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We have extended the Polyakov-Nambu-Jona-Lasinio (PNJL) model for two degenerate flavors to
include the isospin chemical potential (�I). All the diagonal and mixed derivatives of pressure with
respect to the quark number (proportional to baryon number) chemical potential (�0) and isospin
chemical potential up to sixth order have been extracted at �0 � �I � 0. These derivatives give the
generalized susceptibilities with respect to quark and isospin numbers. Similar estimates for the flavor
diagonal and off-diagonal susceptibilities are also presented. Comparison to lattice QCD (LQCD) data of
some of these susceptibilities for which LQCD data are available show similar temperature dependence,
though there are some quantitative deviations above the crossover temperature. We have also looked at the
effects of instanton induced flavor mixing coming from the UA�1� chiral symmetry breaking ’t Hooft
determinantlike term in the NJL part of the model. The diagonal quark number and isospin susceptibilities
are completely unaffected. The off-diagonal susceptibilities show significant dependence near the cross-
over. Finally we present the chemical potential dependence of specific heat and speed of sound within the
limits of chemical potentials where neither diquarks nor pions can condense.

DOI: 10.1103/PhysRevD.75.094015 PACS numbers: 12.38.Aw, 12.38.Mh, 12.39.�x

I. INTRODUCTION

Two of the most important features of strongly interact-
ing matter at low temperature and chemical potentials are
the phenomenon of color charge confinement and chiral
symmetry breaking. However, with the increase in tem-
perature and/or chemical potential, various phases may
appear with different confining and chiral properties. At
present both theoretical and experimental endeavors are
underway to map out the phase diagram of QCD.

In the limit of infinite quark mass, the thermal average of
the Polyakov loop can be considered as the order parameter
for the confinement-deconfinement transition [1]. Though
in the presence of dynamical quarks the Polyakov loop is
not a rigorous order parameter for this transition, it still
serves as an indicator of a rapid quark-hadron crossover.
Motivated by this observation, Polyakov-loop based effec-
tive theories have been suggested [2–4] to capture the
underlying physics of the confinement-deconfinement
transition. The essential ingredient of these models is an
effective potential constructed out of the Polyakov loop
(and its complex conjugate). More recently, the parameters
in these effective theories have been fixed [5,6] using the
data from lattice QCD (LQCD) simulations (similar com-
parisons of perturbative effects on Polyakov loop with
lattice data above the deconfinement transition was studied
in [7]).

With the small quark masses the QCD Lagrangian has a
partial global chiral symmetry, which is, however, broken
spontaneously at low temperatures (and hence the absence
of chiral partners of low-lying hadrons). This symmetry is
supposed to be partially restored at higher temperatures
and chemical potentials. The chiral condensate is consid-
ered to be the order parameter in this case. Various effec-
tive chiral models exist for the study of physics related to
the chiral dynamics, e.g. the sigma model [8] and the
Nambu-Jona-Lasinio (NJL) model [9,10]. The parameters
of these models are fixed from the phenomenology of the
hadronic sector.

Various studies of the QCD inspired models indicate
(see e.g. Refs. [11–15]) that at low temperatures there is
a possibility of first order phase transition for a large
baryon chemical potential �Bc . This �Bc is supposed to
decrease with increasing temperature. Thus, there is a first
order phase transition line starting from �T � 0; �B �

�Bc� on the �B axis in the �T;�B� phase diagram which
steadily bends towards the �T � Tc;�B � 0) point and
may actually terminate at a critical end point (CEP) char-
acterized by �T � TE;�B � �BE�, which can be detected
via enhanced critical fluctuations in heavy-ion reactions
[16]. The location of this CEP has become a topic of major
importance in effective model studies (see e.g. Ref. [17]).
For �B � 0 LQCD has a complex determinant which
hinders usual importance sampling techniques. However,
recently the CEP was located for the physical [18] and for
somewhat larger [19] quark masses using the reweighting
technique of [20], and for the Taylor expansion method
in [21].

*Electronic address: swagato@tifr.res.in
†Electronic address: munshigolam.mustafa@saha.ac.in
‡Electronic address: rajarshi.ray@saha.ac.in

PHYSICAL REVIEW D 75, 094015 (2007)

1550-7998=2007=75(9)=094015(14) 094015-1 © 2007 The American Physical Society

http://dx.doi.org/10.1103/PhysRevD.75.094015


For nonzero isospin chemical potential (�I) models and
effective theories [22] find an interesting array of possible
phases. The most important phenomenon that is supposed
to happen is a transition to the pion condensed phase close
to �I �m�. This has also been supported by lattice simu-
lations [23], which does not suffer from the complex
determinant problem for �I � 0 and �B � 0.

In this paper we study some of the thermodynamic
properties of strongly interacting matter using the
Polyakov-loop enhanced Nambu-Jona-Lasinio (PNJL)
model [24,25]. In this model one is able to couple the
chiral and deconfinement order parameters inside a single
framework. While the NJL part is supposed to give the
correct chiral properties, the Polyakov-loop part simulates
the deconfinement physics. In fact studies of Polyakov
loop coupled to chiral quark models have become quite
fashionable these days (see e.g. Ref. [26]).

The initial motivation to couple Polyakov loop to the
NJL model was to understand the coincidence of chiral
symmetry restoration and deconfinement transitions ob-
served in LQCD simulations [27]. While the NJL part is
supposed to give the correct chiral properties, the
Polyakov-loop part simulates the deconfinement physics.
Indeed the PNJL model worked well to obtain the ‘‘coin-
cidence’’ of onset of chiral restoration and deconfinement
[24,25]. Recently the introduction of the Polyakov-loop
potential [25,28] has made it possible to extract estimates
of various thermodynamic quantities. The pressure, scaled
pressure difference at various quark chemical potential �0

(or baryon chemical potential �B, where �B � 3�0),
quark number density, and the interaction measure were
extracted from the PNJL model in Ref. [28] for two quark
flavors, and all the quantities compared well with the
LQCD data. Following this, some of us made a compara-
tive study [29] of the quark number susceptibility (QNS)
and its higher order derivatives with respect to �0 with
LQCD data. Here the qualitative features match very well
though there are some quantitative differences. Very re-
cently the spectral properties of low-lying meson states
have been studied in [30].

