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We investigate the kaon semileptonic decay (Kl3) form factors within the framework of the nonlocal
chiral quark model (�QM) from the instanton vacuum, taking into account the effects of flavor SU(3)
symmetry breaking. We also consider the problem of gauge invariance arising from the momentum-
dependent quark mass in the present work. All theoretical calculations are carried out without any
adjustable parameter, the average instanton size (�� 1=3 fm) and the interinstanton distance (R� 1 fm)
having been fixed. We also show that the present results satisfy the Callan-Treiman low-energy theorem as
well as the Ademollo-Gatto theorem. Using the Kl3 form factors, we evaluate relevant physical quantities.
It turns out that the effects of flavor SU(3) symmetry breaking are essential in reproducing the kaon
semileptonic form factors. The present results are in good agreement with experiments, and are
compatible with other model calculations.
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I. INTRODUCTION

It is of great importance to understand semileptonic
decays of kaons (Kl3), since it plays a significant role in
determining the Cabibbo-Kobayashi-Maskawa matrix ele-
ment jVusj precisely [1,2]. Furthermore, it provides a sim-
ple phenomenological basis for testing the breaking of
flavor SU(3) symmetry: In exact flavor SU(3) symmetry,
the kaon semileptonic form factor f��0� becomes unity.
The Ademollo-Gatto [3] theorem asserts that of second
order are the corrections of flavor SU(3) symmetry break-
ing to the form factors of vector currents at zero momen-
tum transfer (q2 � 0). However, when Goldstone bosons
are involved, the Ademollo-Gatto theorem must be modi-
fied: While the singlet part of flavor SU(3) symmetry
breaking preserves flavor SU(3) symmetry, it breaks chiral
SU�3� � SU�3� symmetry. Langacker and Pagels showed
that the corrections of flavor SU(3) symmetry breaking
appear to first order due to the presence of that singlet
part [4–6]. The effect of flavor SU(3) symmetry breaking
on the kaon semileptonic decay form factor is known to be
around 3%–5%, which is rather small.

The well-known soft-pion Callan-Treiman [7] theorem
connects the ratio of the pion and kaon decay constants to
the semileptonic form factors of the kaon at q2 � m2

K �
m2
� (Callan-Treiman point). Any chiral quark model

should satisfy the Callan-Treiman theorem with flavor
SU(3) symmetry breaking. Experimentally, there are a
certain amount of data to judge theoretical calculations
[8,9]. Thus, the kaon semileptonic decay form factor pro-
vides a basis to examine the validity and reliability of any
theoretical theory and model for hadrons.

There have been a great number of theoretical works:
chiral perturbation theory (�PT) [5,10], lattice QCD

(LQCD) [11,12], a Dyson-Schwinger method [13,14], con-
stituent quark models [15–17], and so on. In the present
work, we will investigate the Kl3 form factor within the
framework of the nonlocal chiral quark model (�QM)
derived from the instanton vacuum. We will consider the
leading order in the large Nc expansion and flavor SU(3)
symmetry breaking explicitly. The meson-loop correc-
tions, which are of 1=Nc order, are neglected. The model
has several virtues: All relevant QCD symmetries are
satisfied within the model, and there are only two parame-
ters: The average size of instantons (�� 1=3 fm) and
average interinstanton distance (R� 1 fm), which can be
determined by the internal constraint such as the saddle-
point equation [18–20]. These values for � and R have
been supported in various LQCD simulations recently [21–
23]. There is no further adjustable parameter in the model.

