realized e.g. in the Skyrme
model in Ref. [93]) the isovector electric mean square
radius diverges as 1=m� in the chiral limit—in contrast
to lnm� at finite Nc. For hr2

Ji the situation is completely
analog—as a study in the Skyrme model reveals [94].
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Schäfer, G. Schierholz, and W. Schroers (QCDSF
Collaboration), Phys. Rev. Lett. 92, 042002 (2004).

[56] J. W. Negele et al., Nucl. Phys. B, Proc. Suppl. 128, 170
(2004).

[57] W. Schroers, arXiv:hep-lat/0701003; Nucl. Phys. B, Proc.
Suppl. 153, 277 (2006).

[58] K. Goeke, J. Ossmann, P. Schweitzer, and A. Silva, Eur.
Phys. J. A 27, 77 (2006).

[59] K. Goeke, J. Grabis, J. Ossmann, P. Schweitzer, A. Silva,
and D. Urbano, arXiv:hep-ph/0702031 [Phys. Rev. C. (to
be published)].

[60] J. F. Donoghue and H. Leutwyler, Z. Phys. C 52, 343
(1991).

[61] B. Kubis and U. G. Meissner, Nucl. Phys. A671, 332
(2000); A692, 647(E) (2001).

[62] E. Megias, E. Ruiz Arriola, L. L. Salcedo, and W.
Broniowski, Phys. Rev. D 70, 034031 (2004); E.
Megias, E. Ruiz Arriola, and L. L. Salcedo, Phys. Rev.
D 72, 014001 (2005).

[63] D. Brommel et al., Proc. Sci., LAT2005 (2006) 360.
[64] J. W. Chen, W. Detmold, and B. Smigielski, Phys. Rev. D

75, 074003 (2007).
[65] F. Ellinghaus, W. D. Nowak, A. V. Vinnikov, and Z. Ye,

Eur. Phys. J. C 46, 729 (2006).
[66] M. V. Polyakov and C. Weiss, Phys. Rev. D 60, 114017

(1999).
[67] O. V. Teryaev, Phys. Lett. B 510, 125 (2001).
[68] N. Kivel, M. V. Polyakov, and M. Vanderhaeghen, Phys.

Rev. D 63, 114014 (2001).

K. GOEKE et al. PHYSICAL REVIEW D 75, 094021 (2007)

094021-22



[69] V. Guzey and M. Siddikov, J. Phys. G 32, 251 (2006).
[70] S. L. Adler, J. C. Collins, and A. Duncan, Phys. Rev. D 15,

1712 (1977).
[71] N. K. Nielsen, Nucl. Phys. B120, 212 (1977).
[72] J. C. Collins, A. Duncan, and S. D. Joglekar, Phys. Rev. D

16, 438 (1977).
[73] For a recent review see: S. L. Adler, arXiv:hep-th/

0405040.
[74] D. I. Diakonov and V. Y. Petrov, Nucl. Phys. B245, 259

(1984).
[75] D. I. Diakonov and V. Y. Petrov, Nucl. Phys. B272, 457

(1986).
[76] D. Diakonov, M. V. Polyakov, and C. Weiss, Nucl. Phys.

B461, 539 (1996).
[77] For reviews see, D. I. Diakonov and V. Y. Petrov, in At the

Frontier of Particle Physics, edited by M. Shifman (World
Scientific, Singapore, 2001), vol. 1, pp. 359–415; D.
Diakonov, Prog. Part. Nucl. Phys. 51, 173 (2003);
arXiv:hep-ph/0406043.

[78] D. I. Diakonov and M. I. Eides, Pis’ma Zh. Eksp. Teor. Fiz.
38, 358 (1983) [JETP Lett. 38, 433 (1983)].

[79] A. Dhar, R. Shankar, and S. R. Wadia, Phys. Rev. D 31,
3256 (1985).

[80] S. Kahana and G. Ripka, Nucl. Phys. A429, 462 (1984).
[81] T. Kubota, M. Wakamatsu, and T. Watabe, Phys. Rev. D

60, 014016 (1999).

[82] P. V. Pobylitsa, E. Ruiz Arriola, T. Meissner, F. Grummer,
K. Goeke, and W. Broniowski, J. Phys. G 18, 1455 (1992).

[83] M. Prakash, J. M. Lattimer, J. A. Pons, A. W. Steiner, and
S. Reddy, Lect. Notes Phys. 578, 364 (2001).

[84] M. Diehl, T. Feldmann, R. Jakob, and P. Kroll, Eur. Phys.
J. C 39, 1 (2005).

[85] M. Guidal, M. V. Polyakov, A. V. Radyushkin, and M.
Vanderhaeghen, Phys. Rev. D 72, 054013 (2005).

[86] A. Radyushkin, Ann. Phys. (N.Y.) 13, 718 (2004).
[87] M. Vanderhaeghen, Ann. Phys. (N.Y.) 13, 740 (2004).
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