Encouraged by these results, in this paper we have
extended the the PNJL model to incorporate the effects
of nonzero isospin chemical potential (�I). The motivation
for this is that it enables one to calculate the isospin number
susceptibility (INS) and its higher order derivatives with
respect to �0. LQCD data on these quantities are also
available [31]. Thus comparing the results of PNJL for
these quantities with that for the LQCD data will provide
an opportunity to perform some stringent tests on the PNJL
model.

Moreover, once both the QNS and the INS are known
one can proceed further to compute the flavor-diagonal and
off-diagonal susceptibilities separately. Since the second
order flavor off-diagonal susceptibility measures the cor-
relation among ‘‘up’’ (u) and ‘‘down’’ (d) flavors [32], this

quantity provide a direct understanding to the extent in
which the PNJL model captures the underlying physics of
QCD.

In our attempt to have a closer look at the u-d flavor
correlation within the PNJL model, we have modified the
NJL part of the PNJL model by using the NJL Lagrangian
proposed in [33]. This Lagrangian has a term that can be
interpreted as an interaction induced by instantons and
reflects the UA�1� anomaly of QCD. It has the structure
of a ’t Hooft determinant in the flavor space, leading to
flavor mixing. By adjusting the relative strength of this
term one can explicitly control the amount of flavor mixing
in the NJL sector. This modified NJL Lagrangian reduces
to the standard NJL Lagrangian [9,10] in some particular
limit. This modification of the PNJL model has allowed us
to study the effects of such flavor mixing on various
susceptibilities, specially on the second order off-diagonal
one which measures the u-d flavor correlation.

Investigation of the flavor-mixing effects brings us to an
important issue regarding the NJL-type models. Within the
framework of a NJL model it has been found [34] that for
�I � 0, in the T ��0 plane, there is a single first order
phase transition line (which ends at a critical end point) at
low temperatures. But for �I � 0 this single line separates
into two first order phase transition lines because of the
different behavior of the u and d quark condensates [35].
Thus there is a possibility of having two critical end points
in the QCD phase diagram [35]. This has also been ob-
served in random matrix models [36], in ladder QCD
models [37], as well as in hadron resonance gas models
[38]. It was then argued in Refs. [33,39] that the flavor
mixing through the instanton effects [40,41] may wipe out
this splitting. Later studies found that the splitting is con-
siderable when �I is large [38,42] or �B is large [43]. We
shall restrict ourselves only to small chemical potentials
and calculate the susceptibilities with the modified PNJL
model for different amounts of flavor mixing. Comparing
these with LQCD data may give us some idea about the
actual amount of the flavor mixing that is favored by the
LQCD simulations.

Our next objective is to study the specific heat at con-
stant volume (CV) and speed of sound (vs) of strongly
interacting systems. These two quantities are of major
importance for heavy-ion collision experiments. While
CV is related to the event-by-event temperature fluctuations
[44] and mean transverse momentum fluctuations [45] in
heavy-ion collisions, the quantity vs controls the expansion
rate of the fireball produced in such collisions and hence an
important input parameter for the hydrodynamic studies
[46–49]. The temperature dependence of these quantities
was reported earlier in Ref. [29]. For the sake of complete-
ness, in this paper we also have studied the quark number
and isospin chemical potential dependence of CV and vs.

The plan of this paper is as follows. In Sec. II, we will
present our formalisms. First, we will discuss briefly the
extended PNJL model which we are going to use. Next, in
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the same section, formalisms regarding the Taylor expan-
sion of pressure (with respect to �0 and �I) and formulas
for specific heat CV and speed of sound vs will be given. In
Sec. III we will present our results and compare some of
those with the available LQCD data. Finally, we conclude
with a discussion in Sec. IV. Detail mathematical expres-
sions regarding the model can be found in the appendix.

II. FORMALISM

A. PNJL model

The PNJL model at nonzero temperature T and quark
number chemical potential �0 was introduced in

Refs. [25,28]. Here we extend it to include the isospin
chemical potential �I. We have introduced separate
chemical potentials �u and �d for the up and down quark
flavors, respectively, in the NJL model following
Refs. [33,34]. To further extend it to include the
Polyakov-loop dynamics we have followed the parameteri-
zation of the PNJL model used in Ref. [28]. We start with
the final form of the mean-field thermodynamic potential
per unit volume that we have obtained. It is given by
(further details about the model can be found in the appen-
dix)

 

� �U��; ��; T� � 2G1��2
u � �2

d� � 4G2�u�d �
X
f�u;d

2T
Z d3p

�2��3
fln�1� 3��� ��e��Ef��f�=T�e��Ef��f�=T

� e�3�Ef��f�=T� � ln�1� 3� ����e��Ef��f�=T�e��Ef��f�=T � e�3�Ef��f�=T�g �
X
f�u;d

6
Z d3p

�2��3
Ef���

2 � ~p2�: (1)

Here for the two flavors the respective quark condensates
are given by �u � h �uui and �d � h �ddi

1 and the respective
chemical potentials are �u and �d. Note that �0 � ��u �
�d�=2 and �I � ��u ��d�=2. The quasiparticle energies

are Eu;d �
���������������������
~p2 �m2

u;d

q
, where mu;d � m0 � 4G1�u;d �

4G2�d;u are the constituent quark masses and m0 is the
current quark mass (we assume flavor degeneracy). G1 and
G2 are the effective coupling strengths of a local, chiral
symmetric four-point interaction. � is the 3-momentum
cutoff in the NJL model. U��; ��; T� is the effective
potential for the mean values of the traced Polyakov-loop
� and its conjugate ��, and T is the temperature. The
functional form of the potential is
 