As being discussed previously, since the effects of flavor
SU(3) symmetry breaking are essential in the present work,
we employ the modified low-energy effective partition
function with flavor SU(3) symmetry breaking [24–26].
This partition function extends the former one derived in
the chiral limit [19,20]. It has been proven that the partition
function with flavor SU(3) symmetry breaking is very
successful in describing the low-energy hadronic proper-
ties such as various QCD condensates, magnetic suscepti-
bilities, meson distribution amplitudes, and so on [27–31].
However, the presence of the nonlocal interaction between
quarks and pseudo-Goldstone bosons breaks the Ward-
Takahashi identity for Nöther currents. Since the kaon
semileptonic decay form factors involve the vector current,
we need to deal with this problem. While Ref. [32] pro-
posed a systematic way as to how the conservation of the
Nöther current is restored, one has to handle the integral
equation. References [29,31] derived the light-quark par-
tition function in the presence of the external gauge fields.
With this gauged partition function, it was shown that the
low-energy theorem for the transition from two-photon
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state to the vacuum via the axial anomaly was satisfied
[29]. Moreover, the magnetic susceptibility of the QCD
vacuum and the meson distribution amplitudes were ob-
tained successfully [30,31]. Thus, in the present work, we
will investigate the kaon semileptonic decay (Kl3) form
factors, using the gauged low-energy effective partition
function from the instanton vacuum with flavor SU(3)
symmetry breaking explicitly taken into account.

We sketch the present work as follows: In Sec. II, we
briefly explain the general formalism relevant for studying
the Kl3 form factor. In Sec. III, we introduce the nonlocal
chiral quark model from the instanton vacuum. In Sec. IV,
the numerical results are discussed, and are compared with
those of other works. The final section is devoted to sum-
marize the present work and to draw conclusions.

II. SEMILEPTONIC KAON DECAY

In the present work, we are interested in the following
kaon semileptonic decays (Kl3) in two different isospin
channels:

 K��pK� ! �0�p��l
��pl��l�p��: K�l3 ;

K0�pK� ! ���p��l��pl��l�p��: K0
l3;

(1)

where l and �l stand for the leptons (either the electron or
the muon) and neutrinos. The relevant diagrams for the Kl3
form factor are depicted in Fig. 1 in which we define the
momenta for the particles involved. The nonlocal contri-
butions in Figs. 1(b) and 1(c) arise from the gauged effec-
tive chiral action that will be discussed in Sec. III.

The decay amplitude (TK!l��) can be expressed as
follows [10]:

 TK!l�� �
GF���

2
p sin�c�w��pl; p��F��pK; p��	; (2)

where GF is the well-known Fermi constant: GF �
1:166� 10�5 GeV�2. �c denotes the Cabibbo angle. We
define, respectively, the weak leptonic and hadronic matrix
elements (w� and F�) with the �S � 1 vector current (jsu� )
as

 w��pl; p�� � �u�p���
��1� �5�v�pl�; (3)

 F��pK; p�� � ch��p��jj
su
� jK�pK�i

� ch��p��j � ���4�i5 jK�pK�i

� �pK � p���fl��t� � �pK � p���fl��t�;

(4)

where c is the isospin factor, and set to be unity and 1=
���
2
p

for K0
l3 and K�l3 , respectively. The matrix �4�i5 denotes the

combination of the two Gell-Mann matrices, ��4 � i�5�=2,
for the relevant flavor in the present problem. The  
denotes the quark field. The momentum transfer is defined
as Q2 � �pK � p��

2 
 �t.
fl� represent the vector form factors with the corre-

sponding lepton l (P-wave projection). Alternatively, the
form factor F��pK; p�� can be expressed in terms of the
scalar form factor (fl0, S-wave projection) and the vector
form factor fl� defined as follows:

 

F��pK; p�� � fl��t��pK � p���

�
�m2

� �m
2
K��pK � p���
t

� �fl��t� � fl0�t�	: (5)

Hence, the fl0 can be written as the linear combination of
fl� and fl�:

 fl0�t� � fl��t� �
�

t

m2
K �m

2
�

�
fl��t�: (6)

Since the isospin breaking effects are almost negligible, we
will consider only the K0 ! ���l� decay channel. Input
values for the numerical calculations are given as follows:
mK ’ 495 MeV andm� ’ 140 MeV, respectively. The up-
and down-quark masses are taken as their average value:
mq 
 �mu �md�=2 ’ 5 MeV, while the strange-quark
mass ms as around 150 MeV.

