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The exclusive processes e™ e~ — VP, in the region of which the final state meson momentum is much
larger than the hadronic scale Agcp, are studied in the framework of the perturbative quantum
chromodynamics (PQCD) approach based on the k; factorization. Including the transverse momentum
distribution in the light-cone wave functions, our results are consistent with the experimental measure-
ments. According to our results, many processes have large enough cross sections to be detected at /s =
10.58 GeV. The s dependence of the cross section has been directly studied and our result indicates that
the 1/s3 scaling is more favored than 1/s*. We also find that the gluonic contribution for the processes

involving 1) is tiny.
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I. INTRODUCTION

In exclusive or inclusive processes with large momen-
tum transfers, the production rates and many other phe-
nomena, such as the dimensional rule, the helicity
structure, can be successfully explained by the perturbative
QCD (PQCD) analysis [1,2]. The essential ingredient is the
factorization theorem which ensures that a physical ampli-
tude can be represented as a convolution of a hard scatter-
ing kernel and hadronic distribution amplitudes. The
former can be calculated using the perturbation theory
while the latter, although nonperturbative in nature, are
universal. The light-cone distribution amplitudes which
describe the longitudinal momentum distribution of par-
tons in the hadron, can be determined by the experiments
of various channels. In e e~ — y* — VP at high energies
(V denotes a light vector meson and P denotes a light
pseudoscalar meson), the energy of the light meson is
much larger than its mass and the hadronic scale Agcp.
One important feature of this process is that the meson
moves nearly on the light cone. The energetic light meson
is composed of two valence quarks which are both ener-
getic and collinear. The gluon which generates the quark
pair is very hard and this leads to the application of
perturbative QCD into this process. However, the applica-
tion of the perturbative QCD approach to this simple
process is complicated by the end point problem. If col-
linear factorization is applied, the hard kernel contains the
inverse term of momentum fraction which makes the in-
tegration divergent at the end point. This divergence arises
from the overlap of the soft and collinear momentum
region.' A modified perturbative QCD approach based on
kr factorization, which keeps the intrinsic transverse mo-
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"This overlap has also been attempted to subtract out in
Ref. [3] and new factorization theorems in rapidity space are
subsequently achieved.
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mentum of partons in the meson, is proposed and success-
fully applied to many processes [4,5]. In this approach, the
Sudakov effect is taken into account and the applicability
of perturbative QCD can be extended down to a few GeV
scale. It is claimed that the perturbative calculations could
be consistent at scale about Q ~20Aqcp in this frame-
work. This approach is also called the PQCD approach for
simplicity.

The exclusive two-meson productions in e*e~ annihi-
lation provide an opportunity to investigate the behaviors
of various meson form factors. The dependence of the form
factor on the energy scale can shed light on the internal
strong interaction information. It can also give information
on the wave function of the hadron in terms of its partonic
constituents. In the standard model, the exclusive produc-
tion of hadron pairs at e* e~ colliders can proceed through
a virtual photon or a Z° boson. At energies well below the
mass of Z°, the production proceeds predominantly via the
annihilation of e e~ into a virtual photon. Because of the
invariance of charge conjugation in electromagnetic and
strong interactions, the final state should have the same
charge conjugation quantum number as a photon, i.e., these
processes can only produce final states with charge con-
jugation quantum number C = —1. e*e~ — VP can pro-
ceed via the following form factor:

(V(e, p)P(p)jSr10) = Fyp(s)€ape” piph, (1)

where p,(p,) is the momentum of the vector (pseudosca-
lar) meson and e is the polarization vector of the vector
meson. Here ji" is defined as ji" = gv,q. Equation (1)
indicates that the vector meson is transversely polarized.
On the experimental side, the productions of VP have been
extensively studied: BES and CLEO-c have reported the
continuum productions [6—8]. Recently, the BABAR col-
laboration observed the exclusive reaction e e~ — ¢n at
/s = 10.58 GeV and measured the cross section [9]. Since
kr factorization can give a reliable prediction in other
similar processes, in this paper, we will perform a study
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FIG. 1. The annihilation diagrams in B decays and e'e”
annihilation. In the left diagram, the B meson is annihilated
through the four-quark operator. In the right diagram, the elec-
tron and the positron annihilate into a virtual photon. These two
diagrams have similar topologies.

onete” — y* — VP in this framework and make a com-
parison with the data.

Another interesting reason for investigating the e e™
annihilation is the similarity with the annihilation correc-
tions in B decays, shown in Fig. 1. In charmless two body B
decays, the annihilation diagrams are power suppressed
relative to the emission contribution. But it is found that
in B — 7K, 7 decays, the factorizable annihilation dia-
grams could be important due to the chiral enhancement
factor for operator Og [5]. This enhancement of factoriz-
able diagrams can provide large strong phases and give
large CP asymmetries, which indicates the annihilation
diagrams are of great importance. Comparing the two
diagrams in Fig. 1, we can see that the e* ¢~ annihilations
have similar topologies with the factorizable annihilation
diagrams in B decays. They may provide an ideal labora-
tory to isolate the power correction effect and to find out
whether contributions of annihilations from end point are
important or not for meson productions [10].