U��; ��; T�

T4 � �
b2�T�

2
����

b3

6
��3 � ��3� �

b4

4
� ����2;

(2)

with

 b2�T� � a0 � a1

�
T0

T

�
� a2

�
T0

T

�
2
� a3

�
T0

T

�
3
: (3)

The coefficients ai and bi were fitted from LQCD data of
pure gauge theory. The parameter T0 is precisely the tran-
sition temperature for this theory, and as indicated by
LQCD data its value was chosen to be 270 MeV [50–
52]. With the coupling to the NJL model the transition does
not remain first order. In this case from the peak in d�=dT
the transition (or crossover) temperature Tc comes around
227 MeV.

Before we move further we note some important fea-
tures of this model:

(i) Since the gluons in this model are contained only in a
static background field, the model would be suitable
to study the physics below T � 2:5Tc. Above this
temperature the transverse degrees of freedom be-
come important [53].

(ii) In general, pion condensation takes place in NJL
models for �I > m�=2. Also there is a chiral tran-
sition for �0 � 340 MeV above which diquark
physics become important. For simplicity we ne-
glect both the pion condensation and diquarks2 and
so restrict our analysis to �I < 70 MeV and �0 <
200 MeV.

(iii) As discussed in the appendix, for G2 � 0 the full
symmetry of the Lagrangian in the chiral limit
(m0 � 0) is SUV�2� 	 SUA�2� 	UV�1� 	UA�1�.
The coefficient G2 is interpreted as inducing in-
stanton effects as it breaks the UA�1� symmetry
explicitly by mixing the quark flavors. By using a
parameterization G1 � �1� ��G0 and G2 � �G0

(following Ref. [33]), one can tune the amount of
instanton induced flavor mixing by varying �. For
� � 0 there is no instanton induced flavor mixing,
and for � � 1 the mixing becomes maximal. We
shall look into the effects of this mixing in the
susceptibilities.
The form of the NJL part in Eq. (1) is a general-
ization of the standard NJL model, which we get
when G1 � G2, and �u � �d. In fact the potential
in Eq. (1) becomes exactly the same as that of

1Here we deviate from the convention of defining the sigma
condensates from those of Refs. [28,29].

2Very recently diquarks have been discussed in Ref. [54] and
pion condensation in Ref. [55].
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Refs. [28,29] if we use � � 0:5 and putG0 equal to
half the four-point coupling G in those references.
We shall use this value for G0 in this work.

(iv) For the NJL sector without coupling to the
Polyakov loop (i.e. setting � � �� � 1) one can
easily see that the expression for � in Eq. (1), is
invariant under the transformations �u ! ��u
‘‘and/or’’�d ! ��d. This implies that the physics
along the directions of �0 � 0 and �I � 0 at any
given temperature are equivalent. However, inclu-
sion of the Polyakov loop turns off this symmetry.
Now � is invariant only under the simultaneous
transformation �u ! ��u ‘‘and’’ �d ! ��d.
This is a manifestation of the CP symmetry which
implies that � is symmetric only under the simul-
taneous transformation �! �� and �u;d ! ��u;d

and vice versa. Thus coefficients of � and �� are
found to be equal when�0 � 0, and different when
�I � 0. In the T ��I plane we shall have � � ��,
and everywhere else � � ��. This is reminiscent of
the complex fermion determinant for nonzero �0.
This will be seen to have important consequences
for the extraction of susceptibilities.

(v) On the other hand, the quark condensates �u and �d
are equal to each other whenever �0 � 0 or �I � 0
[see, e.g., Eq. (A18)] in the NJL as well as PNJL
model. This can be seen by inspecting the thermo-
dynamic potential � and remembering that we are
using G1 �G2 � G0, and also the fact that for
�0 � 0, � � ��. Now G1 and G2 are only coupled
to the �u and �d. It is clear from Eq. (1) that
whenever �u � �d, the couplings G1 and G2

come in the combination G1 �G2 � G0 �
constant. This means that the physics is completely
independent of these couplings whenever either
�0 � 0 or �I � 0.

B. Taylor expansion of pressure

The pressure as a function of temperature T, quark
chemical potential �0 and isospin chemical potential �I
is given by

 P�T;�0; �I� � ���T;�0; �I�: (4)

Following usual thermodynamical relations, one can
show that the first derivative of pressure with respect to
�0 gives the quark number density. The second derivative
is the quark number susceptibility. In LQCD since usual
Monte Carlo importance sampling fails for nonzero�0, the
QNS and higher order derivatives computed at �0 � 0 can
be used as Taylor expansion coefficients to extract chemi-
cal potential dependence of pressure.

Given the thermodynamic potential �, our job is to
minimize it with respect to the fields �u, �d, �, and ��,
using the following set of equations:

 

@�

@�u
� 0;

@�

@�d
� 0;

@�

@�
� 0;

@�

@ ��
� 0:

(5)

The values of the fields so obtained can then be used to
evaluate all the thermodynamic quantities in mean-field
approximation. The crossover temperature for �0 � �I �
0 was obtained in Ref. [29] and was found to be Tc �
227 MeV. The field values obtained from Eq. (5) are then
put back into � to obtain pressure from (4). We can then
expand the scaled pressure at a given temperature in a
Taylor series for the two chemical potentials �0 and �I,

 

P�T;�0; �I�

T4 �
X1
n�0

Xn
j�0

n!

j!�n� j�!
cjkn �T�

�
�0

T

�
j
�
�I

T

�
k
;

k � n� j; (6)

where,

 cjkn �T� �
1

n!