It has been well known that the experimental data for
fl�;0 can be reproduced qualitatively well by the linear and
quadratic fits [8]:

 

FIG. 1. Schematic diagrams for the kaon semileptonic decay
form factor. We consider the contributions from the local (a) and
nonlocal vector-quark vertices (b) and nonlocal vector-quark-
meson vertices (c). Here, we define the relevant momenta as
follows: ka � k� p=2� q=2, kb � k� p=2� q=2, and kc �
k� p=2� q=2, where k, p, and q stand for the loop-integral
variable, initial kaon, and vector-field momenta, respectively.
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linear: fl�;0�t� � fl�;0�0�
�

1�
�l�;0
m2
�
�t�m2

l �

�
;

quadratic: fl�;0�t� � fl�;0�0�
�

1�
�0l�;0
m2
�
�t�m2

l �

�
�00l�;0
2m4

�
�t�m2

l �
2

�
; (7)

where ml is the lepton mass. The slope parameter �l� is
deeply related to the K ! � decay radius (hr2iK�) as
follows [10]:

 �� ’
1
6hr

2iK�m2
�: (8)

Moreover, this radius can be expressed in terms of the
Gasser-Leutwyler low-energy constant L9 in the large Nc
limit [5]:

 L9 �
1

12
F2
�hr2iK�: (9)

To obtain the decay rate d�K!l��, we use the convention
defined in Ref. [10]:
 

d�K!l�� �
1

16mK�2��5
X
spins

d3pl
El

d3p�
E�

d3p�
E�

� 	4�pK � pl � p� � p��jTK!l��j
2: (10)

This expression can be further simplified as a function of t
[13]:
 

d�K!l��
dt

�
G2
FjVusj

2

24�3

�
1�

m2
l

t

�
2
�
j ~p�j

3

�
1�

m2
l

2t

�
f2
l��t�

�m2
Kj ~p�j

�
1�

m2
�

m2
K

�
2 3m2

l

8t
f2
l0�t�

�

’
G2
FjVusj

2

24�3 j ~p�j3f2
e��t� for ml � me ’ 0; (11)

where the three momentum of the pion j ~p�j is defined by

 j ~p�j �
��
m2
K �m

2
� � t

2mK

�
2
�m2

�

�
1=2
: (12)

This three momentum of the pion constrains the physically
accessible region for the decay, i.e.,

 m2
l � t � �mK �m��

2: (13)

III. NONLOCAL CHIRAL QUARK MODEL FROM
THE INSTANTON VACUUM

In this section, we show how to derive the hadronic
matrix element given in Eq. (4) within the framework of
the nonlocal �QM from the instanton vacuum. We begin
by the low-energy effective QCD partition function derived
from the instanton vacuum [20,24–26]:

 Z eff �
Z

D D yDM exp
Z
d4x

�
 yf �x��i@6

� imf� f�x� � i
Z d4kd4p

�2��8
e�i�k�p�
x yf �k�

�
����������������
Mf�k��

q
U�5
fg

�����������������
Mg�p��

q
 g�p�

�
: (14)

Mf�k� is the dynamically generated quark mass being
momentum dependent, whereas mf stands for the
current-quark mass with flavor f. The nonlinear back-
ground pseudo-Goldstone field U�5 is given by

 U�5 � U�x�
1� �5

2
�Uy�x�

1� �5

2

� 1�
i
FM

�5M 
 ��
1

2F2
M

�M 
 ��2 
 
 
 (15)

with the meson decay constants F� � 93 MeV and FK �
113 MeV fixed to the experimental data. The meson field
U is defined as U � exp�i� 
M=FM	. The octet pseudo-
scalar meson field M is defined as follows:
 

M 
�

�
���
2
p

1��
2
p �0� 1��

6
p 
 �� K�

�� � 1��
2
p �0� 1��

6
p 
 K0

K� �K0 � 2��
6
p 


0
BBBB@

1
CCCCA; (16)

References [24,25] showed how to improve the low-
energy effective QCD partition function in Eq. (14) by
taking into account effects of flavor SU(3) symmetry
breaking, so that the dynamical quark mass acquires the
contribution of the mf corrections:

 Mf�k� � M0F
2�k�

� ����������������
1�

m2
f

d2

s
�
mf

d

�
; (17)

where M0 is the dynamical quark mass with zero momen-
tum transfer in the chiral limit. Its value is determined by
the saddle-point equation: M0 ’ 350 MeV. F�k� is the
momentum-dependent part which arises from the Fourier
transform of the fermionic zero-mode solutions in the
instantons. However, we will employ the simple-pole
type parametrization for F�k�:

 F�k� �
2�2

2�2 � k2 ; � � ��1 ’ 600 MeV (18)

which shows a very similar behavior to the original ex-
pression of F�k�. The value of d in the bracket of Eq. (17)
can be computed within the model [25,32]:

 d �

������������������
0:083 85

2Nc

s
8� ��

R2 ’ 0:193 GeV: (19)

As mentioned previously, the momentum-dependent dy-
namical quark mass Mf�k� breaks the conservation of the
Nöther (vector) currents. References [29,31] derived the

KAON SEMILEPTONIC DECAY (Kl3) FORM FACTORS . . . PHYSICAL REVIEW D 75, 094011 (2007)

094011-3



light-quark partition function in the presence of the exter-
nal vector field:

 

~Z eff �
Z

D D yDM exp
Z
d4x

�
 yf �x��i@6 � V6

� imf� f�x� � i
Z d4kd4p

�2��8
e�i�k�p�
x yf �k�

�
�����������������������������
Mf�k� � V��

q
U�5
fg

�����������������������������
Mg�p� � V��

q
 g�p�

�
:

(20)

The effective chiral action then becomes

 

~S eff � �Nc Tr ln�i@6 � V6 � imf

� i
�������������������������������
Mf�i@� � V��

q
U�5
fg

�������������������������������
Mg�i@� � V��

q
	; (21)

where Tr denotes the trace over space-time, flavor, and spin
spaces. Calculating the functional derivative of ~Seff with
the external vector field V, we obtain the relevant operator
expression for theK ! � semileptonic decay form factors:

 �

�
	~Seff

	V�

�
V�0

� �Nc Tr
�

1

i@6 � imf � i
������������������
Mf�i@��

q
U�5
fg

������������������
Mg�i@��

q ���
4�i5

�
V�0

� Nc Tr
�� @@V� � ������������������

Mf�i@��
q

�U�5
fg

������������������
Mg�i@��

q
� i

������������������
Mg�i@��

q
U�5
fg

@
@V�
�
������������������
Mg�i@��

q
�	�4�i5

i@6 � imf � i
������������������
Mf�i@��

q
U�5
fg

������������������
Mg�i@��

q �
V�0

: (22)

The first term in Eq. (22) is usually called a local contri-
bution, and the other two terms the nonlocal ones. Since we
are interested in the decay process with two on-mass shell
pseudoscalar mesons, that is, the pion and kaon as shown in
Eq. (4), the local contribution can be written as follows:
 �
	~Seff

	V�

�
K�

local;V�0
�

2Nc
F�FK

Tr
� ������������������
Mf�i@��

q
�5M

a�a
������������������
Mg�i@��

q
D�i@��

�
���4�i5

D�i@��

�

������������������
Mf�i@��

q
�5M

b�b
������������������
Mg�i@��

q
D�i@��

�
: (23)

The pseudoscalar meson field Ma can be either the kaon or
the pion, depending on flavor. D denotes the abbreviation
for the quark-propagator:

 D f�i@�� � i@6 � i�mf �Mf�i@��	: (24)

Then, the corresponding matrix element can be obtained as
follows:

 

�
K�pK�

��������
�
	~Seff

	V�

�
K�

local;V�0

����������p��
�
: (25)

The matrix element for the local contribution can be im-
mediately expressed as
 

Flocal�a�
� �

8Nc
F�FK

Z d4k

�2��4

�
Mq�ka�

�����������������������������
Ms�kb�Mq�kc�

q
�k2
a � �M2

q�ka�	�k2
b �

�M2
s�kb�	�k2

c � �M2
q�kc�	

� ��ka 
 kb � �Mq�ka� �Ms�kb�	kc�

� �kb 
 kc � �Ms�kb� �Mq�kc�	ka�

� �ka 
 kc � �Mq�ka� �Mq�kc�	kb�	; (26)

where �Mf�k� � mf �Mf�k�. The relevant momenta are
defined as ka � k� p=2� q=2, kb � k� p=2� q=2,
and kc � k� p=2� q=2, in which k, p, and q denote
the internal quark, initial kaon, and transferred momenta,
respectively, as depicted in Fig. 1. The trace tr� runs over
Dirac spin space. Similarly, we can evaluate the nonlocal
contributions as follows [28,30]:

 

Fnonlocal�b�
� �

8Nc
F�FK

Z d4k

�2��4

���������������
Mq�kc�

q ���������������
Mq�kc�

q
Mq�ka�Ms�kb��

�k2
a � �M2

q�ka�	�k2
b �

�M2
s�kb�	�k2

c � �M2
q�kc�	

� �Mq�kc�ka 
 kb � �Ms�kb�ka 
 kc

� �Mq�ka�kb 
 kc � �Mq�ka� �Ms�kb� �Mq�kc�	 � �b$ c�;

Fnonlocal�c�
� � �

4Nc
F�FK

Z d4k

�2��4

���������������
Mq�ka�

q ���������������
Ms�kb�

p ���������������
Mq�kc�

q ���������������
Mq�ka�

q
�ka 
 kb � �Mq�ka� �Ms�kb�	�

�k2
a � �M2

q�ka�	�k
2
b �

�M2
s�kb�	

�
4Nc
F�FK

Z d4k

�2��4

���������������
Mq�ka�

q ���������������
Ms�kb�

p ���������������
Mq�kc�

q ���������������
Mq�ka�

q
�ka 
 kb � �Mq�ka� �Ms�kb�	�

�k2
a � �M2

q�ka�	�k
2
b �

�M2
s�kb�	

� �b$ c�; (27)
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where
�������������
Mf�k�

q
� @

�������������
Mf�k�

q
=@k��. The local (a), nonlocal

(b), and nonlocal (c) contributions correspond to the dia-
grams (a), (b), and (c) in Fig. 1, respectively.

IV. RESULTS AND DISCUSSIONS

We now discuss various numerical results for the kaon
semileptonic decay (Kl3) form factors in the present work.
We facilitate the Breit-momentum framework for the cal-
culation, since we are free to choose an arbitrary momen-
tum framework because of the Lorentz invariance. The
relevant momenta for the calculation are defined as follows
(�Q2 
 t > 0):
 

p �
�
0; 0; i

��
t
p

2
;

�����������������������������
m2
K �m

2
� � t

4
��
t
p

s �
; q � �0; 0;�i

��
t
p
; 0�;

k � �kr sin� sin cos�; kr sin� sin sin�;

kr sin� cos ; kr cos�; �: (28)

We first consider the case ofKe3. Since the electron mass
is negligible in comparison to those of the pion and the
kaon, it can be set to be zero. In the left panel of Fig. 2, we
draw the numerical results for fe��t� (solid), fe��t� (dot-
ted), and fe0�t� (dashed) within the physically accessible
regions constrained by Eq. (13). Note that the scalar form
factor fe0�t� is derived by using Eq. (6). We observe that
the fe��t� and fe0�t� are almost linearly increasing func-
tions of t, whereas fe��t� decreases. At t � 0, our results
demonstrate that fe��0� � fe0�0� � 0:947 and fe��0� �
�0:137. In the chiral limit, fe��0� and fe��0� should be
unity and zero, respectively, which is related to the
Ademollo-Gatto theorem in the case of pseudo-
Goldstone bosons [3–5]:

 lim
q!0

Flocal�a�
� ’ 2p� �O�mq�: (29)

The Ademollo-Gatto theorem in Eq. (29) can be easily
tested in the nonlocal �QM. Considering q! 0 and ignor-
ing the terms being proportional to k 
 p, we can rewrite the
leading contribution of Eq. (26) to order O�mq� as follows:

 lim
q!0

Flocal�a�
� ’ 2�1� R�ms�	p�; (30)

where
 

R�ms� �
1

2

�Z d4k

�2��4
M2�k�ms�ms � 2M�k�	

�k2 �M2�k�	3

�

�

�Z d4k

�2��4
M2�k�

�k2 �M2�k�	2

�
�1
: (31)

To evaluate Eq. (30), we employ the ratio FK=F� com-
puted within the same framework and expanded in terms of
the strange quark mass (ms) (see Refs. [20,33–38] for
more details):

 

FK
F�
’ 1� R�ms�: (32)

We also use that kb � kc ! k� p=4 since these two mo-
menta share p=2 as q! 0. Note that we consider only the
local contribution for FM in Eq. (32). We, however, veri-
fied that the nonlocal contributions in Eq. (27) also satisfy
the Ademollo-Gatto theorem analytically.