The remainder of this paper is organized as follows. In
Sec. II, we present the expression for the cross sections for
ete” — VP in the k; factorization: the first part of this
section is devoted to the discussion on the decay constants
and the distribution amplitudes of mesons, and the second
part is contributed to a brief introduction of the PQCD
approach and factorization formulas for form factors. The
numerical results and discussions are presented in Sec. III.
The last section is our summary.

II. CALCULATION IN k; FACTORIZATION

A. Decay constants and wave functions

The decay constants for a pseudoscalar meson and a
vector meson are defined by

(P(P) G2y, vsq:10) = —ifpP,,
(V(P, ©)lg2v,9:110) = fymye,, (2)
<V(P’ E)|q20',u.VQI|O> = _lf\T/(f,uPu - EVP,u,)r

The pseudoscalar decay constants taken from the Particle
Data Group [11] are shown in Table I. The charged vector
meson longitudinal decay constants are extracted from the
dataon 7~ — (p~, K*7)v,, while the neutral vector meson
longitudinal decay constants are determined from the data
on the electromagnetic annihilation processes V? — e*e™
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TABLE I. Input values of the decay constants of the pseudo-
scalar and vector mesons (in MeV) [11-13].

e Ik fo Jb o fo Ik Jke  fe [y
131 160 209 165 = 9 195 145 = 10 217 185 = 10 231 200 *+ 10

[11]. The transverse decay constants are taken from the
QCD sum rules [12,13], which are also collected in Table 1.

The light-cone distribution amplitudes are defined by the
matrix elements of the nonlocal operators at the lightlike
separations z,, with 72 = 0, and sandwiched between the
vacuum and the meson state. The two-particle light-cone
distribution amplitudes of an outgoing pseudoscalar meson
P, up to twist-3 accuracy, are defined by [14]

(P(P)|32()d1(0)]0) = —% ]0 ‘ dxefx”'z[ysw*(x)
+ myysd’(x)

- m()UMVYSPﬂZV

_ _jg ﬁ L dxe P Lys PdA(x)

+ ysmod” (x)
+ myys(hyp — D" (0)]ap. 3)

where n, v are two light-cone vectors. The pseudoscalar
meson is moving on the direction of n, with v the opposite

. . M3
direction. my = £

is the chiral enhancement parame-
mg, +m

92

ter. x is the momentum fraction carried by the positive
quark g,. We have performed the integration by parts for
the third term and ¢ (x) = £ L ¢?(x). The explicit form of
distribution amplitudes for pseudoscalar mesons have been
studied in the QCD sum rule approach and other methods
[15,16]. In principle, they are factorization scale depen-
dent. Here we use the following form for leading-twist

distribution amplitudes:

_3a

7 x(1 = 0[1 +a7C?(1)], 4)

¢ (x)

6
1) = HI%X(I — D[l + a5 C* (1) + a5 CP(1)], (5)
where ¢t = 2x — 1 and Gegenbauer polynomials are de-
fined as
(=3, (=352 -1 6)

The Gegenbauer moments at & = 1 GeV are determined

as
ag’K =0.25 £0.15, ak =0.06x003 (7)

Since the momentum transfer at /s = 10.58 GeV is large
enough, the use of asymptotic forms for twist-3 distribu-
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tion amplitudes is acceptable. Besides, we also use these
forms at /s = 3.67 GeV for simplicity. The asymptotic
forms of twist-3 distribution amplitudes are given by

fx fx
T W =TE1-29. ®

As for the mixing of 1 and 7', we use the quark flavor
basis proposed by Feldmann and Kroll [17], i.e., these two
mesons are made of 7in = (iiu + dd)/+/2 and 5s:

o) =

()l o
with the mixing matrix,
__(cosf —sinf
u(o) = ( sinf  cos6 ) (10)

where the mixing angle 6 = 39.3° = 1.0°. In principle,
this mixing mechanism is equivalent to the singlet and
octet formalism, which is shown in [18]. But the advantage
is transparent, since only two decay constants are needed:

i
_ nP/-Lr
ﬁf an

Olsy*ysslny(P)) = if P~

Olay*ysn|n,(P)) =

We assume that the wave function of 7in and 5§s is the
same as the pion’s wave function, except for the different
decay constants and the chiral scale parameters:

fn=(1.07 £0.02)f,, fs = (1.34 £0.06)f,. (12)

The chiral enhancement factors are chosen as

_ 1
min = . [m%coszﬁ + m?, sin*0
2
- %(m%, — m?%) cosf sinﬁ} (13)
K — 1 2 20 + 2 o; 20
0 = %, | Mwcos mysin
— Lo (m2, — m2) cos siné 14
W m,, — my) cosf sind |, (14)
with m,, = 5.6 MeV and m; = 137 MeV at u =1 GeV
[16].