@n�P�T;�0; �I�=T
4�

@��0

T �
j@��I

T �
k

���������0�0;�I�0
: (7)

The n � odd terms vanish due to CP symmetry. Even for
the n � even terms, due to flavor degeneracy all the co-
efficients cjkn with j and k both odd vanish identically. In
this work we evaluate all the 10 nonzero coefficients (in-
cluding the pressure at �0 � �I � 0) up to order n � 6.
Some of these coefficients have been measured already on
the LQCD [31,56]. In our earlier work [29], we compared
the 4 coefficients for �I � 0 with those of the LQCD data
using improved actions [31]. Here we shall be able to
compare 3 more coefficients with LQCD data and also
predict the behavior of the other 3 coefficients.

Let us now identify the coefficients which we shall
compare with the LQCD data. The first set is given by

 cn�T� �
1

n!

@n�P�T;�0�=T
4�

@��0

T �
n

���������0�0
� cn0

n : (8)

These coefficients were already computed up to eighth
order and compared to LQCD data to sixth order in [29].
The new set of coefficients to be compared with the LQCD
data up to n � 6 are

 

cIn�T� �
1

n!

@n�P�T;�0; �I�=T4�

@��0

T �
n�2@��I

T �
2

���������0�0;�I�0
� c�n�2�2

n ;

n > 1: (9)

The remaining coefficients we obtain are c04
4 , c24

6 , and c06
6 .

To complete the comparison with the LQCD data we
have looked at the flavor-diagonal (cuun ) and flavor off-
diagonal (cudn ) susceptibilities defined as
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 cuun �
cn0
n � c

�n�2�2
n

4
; and cudn �

cn0
n � c

�n�2�2
n

4
: (10)

The second order flavor-diagonal and off-diagonal suscep-
tibilities are given by

 

�uu�T;�u � 0; �d � 0�

T2
�
@2P�T;�u;�d�

@�2
u

���������u��d�0

� 2cuu2 ;

and

�ud�T;�u � 0; �d � 0�

T2 �
@2P�T;�u;�d�

@�u@�d

���������u��d�0

� 2cud2 :

In this work we have computed all the coefficients using
the following method. First the pressure is obtained as a
function of�0 and�I for each value of T, and then fitted to
a sixth order polynomial in �0 and �I. The quark number
susceptibility, isospin number susceptibility, and all other
higher order derivatives are then obtained from the coef-
ficients of the polynomial extracted from the fit. In the fits
we have used only the even order terms.

C. Specific heat and speed of sound

Given the thermodynamic potential �, the energy den-
sity � is obtained from the relation,

 � � �T2 @��=T�
@T

��������V
� �T

@�

@T

��������V
��: (11)

The rate of change of energy density � with temperature
at constant volume is the specific heat CV which is given
as,

 CV �
@�
@T

��������V
� �T

@2�

@T2

��������V
: (12)

For a continuous phase transition one expects a diver-
gence in CV , which, as discussed earlier, will translate into
highly enhanced transverse momentum fluctuations or
highly suppressed temperature fluctuations if the dynamics
in relativistic heavy-ion collisions is such that the system
passes close to the CEP in the T ��B plane.

The square of velocity of sound at constant entropy S is
given by

 v2
s �

@P
@�

��������S
�
@P
@T

��������V

�
@�
@T

��������V
�
@�

@T

��������V

�
T
@2�

@T2

��������V
:

(13)

Since the denominator is nothing but the CV , a diver-
gence in specific heat would mean the velocity of sound
going to zero at the CEP.

Given the relations Eq. (12) and (13), we first obtain the
��T;�0 � 0� from the PNJL model. We then obtain the
derivatives using the standard finite difference method. To
get points close enough we have used cubic spline inter-
polations. This procedure has been repeated for various
values of �0 and �I.

III. RESULTS

A. Taylor expansion of pressure

As discussed in Sec. II B, we extract the Taylor expan-
sion coefficients by fitting the pressure as a function of �0

and�I at each temperature. Data for pressure was obtained
in the range 0<�0 < 50 MeV and 0<�I < 50 MeV at
all the temperatures. Spacing between consecutive data
was kept at 0.1 MeV. We obtain all possible coefficients
up to sixth order using the gnuplot3 program. The least-
squares of all the fits came out to be 10�14 or less. This
method was already used in our earlier work [29] where we
checked the reliability of such fits. Here again we have
reproduced all those coefficients satisfactorily. We shall
first discuss the results with the standard flavor mixing in
the NJL model parameterization (i.e. with G1 � G2) and
then discuss the results for minimal (G2 � 0) and maximal
(G1 � 0) flavor mixing.

1. G1 � G2

We start by presenting our results for the PNJL model
with the standard NJL Lagrangian, i.e., G1 � G2 � G0=2.
Note that this is the case studied in the PNJL models of
Refs. [25,28,29] but without the isospin chemical potential.

We present the QNS, INS and their higher order deriva-
tives with respect to �0 in Fig. 1. We also have plotted the
LQCD data from Ref. [31] for quantitative comparison. At
the second order of Taylor expansion i.e. n � 2 we find
(also observed earlier in [29]) that the QNS c2 compares
well with the LQCD data. On the other hand, the INS cI2
quickly reaches its ideal gas value above Tc (around 2Tc) in
our model calculations, whereas the LQCD values are
lower and match with the value of c2. Note that in the
present form of the model the Polyakov loop itself rises a
little above 1 and saturates. This leads to the INS to rise
slightly above 1 at high temperatures. At the fourth order
we see that the values of c4 (also observed in [29]) in the
PNJL model matches closely with those of LQCD data for
up to T � 1:05Tc and deviates significantly thereafter. The
coefficient cI4 is close to the LQCD data for the full range
of T up to 2Tc.