The effect of flavor SU(3) symmetry breaking is found
to be rather small in the Ke3 form factor, i.e. its effect is
around 5%. In other approaches, for example, in �PT, the
Ke3 form factor is known to be fe��t� � 0:961� 0:008
[2], in LQCD, fe��0� � 0:960� 0:009 [12], and 0:952�
0:006 [11].

In the right panel of Fig. 2 we draw the ratio of fe��t�
and fe��0� with respect to the CPLEAR experimental data
[39], and linear (dashed) and quadratic (dotted) fits for the
ratio using the PDG data [8]: �e� � �2:960� 0:05� �
10�2, �0e� � �2:485� 0:163� � 10�2, and �00e� �
�1:920� 0:062� � 10�3. In the present calculation, we
obtain �e� � 3:028� 10�2 for the linear fit, which is
very close to the experimental one, 2:960� 10�2. Since
our result for fe� is almost linear as shown in Fig. 1, we get
almost a negligible value for the slope parameter �00 when
the quadratic fit is taken into account. Being compared
with other model calculations, the present results are com-
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FIG. 2. Ke3 form factors, fe��t� (solid), fe��t� (dotted), and fe0�t� (dashed) are shown in the left panel, while in the right panel the
ratio of fe��t� and fe��0� is given (solid). We also draw the CPLEAR experimental data [39], and linear (dashed) and quadratic
(dotted) fits using the PDG data [8].
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parable to those from �PT [10,40], and other models
[11,13,14,41,42]. We compare explicitly the present results
with those from other approaches in Table I.

Using Eqs. (8) and (9), we can easily estimate the Ke3

decay radius and low-energy constant L9, respectively. As
for the Ke3 decay radius, we obtain hr2iK� � 0:366 fm2.
This value is slightly larger than that in �PT [5] (see
Table I). The low-energy constant L9 turns out to be 6:78�
10�3, which is comparable to 7:1� 7:4� 10�3 [5] and
6:9� 10�3 [10,48].

The ratio of the pion and kaon weak decay constants
FK=F� can be deduced from the scalar form factor f0 via
the Callan-Treiman soft-pion theorem [7]. In the soft-pion
limit (p� ! 0), the Ke3 form factor can be written as [49]

 lim
p�!0

F��p�; pK� � pK�
FK
F�

: (33)

Using Eqs. (4) and (6), we obtain the following expression:

 lim
p�!0

F��p�; pK� � lim
p�!0
�p� � pK���fl���CT�

� fl���CT�	

’ pK�fl0��CT�; (34)

where the value of �CT � m2
K �m

2
� is called the Callan-

Treiman point which cannot be accessible physically.
Combining Eq. (33) with Eq. (34), we finally arrive at
the final expression of the Kl3 form factor for the Callan-
Treiman theorem in terms of the scalar form factor and the
ratio, FK=F�:

 fe0��CT� �
FK
F�

: (35)

From our numerical calculation using Eq. (35), we find that
FK=F� � 1:08, which is around 10% smaller than the
empirical value (1.22). The reason is due to the fact that
the kaon weak decay constant turns out to be underesti-
mated if we ignore the meson-loop 1=Nc corrections [50].
In the large Nc limit, the ratio can be expressed in terms of
the low-energy constant L5:

 

FK
F�
� 1�

4

F2
�
�m2

K �m
2
��L5: (36)

Using the value of FK=F� � 1:08, we obtain L5 � 7:67�
10�4 which is quite underestimated by about a factor 2,
compared with the phenomenological value 1:4� 10�3

[48]. It is already well known that in order to reproduce
the L5 within the �QM the meson-loop 1=Nc corrections
are essential.