In this work, we also investigate the gluonic contribution
for isosinglet pseudoscalar meson 7 and %’. This contri-
bution has been attempted in [18] with a negligible effect in
the B — 7 form factor and a few percents to B — n'. The
leading-twist gluonic distribution amplitudes of the 7,, and
1, mesons are defined as [19]
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2f, Cp 8% n? pP”
b n “F
<7]n(P)|A (Z)A ](O)|O> \/— 4\/— N2 1 ,LLVpU'n_ . P
Lo e RO
Xﬁ dxe™P A=)
fy Cp 8% n? P”
(n,(P)IAf, (2)A%,(0)|0) = 5 j NT =TS p
G
f dxe ixP-z d)s (x)), (15)
where  Af (2)A%(w) = [AL(DAL(w) — A,“,(Z)AZ(W)]/2
and the function [20],
¢G5, (x) = x2(1 — x2B3Y ) (2x — 1),
(16)

(1) = 5.

The gluon labeled by the subscript p carries the momen-
tum fractions x based on the above definition. The two
Gegenbauer coefficients Bj and Bj could not be the same
in principle. However, it is acceptable to assume B} =
B = B,, since there are large uncertainties in their values.
Here the range of B, has been extracted as B, = 4.6 = 2.5
[19].

Following the similar procedures as for the pseudoscalar
mesons, we can derive the vector meson distribution am-
plitudes for the transverse polarization up to twist-3 [21]:

(V(P, €)|G25()914(0)10) =% [ dxet My dr by (x)

+ éT?‘ﬁ (x) + MVZEMVp0757
V(x)]aﬁr (17)

where we have adopted the convention €°!>3 = 1 for the
Levi-Civita tensor e*®#,

The twist-2 distribution amplitudes for transversely po-
larized vector can be expanded as

P
><6Tn v’

PT(x) = jf (1 =01 +af,G2(0]  (18)
3 Z) 1 ~3/2
bo(x) = %X(l — [l + a3, ()], (19)
BT (x) = 3?* x(1 = 21 + ak.C¥* (1) + at,.CY(1)],
(20
fT
¢l (x) = N3 L1 - 01 + a3, (0] @D

The Gegenbauer moments have been studied extensively in
the literature [21,22]; here we adopt the very recent up-
dated form [12,13]:
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ai. = 0.04 = 0.03, asz =ay, = 0.15%0.07,

a3 =011 £0.09,  az, = 0.0673%. (22)
As for the twist-3 distribution amplitudes ¢4, and ¢V, there
are no recent updates associate with those updates for

twist-2 distribution amplitudes [12,13], we also use the
asymptotic form:

v — 3f_V —1)2
¢y (x 8\/5[1 + (2x —1)%] .
Plx) = 3f_v(1 — 2x).

4./6

The above discussions concentrated on the longitudinal
momentum distribution and we intend to include the trans-
verse momentum distribution functions of the pseudoscalar
and vector mesons. But at present, the intrinsic transverse
momentum dependence of wave function is still unknown
from the first principle of QCD. As an illustration, we use a
simple model in which the dependence of the wave func-
tion on the longitudinal and transverse momentum can be
factorized into two parts [23]:

¥(x kr) = ¢(x) X Z(ky), (24)

where ¢(x) is the longitudinal momentum distribution
amplitude discussed above and 2 (k) describes the trans-
verse momentum distribution. 2(k;) satisfies the normal-
ization conditions:

dekTE(kT) =1 25)

In the following, we will use a Gaussian distribution:

25_2 — 32k2
S(ky) =~ exp(—Bk}), (26)

where the parameter [ characterizes the shape of the
transverse momentum distribution. The numerical value
for B can be fixed by the condition that the root mean
square transverse momentum (k2)'/? should be at the order
of Aqcp. Their relation can be derived from

[ids [ PRrGlpt k)P _ 1
Jodx [ @krlp(x kp)l> 2%

If we choose the root mean square transverse momentum
(k2)1/2 = 0.35 GeV, then 8% =4 GeV~2. In the PQCD
approach, the integration will be transformed to the b
space (coordinate space) and it is convenient to use the
Fourier transformation of 2 (ky):

(k7) =

27

2

2(b) = fdsze_ikT'bE(kT) = exp(—é&). (28)

It can be observed that, in the limit 8 — oo, X(b) can be
simply replaced by 1.
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B. Form factor and cross section in k; factorization