Earlier expectation [29,57] was that the mean-field
analysis may not be sufficient and hence the higher order
coefficient c4 in the PNJL model shows significant depar-
ture from lattice results. This also should have meant that
the INS cI2 should be closer to LQCD data than cI4.

3See http://www.gnuplot.info/.
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However, our results show that the INS cI2 is significantly
different from the LQCD data above Tc, but cI4 is quite
consistent. Further, we see from Fig. 1 that both the sixth
order coefficients c6 and cI6 are quite consistent with the
LQCD results. We now give a qualitative explanation for
the PNJL results and try to understand the behavior of the
coefficients above Tc.

We pointed out in Sec. II A that in the thermodynamic
potential Eq. (1), the Polyakov loop couples to �0 and its
conjugate couples to ��0 due to CP symmetry. As ob-
served in the SU�N� matrix model [58] and also in the
PNJL model [28,29], this difference in coupling leads to
splitting of the Polyakov loop and its conjugate for any
nonzero �0. Thus even at high temperatures when the
Polyakov loop is close to 1, it decreases with increasing
�0 and its conjugate increases (see left panel of Fig. 2).
This means that the �0 dependence of pressure is not the
same as that for an ideal gas. Hence the coefficients c2 and

c4 are both quite off from their respective ideal gas values.
Also note that though c6 is close enough, it is still distinctly
different from zero. On the other hand for �0 � 0, the
Polyakov loop as well as its conjugate couples to both the
�I and ��I. They are, thus, equal (see right panel of
Fig. 2) and also found to be almost constant for small
�I. So the temperature dependence of the INS and its �I
derivatives should reach the ideal gas behavior above Tc.
For the coefficients which are mixed derivatives of �0 and
�I, the behavior should be somewhere in between. And
indeed we see that cI2, cI4, and cI6 in Fig. 1 are quite close to
their respective ideal gas values above Tc. Thus the LQCD
results that show almost equal values of QNS and INS
indicate that the splitting between the Polyakov loop and
its conjugate in the �I � 0 direction for T > 1:5Tc is
almost negligible (also supported by pQCD). This splitting
was taken to be absolutely zero in the recent report with the
PNJL model in Ref. [54].
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In order to investigate these discrepancies between the
results form the PNJL model and the LQCD data more
closely, we have also calculated the flavor-diagonal (cuun )
and off-diagonal (cudn ) susceptibilities, defined in Sec. II B,
up to sixth order. These are shown in Fig. 3. Except for cuu2 ,
all the other LQCD results for flavor diagonal susceptibil-
ities are close to their respective ideal gas values from
around 1:2Tc onwards. The PNJL model values for the
diagonal coefficient cuu2 seem to be more or less consistent
with the LQCD data. The most striking discrepancy with
the LQCD data shows up in the second order flavor off-
diagonal susceptibility cud2 . As discussed earlier, cud2 sig-
nifies the mixing of u and d quarks through the contribu-
tion of the two disconnected u and d quark loops. While the
LQCD data shows that this kind of correlation between the
u-d flavors are almost zero just away form Tc, the PNJL
model results remains significant even up to 2Tc. The

negativity of cud2 (see Fig. 3) indicates that the dominant
correlation is between u quarks and d antiquarks and vice
versa, i.e., pionlike. Hence putting in the dynamical pion
condensate may throw some light on this issue. Also,
addition of any new couplings (e.g. as shown for the
isoscalar-vector and isovector-vector couplings for NJL
model in Ref. [59]) may have important consequences
for these suscpetibilities.

Again from Fig. 3, the fourth order diagonal (cuu4 ) as
well as the off-diagonal (cud4 ) coefficients show a behavior
similar to c40

4 . Whereas the LQCD data reaches the ideal
gas value above Tc, the PNJL values are quite distinctly
separated. Finally, at the sixth order the behavior for both
diagonal and off-diagonal coefficients in the PNJL model
and LQCD are quite consistent.

We now present the temperature dependence of the
remaining nonzero coefficients (Fig. 4). c04

4 is the fourth
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order diagonal coefficient in the isospin direction. In con-
trast to c40

4 we see that c04
4 approaches the ideal gas value

quite fast above Tc. The behavior of c06
6 is quite similar to

its counterpart c60. This is in accordance to the expectation,
as discussed earlier. The same is true for the coefficient c24

6 .

2. G1 � G2

Since the PNJL model has a problem in reproducing the
LQCD data for cud2 which is a measure of the flavor-flavor
correlation, it is interesting to have a closer look at the
effect of flavor mixing on different susceptibilities. As
discussed earlier, the parameterization G1 � �1� ��G0

and G2 � �G0 enables one to tune the instanton induced
flavor mixing by varying the value of � between 0 and 1.
Here we discuss the two extreme cases of � � 1 (maximal
mixing) and � � 0 (zero mixing). We have recalculated all
cn and cIn, up to n � 6, for � � 0, and, 1. We found that all
the diagonal coefficients, including cI2 and c4 whose be-
havior are the most drastically different in the PNJL model
and in LQCD, are independent of the values of �. As a
consequence, the second order flavor off-diagonal suscep-
tibility [cud2 � �c

I
2 � c2�=4] is also unaffected by the in-

stanton induced flavor-mixing effects.
The above fact can be understood from the following

reasoning. We mentioned in Sec. II A that the quark con-
densates �u and �d are equal to each other for either of the
cases �0 � 0 and �I � 0. This is clear from Eq. (A18).
NowG1 andG2 couple only to the �u and �d. So for �u �
�d, we only get the combination G1 �G2 � G0, which is
a constant. Thus none of the physics in the �0 � 0 and
�I � 0 directions depend on the value of �, implying that
the diagonal derivatives in these two directions will also be
independent of �.