In the soft-pion limit, the model should satisfy the
Callan-Treiman theorem given in Eq. (35). Taking the limit
p� ! 0 for Eq. (26), we can show that Eq. (26) satisfies the
Callan-Treiman theorem, using Eq. (32) as follows:

 lim
p�!0

Flocal�a�
� ’ �1� R�ms�	p�; (37)

where ka � kc ! k as p� ! 0. Inserting Eq. (32) into
Eq. (37), we can show that the present result satisfies the
Callan-Treiman theorem in Eq. (33) [Eq. (35)] in the case
of the local contribution. The nonlocal ones also fulfill the
theorem.

The decay width of K ! ��e can be easily computed
by using the result of fl�;0 and Eq. (11). It turns out that
�e3 � 6:840� 106=s and ��3 � 4:469� 106=s with
jVusj � 0:22 taken into account [8,51]. The results are
slightly smaller than the experimental data [�e3��7:920�
0:040��106=s and ��3 � �5:285� 0:024� � 106=s] [8].

TABLE I. Various numerical results for K0 ! ���e� (K0 ! �����). The results from other model calculations and the
experiments are listed as well.

l � e��� fl��m2
l � �fl��m2

l � �l� � 102 �l0 �l � jfl�=fl�j �l3 [106=s] hr2iK� [fm2]

Present 0.947(0.963) 0.137(0.145) 3.03 0.0136 0.147(0.152) 6.840(4.469) 0.366
[9] 
 
 
 
 
 
 2.45 
 
 
 0.28 
 
 
 0.292
[5] 1.022 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 0.36
[2] 0.972 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


[11] 0.952 
 
 
 2.12 
 
 
 
 
 
 
 
 
 0.376
[13] 0.964 0.100 2.70 0.018 0.11 7.38(4.90) 0.322
[14] 0.980(1.11) 0.24(0.27) 2.80 0.0026 0.35 
 
 
 0.334
[16] 0.962 
 
 
 2.60 0.025 0.01 7.3(4.92) 0.310
[42] 
 
 
 
 
 
 2.80 
 
 
 0.28 
 
 
 0.334
[43] 0.93 0.26 1.90 
 
 
 0.28 
 
 
 
 
 


[44] 0.9874 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


[45] 0.981 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


[46] 0.960 
 
 
 2.60 0.0089 
 
 
 
 
 
 0.310
[47] 0.7 0.068 1.52 
 
 
 0.097 
 
 
 0.181
[8] (Experiment) 
 
 
 
 
 
 2:96� 0:05 
 
 
 
 
 
 7:920� 0:040 
 
 


�5:285� 0:024�
[39] (Experiment) 
 
 
 
 
 
 2:45� 0:12 
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All numerical results are summarized in Table I with the
experimental data and those of other approaches for
comparison.

V. SUMMARY AND CONCLUSION

In the present work, we have investigated the kaon
semileptonic decay (Kl3) form factors within the frame-
work of the gauged nonlocal chiral quark model from the
instanton vacuum. The effect of flavor SU(3) symmetry
breaking were taken into account. We calculated the vector
form factors (f�), scalar form factor (f0), slope parameters
(��;0), decay width (�l3), etc. as demonstrated in Table I.
We found that the present results of the kaon semileptonic
decay form factors are in a qualitatively good agreement
with experiments. We emphasize that there were no ad-
justable free parameters in the present investigation. All
results were obtained with only two parameters from the
instanton vacuum, i.e. the average instanton size ( ���
1=3 fm) and interinstanton distance (R� 1 fm).

In the present investigation, we have considered only the
leading-order contributions in the large Nc limit. While
these contributions reproduce the observables relevant for
kaon semileptonic decay in general, it seems necessary to
take into account the meson-loop 1=Nc corrections in order
to reproduce quantitatively the kaon decay constant fK and
the low-energy constant L5. As noticed already in
Refs. [50,52,53], these meson-loop corrections can play
an important role in producing the kaon properties. The
related works are under progress.
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