In the center of mass frame, we define ¢, g5, p;, and p,
to be the four-momenta of et, ¢~ in initial states, vector
(V) and pseudoscalar meson (P) in final states, and define
ki(2) and x;(y) to be the momenta and momentum fractions
of the positive quarks inside V and P, respectively. The
center mass energy of this process is denoted by Q = ./s.
Using the definition of the form factor in Eq. (1), we can
obtain the cross section as

2
”g”"vachIﬁ/Z(s), (29)

olete” = VP) =
with

B(s) = [1 _ (my *;mP)Z}[l _(my —smp)z} 30)

There are four different types of diagrams contributing
to the productions of vector and pseudoscalar mesons in
et e annihilations, to the leading order of the strong and
electromagnetic coupling constants. The first type of dia-
grams contributing to this process is displayed in Fig. 2.
These diagrams give the dominant contribution. The dia-
grams in Fig. 3 contribute to the processes involving 1 and
7', while the diagrams in Fig. 4 only contribute to the
processes involving the neutral vector mesons p°, w, and
¢. Although these diagrams are suppressed by «,,,, they
can be enhanced by s/ AéCD. This mechanism is similar to

the enhancement in penguin-dominated B decays [24] and
the so-called fragmentation mechanism in e"e”™ — VV
processes [25]. It is also interesting to explore this effect
in efe” — VP. For ete” = KK and ete”™ — ptor™,
the two photon nonfragmentation diagrams can give their
contributions as in Fig. 5. But these diagrams suffer the
suppression from electromagnetic coupling constant «,,,
which can be neglected safely.

We begin with a brief review of the PQCD approach.
The basic idea of the PQCD approach is that it takes into
account the transverse momentum of valence quarks which
results in the Sudakov factor. The form factor, taking the
first diagram in Fig. 2 as an example, can be expressed as
the convolution of the wave functions ¢, ¥p and the hard
scattering kernel Ty by both the longitudinal and the
transverse momenta:

@) (b)
(c) (d)

FIG. 2. Dominant contribution of ete™ — VP.
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(c)

FIG. 3. Gluonic contributions.

1
Fu(VP) = jo dx,dx, ] Py, K,y Ky, pro i)

X TH(xl’ X2, Q’ kT]’ szr /'L)l//P(XZ’ sz) P2 Iu‘)
(€29)

Through the Fourier transformation, the above equation
can be expressed as

i d*b, db,
F = dx,d — =P
u(s) j;) X1 XZ[(ZW)2 (277.)2
X TH(xl: x2, Q) bl) b2) M)TP('XZ: b2) pZJ M) (32)
Here fPi(xj, b, p; ) are the Fourier transformation of

i(x;, kg, pj, u), where the subscript i denotes V or P,

and j indicates 1 or 2.

In the above expression, the double logarithms, arising
from the overlap of the soft and collinear divergence, have
been resummed to result in the Sudakov factor [26]

exp[—s(x;, b;, Q)
- S(] - Xj, b], Q)]j)l(-x]r b]’ Iu’) (33)
The exponent s(¢, b;, Q), ¢ =

V(xl»bl’pl: M)

?i(xj’ b;, pj, W) =

xj,or 1 — x;,is expressed as

%
se,0= [ L S o) + a0 |
(34

where the anomalous dimensions A and B to one loop are
given by

2 2yg—1
A=cp%, =% ln<e ) (35)
T 37

::::>m/wm/w<::::0 P P
(@) (®)

FIG. 4. Enhanced diagrams for the neutral vector mesons p°,
w, and ¢ production.
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FIG. 5. Two photon nonfragmentation diagram. This contribu-
tion is suppressed by «,,, and can be neglected.

with Cr =
loop runmng couphng constant,

Nl and v being the Euler constant. The one-

a(p) _ 4 36
T Bo ln(Mz/AéCD) ’ (56)

with the coefficient

- 33 — an’
3

where ny is the number of the active quark number. We
require the relation of the involved scales £Q/+/2 >
1/b ;> A as indicated by the bounds of the variable p in
Eq. (34). The QCD dynamics below 1/b; scale is regarded
as being nonperturbative which can be absorbed into the
initial condition P;(x, b;, w).