However, the mixed derivatives can have dependence on
�. This is because the values of �u and �d can be different
when both �0 and �I are together nonzero. This was seen
in Ref. [33] for the normal NJL model. But those authors
also found that there is a critical value of �c 
 0:11 above
which the condensates �u and �d become equal even for
both �0 and �I being nonzero. Here, for the PNJL model
we have found that all the mixed derivatives up to sixth

order are exactly equal for the two cases � � 0:5 (standard
mixing used in NJL and PNJL models) and � � 1 (maxi-
mal mixing) which is in accordance to the results of
the above reference. We hope to obtain the value for �c
for the PNJL model in the future. For � � 0, all the off-
diagonal coefficients were found to differ from those at
� � 0:5.

The left-most panel in Fig. 5 shows the independence of
cud2 on �. The rest of the figures show one representative
coefficient each for n � 4, and 6. As can be seen, the
instanton effects quite significantly suppress the tempera-
ture variation of these coefficients near Tc. Also it can be
observed from Fig. 5, that the LQCD data favors a larger
amount of instanton induced flavor mixing.

B. Dependence of CV and v2
s on �0 and �I

Here we present the chemical potential dependence of
specific heat CV and the speed of sound vs. The range of
the three representative values of �0 and �I are such that
neither the diquark physics nor the pion condensation
becomes important. In the ideal gas limit the expression
for CV is as a function of temperature T and either of the
chemical potentials �0 or �I is given by CV=T

3 �

�74�2=15� � 6��2
0;I=T

2�. Thus, for large temperatures
and not so large chemical potentials, it can be expected
that the CV is more or less independent of �0;I ’s. This is
borne out in the PNJL model as seen in Fig. 6. At low
temperatures, however, there can be a nontrivial contribu-
tion from chemical potential. As illustrated in Fig. 6, the
low temperature behavior is away from ideal gas, but there
is a significant difference in the values of CV as a function
of�0. In the range of�I considered, even for T < Tc there
seems to be no significant isospin effects. Another inter-
esting feature is that as a function of �0, the peak of CV
which appears at Tc shifts towards lower temperatures.
This signifies that the transition temperature may decrease
and also the nature of transition may change as the chemi-
cal potentials increase. A decrease of Tc with increasing�0

and�I is consistent with what has been found on the lattice
[60,61]. We hope to address this issue through the analysis
of chiral susceptibility in a future publication.
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The speed of sound in the ideal gas limit is the same
���
3
p

for any given temperature and chemical potential. As
shown in Fig. 7 the v2

s for different �0 and �I merges
towards the ideal gas value at large temperatures. However,
even above Tc, there is significant increase in v2

s for
increase in �0. So for nonzero quark matter density the
speed of sound is higher near Tc and this may have im-
portant contribution to thermalization of the matter created
in relativistic heavy-ion collision experiments. Again there
seems to be negligible isospin dependence of c2

s in the
range of temperatures studied. From Fig. 7 we note that in
the PNJL model even with �0 as large as 0:8Tc, the v2

s
never reaches a value as large as 0.2 near or below T � Tc
which was used in [62] to describe the rapidity spectra.

IV. DISCUSSIONS AND SUMMARY

We have extended the PNJL model of Ref. [28] by the
introduction of isospin chemical potential. Using this we
have studied the behavior of strongly interacting matter
with two degenerate quark flavors in the phase space of T,
�0, and�I, for small values of the chemical potentials. We
have extracted 10 coefficients of Taylor expansion of pres-
sure in the two chemical potentials up to sixth order. Some
of these coefficients were compared with available LQCD
data. The quark number susceptibility and isospin suscep-
tibility show order parameterlike behavior. A quantitative

comparison shows that the quark number susceptibility
reaches about 85% of its ideal gas value up to temperature
of about 2Tc, consistent with LQCD results. However, the
isospin susceptibility reaches its ideal gas value by this
temperature. This is in contrast to LQCD results where
both the susceptibilities are almost equal from around
1:2Tc onward. Similarly, the higher order derivatives for
�I approach the ideal gas behavior much faster compared
to those for �0. In contrast, though both the QNS and INS
in LQCD deviate from their ideal gas values, the higher
order derivatives reach their ideal gas limit quickly. The
values of the mixed derivatives in the PNJL model shows a
behavior somewhat in between. On the lattice however, the
mixed derivatives are almost zero (i.e., the ideal gas value)
above Tc.

Thus some of the coefficients in the PNJL model differ
from the LQCD data and one could hold the mean-field
analysis responsible for this departure. But if this argument
were true then the higher order derivatives obtained in the
PNJL model should depart from the LQCD data more than
the lower order coefficients, which is not the case. Against
this expectation, we have found a very nice pattern in the
PNJL results which can be understood in terms of the
behavior of the Polyakov loop. The dependence of the
Polyakov loop and its conjugate on temperature and the
chemical potentials is extremely important. For �I � 0
they have different values when �0 is varied. This makes
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all the coefficients which are derivatives of pressure with
respect to �0 alone, to deviate from the ideal gas behavior.
For �0 � 0, however, the Polyakov loop and its conjugate
are equal and hence both reach the ideal gas value above
Tc. Thus the coefficients which are derivatives of pressure
with respect to�I alone, all reach their respective ideal gas
values above Tc. The mixed derivatives are found to be
somewhere in between. Nonetheless, we hope to look into
the effects of fluctuations in the future.

In order to have a closer look at the discrepancy between
the PNJL results and LQCD data, we have also calculated
the flavor-diagonal and flavor off-diagonal susceptibilities
up to sixth order. We have found that the second order
flavor off-diagonal susceptibility, which indicates the cor-
relation among up and down quarks, is significantly away
from zero even up to T � 2Tc. On the other hand, LQCD
results [63] show that correlation among the flavors in the
second order off-diagonal susceptibility is largely gov-
erned by the interaction of the quarks with the gauge fields
and is almost independent of the presence of the quarks
loops. This motivated us to study the instanton induced
flavor-mixing effects within the framework of the PNJL
model. Unfortunately, we found no effect of flavor mixing
on any diagonal QNS and INS, and hence on the second
order flavor off-diagonal susceptibility. We speculate one
possibility to reconcile PNJL and LQCD data, that is to
keep the pion condensate as a dynamical variable and
perform the calculations. In fact there are indications
[64] that at zero temperature and in the chiral limit, pion
condensation can be catalyzed by an external chromomag-
netic field. We hope to present these results in the future.