The form factor, as a physical observable, is independent
of renormalization scale w, but the functions P and Ty still
contain single logarithms from ultraviolet divergences,
which can be summed using the renormalization group
equation method. This renormalization group analysis ap-
plied to Ty gives

(37)

t d i
TH()C]', bj, Q, /.L) = CXp|: _4f TM‘)/q(as(/l)):|
w
X Ty(x;,b;, Q, 1), (38)

where y, = —a,/ is the quark anomalous dimension in
the axial gauge and ¢ is the largest mass scale involved in
the hard scattering,

t = max(y/x,0, 1/by, by). (39)

The scale \/x,Q is associated with the longitudinal mo-
mentum of the quark propagator and 1/b; is relate to the
transverse momentum. The large-b; behavior of P is sum-
marized as

Ti(xj’ b]’ pj’ lu‘) = exp[_s(x]’ 7 Q) - S(l ]’ ]’ Q)

[ jd—“vqwm)}

X Pi(x,b;, 1/b)), (40)
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where j’i(xj, b, 1 /b j) is the wave function discussed
above:
Pi(x,b;, 1/b;) = ¢(x;,1/b;) X Z(b)). 41
The threshold resummation [27,28] can also play an
important role in e" e~ — VP processes. The lowest-order
diagrams [Figs. 2(a) and 2(d)] give an amplitude propor-
tional to 1/(x3(1 — x;)) and 1/(x3x,), respectively. In the
threshold region with x, — 0 [to be precise, x, ~
O(AéCD /s)], additional collinear divergences are associ-
ated with the internal quark. The QCD loop correction to
the electromagnetic vertex can produce the double loga-
rithm a,In’x, and resummation of this type of double
logarithms leads to the Sudakov factor S,(x,). Similarly,
resummation of a,In’x; due to loop corrections in the
other diagrams lead to the Sudakov factor S,(x;). The
Sudakov factor from threshold resummation is universal,
independent of flavors of internal quarks, twists, and the
specific processes. To simplify the analysis, the following
parametrization has been used [28]:

21421 (3/2 + ¢)

N N ()

[x(1 = 2], (42)

with the parameter ¢ = 0.3. This parametrization, symmet-
ric under the interchange of x and 1 — x, is convenient for
evaluation of the amplitudes. It is obvious that the thresh-
old resummation modifies the end point behavior of the
meson distribution amplitudes, rendering them vanish
faster at x — O.

Combing all the above ingredients, we obtain the facto-
rization formula for the contribution from Fig. 2(a):

1 0
Fa(VP) = 167TCFQr1 f dxldef bldblbzdbz
0 0

X @p(xa, by)l @y (xy, by)
- d)l\;'(xl’ bl)]E(ta)h(l - X1, X2, bl’ bZ)’ (43)

where i and E are defined by [5]

By, 32 by by) = (%T)zsxm[e(bl — b)) HY(530b))

X Jo(/X30by) + 0(by — b)) H (\/5;0b,)

X Jo(yB0b ) H (JX15:0by),  (44)
E(tu) = ax(ta) exp[_Sl(ta) - S2(ta)]: (45)

where J, and H(()l) are the Bessel functions, respectively,
t, = max(\/x;Q0, 1/by, 1/by) and r; = My /Q.
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Similarly, for the other diagrams, the amplitudes are
1 ]
Fb(VP) = _167TCFQf dxldef bldblbzde
0 0
X E(tp)h(xy, 1 = X1, by, by) X {r(x; = 1)

X [@7(x1, by) + ¢Y(xy, b)) (xa, ba)

+ 2ryT (x1, b)) P4 (x2, by)}, (46)

1 ()
F.(VP) = —167TCFQf dxldxzf b,db,b,db,
0 0

X E(t.)h(1 = xp, x1, by, by) X [r1x1(¢p7 (x1, by)
- ¢71J(x1, bl))¢?(xz, b,)

+ 2rypT (x1, b)) P4 (x9, by)], 47
F (VP) = —167COr [1 dx,dx, [°° bydb, bydb,
0 0
X E(t)h(xy, 1 = x3, by, by) X (f(xy)
+ ¢V (x)) P4 (xa, by), (48)

with r, = my/Q. The factorization scales #; are chosen as

tb = maX(»\ll - .XIQ, l/bl, 1/b2),
tc = maX(\/.EQ, 1/bl) 1/b2)7
t; = max(y/1 — x,0, 1/b,, 1/b,).

If the final state meson is not K* or K, the distribution
amplitudes are completely symmetric or antisymmetric
under the interchange of x; and 1 — x;. Then one can easily
obtain

F,(VP) = F4(VP),

(49)

F,(VP) = F.(VP).  (50)

For the flavor-singlet pseudoscalar meson 7 and 7/,
there are additional contributions from the two-gluon dia-
grams as displayed in Fig. 3, even if they may be sup-
pressed by the gluonic distribution amplitudes. However, it
is still worthwhile to investigate the numerical contribution
in order to make our calculations as complete as possible.
The computations of these diagrams are similar to those
shown in Fig. 2. The explicit calculations show that
Fig. 3(a) does not contribute to the transition amplitude,
due to the antisymmetry of the two gluons. The amplitudes
of the other two diagrams are given by

C%J2N, [1
Mf dx,dx,
0

Fe(vns) = —87Qr 3(N2 1)

X [ " bydbybydbyE(1,)h(xs, x1, by, by)
0

X [(xy + D)@Y(xy, by) — (x — D ph(xy, by)]

¢§7(x2, b,)
X x(1—x)’

(D
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f,CL2N; 1
Ff(vns)zgﬂ-erm]deldXZ

X f” bydb,bydbyE(t))h(1 — x5, 1 — x,, by, by)
. :

X (x; = D[(xy = 2)pY(x1, by) — x20%(x1, by)]
% ¢§,;(x2, bz)

) 52
x(1 = x5) 42
for e e~ — Vn, process with
t, = max(y/x;Q, 1/by, 1/b,),
(53)

t; = max(y/1 — x;0, 1/by, 1/b,).

It should be pointed out that the factor “2” from the
exchange of two identical gluons in the final states has
been added in the above equations. The amplitude for
ete” — Vn, can be easily obtained by replacing the
corresponding decay constant with an additional factor
V2 from Egs. (51) and (52).

Furthermore, there are also contributions from the tran-
sition of photon radiated from one valence quark in pseu-
doscalar meson into a vector meson directly, which have
been presented in Fig. 4. Although these diagrams may be
suppressed by the coupling constant of electromagnetic
interactions, they are also enhanced by the almost on-shell
photon propagator compared with the first type diagrams,
especially for the processes with a very large center mass
energy. These diagrams can also be calculated according to
kr factorization; however, we will simply adopt collinear
factorization due to disappearance of infrared divergence
for these two diagrams. These two amplitudes are equal
after integrating the momentum fractions carried by the
valence quark of the meson. Hence, we obtain the ampli-
tudes corresponding to them as follows:

127TaemefP
M

F,(VP) = F,(VP) = -

1+db). (59

The form factors for the explicit channels can be easily
obtained from the combinations of the eight amplitudes
F,_;. To be more specific, we can write them as

Fp+77_ = %[Fa(pﬂ-) + Fb(PW)]’ (55)

Fpom = {F.(pm) + Fy(pm)] + {F,(pm) + Fy(pm)],
(56)

Fow = [F0m) + Fylom]+ 1o [Fo(pm) + Filpm)]
(57)

2

FdMTO = _1_8[Fg(¢77) + Fh(d)w)]’ (58)
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Fgoog- =3 F,(K*K) + F,(K*K)] = J{F.(K*K)
+ F(K*K)], (59)

Fyogo = —YF,(K*K) + Fy(K*K)] — {[F.(K*K)
+ F(K*K)]. (60)

The form factor of e*e™ — pn) can be written as the
combination of its 7in and 5s component:

FV7I = COS eFvnn — sin HFan\_, (61)
Fy,y = sin@Fy, +cosOFy,, (62)
where V = p°, w, ¢ and
1
Fpoy, = [Falpm,) + Fy(pn,)] + E[Fe(pnn)

5

Fp()m = %[Fe(pns) + Ff(pns):] - %[Fg(pns)

+ Fylpny)] (64)
Fwnn = %[Fa(wnn) + Fh(wnn)] + g[Fe(wnn)
+ Efam)] + S [F(om,) + Fyom)] 69)
Fwnx = g[Fe(wns) + Ff(wns)] - g[Fg(wns)
+ Fh(wns)]’ (66)
Fgy = — %[Fe(dmn) + F(pn,)] — S;f[Fg(sbnn)

Fg, = = 21F($m,) + Fy(ém)] = 3[F(ém)

+ Fy (@] = 5[ (ém) + (@] (69

III. NUMERICAL RESULTS AND DISCUSSIONS

A. Cross section

Making use of the distribution amplitudes and the inputs
listed before, one can easily obtain the cross sections for
the process et e~ — PV. Here we would like to present the
results of cross sections at /s = 3.67 GeV and 10.58 GeV
in Table II together with the data measured by CLEO-c and
the BABAR collaboration. The different scenarios S1, S2,
S3 denoting different transverse momentum distribution
functions, which will be discussed in the next subsection.
As the longitudinal decay constants of the vector mesons
and the pseudoscalar meson decay constants are precisely
determined, the uncertainties from these inputs are ne-
glected. Therefore the uncertainties shown in Table II are
from the transverse decay constants of the vector meson
given in Table L.
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TABLE II. Results of ete™ — VP cross sections at /s = 3.67 GeV and ./s = 10.58 GeV using three different transverse
momentum distribution functions, denoted as S1, S2, and S3, respectively. The experimental results from the CLEO-c and BABAR
collaborations are also included.