On the other hand, flavor-mixing effects on the mixed
susceptibilities of quark and isospin chemical potentials
indicate that large flavor mixing is favored by the LQCD
data. This may have important consequences [33] on the
phase diagram of the NJL model at low temperature and
large baryon chemical potential.

Apart from the possible improvements for the Polyakov-
loop potential, inclusion of pionic and diquark fluctuations,
etc. we also intend to include terms in the NJL part with six
point couplings to take proper account of the quark number
fluctuations in the low temperature phase.

We also have investigated chemical potential depen-
dence of specific heat and speed of sound. The specific
heat sort of becomes independent of chemical potential just
above Tc. Below Tc there is some significant effect from
both the chemical potentials �0 and �I. Consistent with
LQCD findings [60,61], the peak in specific heat towards
lower temperatures with increasing chemical potentials
indicates a decrease in the transition temperature. We
plan to make a more detailed investigation of the location
of the phase boundary. The speed of sound, on the other
hand, increases with the increase of either of the chemical
potentials in almost the whole range of temperatures. But
this dependence becomes milder as one goes to higher

temperatures. Thus with a proper implementation of the
PNJL equation of state into the hydrodynamic studies of
elliptic flow, one may be able to make some estimates of
both the temperature and densities reached in the heavy-
ion collision experiments.
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APPENDIX

Here we present the complete details of the PNJL model
used in our work. First we discuss the NJL model in the
complete space of temperature T and the up and down
flavor chemical potentials �u and �d (or equivalently the
quark chemical potential�0 and isospin chemical potential
�I) [33,34]. Then we extend it to couple with the Polyakov
loop.

1. The NJL model

The NJL model Lagrangian for two flavors can be
written as [33,34]

 

L � L0 �L1 �L2; (A1a)

L0 � � �i@=�m� ; (A1b)

L1 � G1�� �  �2 � � � ~� �2 � � � i	5 �2 � � � i	5 ~� �2�;

(A1c)

L2 � G2�� �  �2 � � � ~� �2 � � � i	5 �
2 � � � i	5 ~� �

2�;

(A1d)

where

  � �u; d�T; �G1� � �G2� � �energy��2;

m � diag�mu;md�:
(A2)

We shall assume flavor degeneracy mu � md � m0. For
m0 � 0 the symmetries of the different parts of the
Lagrangian (A1) are

 

L0: SUV�2� 	 SUA�2� 	UV�1� 	UA�1�; (A3a)

L1: SUV�2� 	 SUA�2� 	UV�1� 	UA�1�; (A3b)

L2: SUV�2� 	 SUA�2� 	UV�1�: (A3c)

L2 has the structure of a ’t Hooft determinant, det� �q�1�
	5�q� � det� �q�1� 	5�q� [10] and breaks UA�1� axial sym-
metry. This interaction can be interpreted as being induced
by instantons and reflects the UA�1� anomaly of QCD.

We are interested in the properties of this Lagrangian at
nonzero temperatures T and chemical potentials �u and
�d. Equivalently, one also can use the quark number
chemical potential �0 � ��u ��d�=2 and the isospin
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chemical potential �I � ��u ��d�=2. In the mean-field
approximation we consider the two quark condensates
�u � h �uui and �d � h �ddi. The pion condensate ~� is as-
sumed to be zero (which is true in the NJL model for �I <
m�=2). Then the thermodynamic potential is obtained as
 

��T;�u;�d� �
X
f�u;d

�0�T;�f;mf� � 2G1��2
u � �2

d�

� 4G2�u�d; (A4a)

�0�T;�f;mf� � �2Nc
Z d3p

�2��3
Ef���

2 � ~p2�

� 2NcT
Z d3p

�2��3
ln�1� e��Ef��f�=T�

� 2NcT
Z d3p

�2��3
ln�1� e��Ef��f�=T�;

(A4b)

where the energy Ef and constituent quark mass mf is
given by

 Ef �
������������������
m2
f � p

2
q

; (A5)

 mf � m0 � 4G1�f � 4G2�f0 ; f � f0 2 fu; dg:

(A6)

Finding the stationary points of the thermodynamic
potential with respect to �u and �d, i.e., solving the
coupled equations @�=@�u � 0 and @�=@�d � 0, one
gets the gap equations

 

�f ��2Nc
Z d3p

�2��3
mf

Ef
����2�p2��n�Ef�� �n�Ef��;

f� u;d; (A7a)

n�Ef� �
1

1� exp�Ef��f�
; and

�n�Ef� �
1

1� exp�Ef��f�
: (A7)

The constituent mass mf for one flavor depends in general
on both the condensates [see Eq. (A6)] and therefore the
two flavors are coupled. Chiral symmetry [SUA�2�] is
broken spontaneously for �f � 0. Let us now make the
parameterization

 G1 � �1� ��G0; and G2 � �G0 (A8)

with a fixed value of G0. Tuning the value of � one can
control the flavor mixing in the Lagrangian. We consider
some of the cases below.

(1) � � 0: This implies G2 � 0 i.e. the UA�1� symme-
try breaking term L2 drops out and hence L has no
flavor mixing.

(2) � � 1: HereG1 � 0, and thus L2 completely domi-
nates the coupling. The flavor mixing in L is thus
‘‘maximal.’’