s = 3.67 GeV Vs = 10.58 GeV

Channel os1 (pb) Ts2 (pb) os3 (pb) Texp (PD) o1 (th) sy (th) o3 (fb) Texp (fb)
p- 38207 1.9255 29707 31558704 0.64 504 0.50Z503 0.62%5,03
wm’ 28.27%3 13.8*11 21.2%17 15.21738%13 52704 4.1%93 5.0104
o’ 1.2X107%  12x10% 12x107* <2.2 211072 21x1073  21x1073
K™K~ 5.6704 2.9+01 4.3403 LO*3*03 1.2+0%2 0.8379% L1490
K*KO 34.8734 17.3%12 26.4118 23.5%3531 7.1+04 56107 6.8704
p°n 16609 8.1703 125407 10.0+22*19 3.3707 2.4%02 3.1702

0.,/ +0.6 +0.3 +0.4 +4.7+0.2 +0.1 +0.1 +0.1
p’n 8.67 4.3* 6.6" 21547 2.1F 1.5% 2.0%
o ‘o (I 0 100 4 OE +1.9+02 At A 203 PR +0.5+0.1
én 19.17y, 9626 14.6Z5¢ 21505503 43207 3.3%07 4120, 29505501
én' 22.6%14 1157938 17.451) <12.6 5.8703 4.410% 54104

From Egs. (55) and (56), we can see that, if neglecting
the fragmentation contribution F' o h> the cross sections for
production of p™ 77~ and p°# in e* e annihilation should
be the same. At /s = 3.67 GeV, the fragmentation cannot
give a large contribution as the on-shellness enhancement
is not strong. Thus theoretical calculation predicts that the

ratio Ry = % should be around 1. From Table II,
one can see that this prediction is consistent with the
CLEO-c results. At higher energies, the enhancement ef-
fect becomes more important. This effect can weaken
ete™ — p°7° by about ten percent at /s = 10.58 GeV,
relative to e*e™ — p* ™. If the center mass energy is
large enough, the contribution from diagrams in Fig. 4 will
be dominant over the other contributions.

The process ete~ — K*K has previously been calcu-
lated in the PQCD (k; factorization) and has been shown to
give the correct order of magnitude for the form factors
[29]. But they assume SU(3) symmetry using asymptotic
wave functions. In order to show the SU(3) symmetry
breaking effect in eTe™ — K*K, we define the ratio:

R2=

(69)

_ — F.+F,
awe~WWLwHﬁﬁr

+ - =) F.+F,
S KK _E~F,
ole’e ) R

If we assume that SU(3) symmetry works well, then the
light-cone distribution amplitude of K and K* is com-
pletely symmetric under the exchange of the momentum
fractions of quark and antiquark. We will have F, + F, =
F.+ F,; then R, =4 can be derived directly from
Egs. (59) and (60). One of the SU(3) symmetry breaking
effects is that the s quark is heavier than the n(= u, d)
quark and carries more momentum in the final state light
K™ meson. The gluon which generates s is harder than
the 7in generator, then the former coupling constant is
smaller due to the more off-shell gluon. Consequently,

this leads to a smaller contribution to the form factor |F,, +
F,| than |F. + F,|. Therefore R, is larger than 4. Using the
cross sections listed in Table II, we obtain our result for R,:

R, = 6.0, (70)

where only the central value is given. The CLEO-c results
indicate that there is a large deviation from the SU(3) limit

(8]:
R, =235%)1 =122 (71)

The central value of the experimental results for R, seems
too large, but as the uncertainties are also large, our result
could be consistent with results from the CLEO-c
collaboration.

For the processes involving ) such as the process
ete” — ¢n, we find that the gluonic contribution is
around 1% to the total cross section at /s = 10.58 GeV.
This conclusion is consistent with the study on the B —
n") form factor [18]. The cross sections of ete™ —
p(w)n” and w7 at /s = 3.67 GeV calculated in ky
factorization are consistent with the experimental values.
The result for ee™ — ¢n at /s = 10.58 GeV is also
consistent with the experimental data. This indicates that
k7 factorization is an effective method to deal with the
infrared divergences in exclusive processes.

The measurement of cross sections at different center
mass energy +/s can shed light on the s dependence. This
dependence is expected as 1/s* [30] or 1/s* [1,31]. Our
results displayed in Table II at two different scales /s =
10.58 GeV and 3.67 GeV seem to favor the 1/s3 scaling. It
should be noticed that we neglected the Q = /s depen-
dence of the light-cone wave function and next-to-leading
order contributions in our calculation. Therefore the s
dependence study of the cross sections is not a complete
one.
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As the quark or the gluon could be on-shell, we expect
the amplitudes receive an imaginary part which is similar
with the exclusive B decays [5,32]. The imaginary part in
ete” — ¢mat/s = 10.58 GeV is about twice as large as
the real part in magnitude and a large strong phase is
consequently generated. The contributions from Fig. 3
are small; contributions from Fig. 4 are small and real;
the four diagrams in Fig. 2 give comparable contributions
which are the main origin of the imaginary part. Unlike the
B decays, a strong phase here does not make any physical
meaning, since there is no electroweak phase for
interference.

From Table II, we can see that, at \/s = 10.58 GeV, the
cross sections for many processes, especially e*e”™ —
K%K% and e*e™ — ¢, are large enough to be detected.
We suggest the experimentalists measure these channels.

In the above, we only concentrate on the exclusive
production of a vector and a pseudoscalar. Applications
to PP and VV productions are straightforward. The dia-
grams in Fig. 2 will give dominant contributions, where the
final state must have negative charge conjugation quantum
number C= —1. Then only three channels for PP are
allowed through one photon annihilation:
mtm, ete”—> K"K, and ete” — K°K°. If U-spin is
well respected, d and s quarks are symmetric in K and the
cross section of e*e™ — K°K? is zero. The nonzero result
for ee” — K°K? can reflect the size of U-spin symmetry
breaking. For production of V'V, the analysis is similar.
Two flavor-singlet vector mesons cannot be produced
through one photon annihilation diagram either, but these
productions could receive large additional contributions
[25].

ete  —

B. Theoretical uncertainties

One of the major uncertainties in our computations
comes from the distribution amplitudes for the pseudosca-
lar and vector mesons. The dependence on the longitudinal
distribution amplitudes has been studied intensively in the
exclusive B decays [33]. They will give 10%—20% uncer-
tainties here too. In the following, we will focus on the
transverse momentum distribution. In the PQCD approach,
the intrinsic transverse momentum is taken into account.
The resummation of large double logarithms results in the
Sudakov factor which suppresses the large b region’s con-
tribution. As we can see from Eq. (28), the transverse
momentum distribution function also suppresses the con-
tribution from the large b region. For momentum transfer
of a few GeV, the transverse momentum distribution func-
tion damps more than the Sudakov factor [23]. This sup-
pression makes the PQCD approach more self-consistent.
So we expect that there is an obvious suppression for the
production rate of e*e™ — VP at /s = 3.67 GeV if the
transverse momentum distribution amplitude is taken into
account. However, at present, it is still a lack of first-
principle study on the intrinsic transverse momentum dis-
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tribution. The simple form is chosen as the Gaussian form
discussed in Eq. (28) or the following one,

(72)

2(x, b) = exp[ - x(l_x)bz}

44>

where a is the transverse size parameter as 8. As a simple
test, we can choose a = 1 which is consistent with the
value used in [33]. Comparing with the form in Eq. (28),
we can see that at x = 1/2, the two different forms coin-
cide. For small or large x, the second form cannot give the
same strong suppression as the first form [Eq. (28)]. We
can expect the suppression of the results of taking the
second form is less effective than the first one. In
Table II, we give three different kinds of results: without
the intrinsic momentum distribution (denoted as S1), i.e.
3 = 1; with the first distribution as Eq. (28) (denoted as
$2); with the second kind as Eq. (72) (denoted as S3).
Comparing the different results in Table II, we find that at
small center mass energy /s = 3.67 GeV the suppression
from transverse momentum distribution is more effective:
the suppression is 50% for S2 and 20% for S3. Since the
results depend on the explicit form of transverse momen-
tum distribution, more experimental results are needed.
In this calculation, we only present the leading order
calculations. The complete next-to-leading order calcula-
tions are much more complicated [34]. For a simple esti-
mate of the size of the next-to-leading order contribution,
we use the traditional method varying Aqcp and the facto-
rization scale 7 in Egs. (39), (49), and (53): Agcp =
(0.25 £ 0.05) GeV; changing the hard scale ¢ from 0.75¢
to 1.25¢ (not changing 1/b;). We find that our results are
not sensitive to these changes. This implies that the next-
to-leading order contribution is probably not very large.

IV. CONCLUSIONS

In this paper, we have studied the exclusive processes
ete” — VP in the PQCD approach based on the k; facto-
rization. We give three different kinds of results corre-
sponding to different transverse momentum distribution
functions. With the proper distribution function, our results
can be consistent with the experimental results. The two
different transverse momentum distribution functions S2
and S3 can give about 50% and 20% suppression, respec-
tively, at center mass energy /s = 3.67 GeV. We have
included the gluonic contribution for the processes involv-
ing 7) meson whose effect is found tiny. We have also
included the contribution in which the neutral vector me-
sons p°, w, and ¢ are produced by an additional photon.
This contribution could be neglected at center mass energy
/s = 3.67 GeV, while these diagrams could induce about
10% difference between eTe” — p°7° and ete™ —
pT o™ at \/s = 10.58 GeV. The s dependence of the cross
section has been directly studied which indicates that the
1/s scaling is more favored than 1/s%.
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