(3) � � 1=2: In this case we have G1 � G2 � G0=2.
So the Lagrangian L � L0 �G0�� �  �2 �
� � i	5 ~� �2�, is the standard NJL model [9]. Here
also the UA�1� symmetry is broken which is com-
mensurate with the fact that in nature the 
 particle
is much heavier than the �’s.

2. Extension to PNJL

Our aim is to extend the PNJL model introduced in
Refs. [25,28] to include isospin chemical potential. To
achieve this we now include the Polyakov loop and its
effective potential to the NJL model described above. The
Lagrangian becomes

 L PNJL � L0 �L1 �L2 �U���A�; ���A�; T�: (A9)

The only part of the NJL sector that is modified is L0

which now becomes

 L 0 � � �iD=�m� ; (A10)

where

 D� � @� � iA�; A� � ��0A
0;

A��x� � gA�
a �x��a=2:

(A11)

A�
a �x� are SU�3� gauge fields and �a are Gell-Mann

matrices.
U���A�; ���A�; T� is the effective potential expressed in

terms of the traced (over color) Polyakov loop (with peri-
odic boundary conditions) and its charge conjugate:

 � �
TrcL
Nc

; �� �
TrcL

y

Nc
;

L� ~x� � P exp
�
i
Z 

0
d�A4� ~x; ��

�
;  �

1

T
;

A4 � iA0:

(A12)

We shall be working in the mean-field limit. For sim-
plicity of notation we shall use � and �� as their respective
mean fields. � is the order parameter for deconfinement
transition. In the absence of quarks � � �� and deconfine-
ment is associated with the spontaneous breaking of the
Z�3� symmetry. Conforming to this symmetry and parame-
terizing the LQCD Monte Carlo data one can write down
an effective potential for � and ��. Following Ref. [28], we
write
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U��; ��; T�

T4 � �
b2�T�

2
� ���

b3

6
��3 � ��3� �

b4

4
� ����2;

(A13a)

b2�T� � a0 � a1

�
T0

T

�
� a2

�
T0

T

�
2
� a3

�
T0

T

�
3
:

(A13b)

At low temperature U has a single minimum at � � 0,

while at high temperatures it develops a second one which
turns into the absolute minimum above a critical tempera-
ture T0. � and �� will be treated as independent classical
fields. The mean-field analysis of the NJL part of the model
proceeds in exactly the same way as in the previous case.
Using �u and �d as the independent quark condensates
(and neglecting ~�) one gets the expression for the thermo-
dynamic potential,

 

��T;�u;�d� �U��; ��;T��
X
f�u;d

�0�T;�f;Mf�� 2G1��2
u��2

d�� 4G2�u�d; (A14a)

�0�T;�f;Mf� ��2Nc
Z d3p

�2��3
Ef���2� ~p2�� 2T

Z d3p

�2��3
Trc ln�1�Le��Ef��f�=T�

� 2T
Z d3p

�2��3
Trc ln�1�Lye��Ef��f�=T�; (A14b)

where Eu;d �
���������������������
m2
u;d � p

2
q

and mu;d � m0 � 4G1�u;d � 4G2�d;u.
Note that with � � 0:5 and �u � �d � � and if for the coupling G and condensate � of Ref. [28] one uses G � 2G0

and � � �u � �d, then the thermodynamic potentials here and in Ref. [28] are exactly equal.
Using the identity Tr lnX � lndetX one can write for a given flavor f,

 

lndet�1� Le��Ef��f�=T� � lndet�1� Lye��Ef��f�=T� � ln�1� 3��� ��e��Ef��f�=T�e��Ef��f�=T � e�3�Ef��f�=T�

� ln�1� 3� ����e��Ef��f�=T�e��Ef��f�=T � e�3�Ef��f�=T�:

(A15)

This gives us the final form of the thermodynamic potential as

 

��T;�u;�d� �U��; ��; T� �
X
f�u;d

�0�T;�f;Mf� � 2G1��2
u � �2

d� � 4G2�u�d; (A16a)

�0�T;�f;Mf� � �2Nc
Z d3p

�2��3
Ef���2 � ~p2� � 2T

Z d3p

�2��3
ln�1� 3��� ��e��Ef��f�=T�e��Ef��f�=T

� e�3�Ef��f�=T� � 2T
Z d3p

�2��3
ln�1� 3� ����e��Ef��f�=T�e��Ef��f�=T � e�3�Ef��f�=T�: (A16b)

From this thermodynamic potential the equations of motion for the mean fields �u, �d, �, and �� are derived through

 

@�

@�u
� 0;

@�

@�d
� 0;

@�

@�
� 0;

@�

@ ��
� 0: (A17)

These coupled equations are then solved for the fields as functions of T, �u, and �d. They give
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�f � �6
Z d3p

�2��3
mf

Ef
����2 � p2� �N �Ef�M�Ef� � �N �Ef� �M�Ef��; f � u; d; (A18a)

@U
@�
� 6T

X
f�u;d

Z d3p

�2��3
�N �Ef�e

��Ef��f�=T � �N �Ef�e
�2�Ef��f�=T�; (A18b)

@U

@ ��
� 6T

X
f�u;d

Z d3p

�2��3
�N �Ef�e

�2�Ef��f�=T � �N �Ef�e
��Ef��f�=T�; (A18c)

N �Ef� � �1� 3��� ��e��Ef��f�=T�e��Ef��f�=T � e�3�Ef��f�=T��1; (A18d)
�N �Ef� � �1� 3� ����e��Ef��f�=T�e��Ef��f�=T � e�3�Ef��f�=T��1; (A18e)

M�Ef� � ��� 2 ��e��Ef��f�=T�e��Ef��f�=T � e�3�Ef��f�=T; (A18f)
�M�Ef� � � ��� 2�e��Ef��f�=T�e��Ef��f�=T � e�3�Ef��f�=T: (A18g)

Finally we note that the values of the parameters used are exactly the same as those used in Ref. [29].
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