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New generalization of the z-scaling in inclusive particle production is proposed. The scaling variable z
is a fractal measure which depends on kinematic characteristics of the underlying subprocess expressed in
terms of the momentum fractions x1 and x2 of the incoming protons. In the generalized approach, x1 and
x2 are functions of the momentum fractions ya and yb of the scattered and recoil constituents carried by
the inclusive particle and recoil object, respectively. The scaling function  �z� for charged and identified
hadrons produced in proton-proton collisions is constructed. The fractal dimensions and heat capacity of
the produced medium entering definition of the variable z are established to restore energy, angular, and
multiplicity independence of  �z�. The proposed scheme allows a unique description of data on inclusive
cross sections at high energies. Universality of the shape of the scaling function for various types of
produced hadrons (�, K, �p, �) is shown. Results of the analysis of experimental data are compared with
the next-to-leading order (NLO) QCD calculations in pT and z-presentations. The obtained results suggest
that the z-scaling may be used as a tool for searching for new physics phenomena of particle production in
high transverse momentum and the high multiplicity region at proton-proton colliders RHIC and LHC.
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I. INTRODUCTION

The production of particles with high transverse
momenta from the collision of hadrons and nuclei at
sufficiently high energies has relevance to constituent in-
teractions at small scales. In this regime, it is interesting to
search for new physical phenomena in elementary pro-
cesses such as quark compositeness [1], extra dimensions
[2], black holes [3], fractal space-time [4], etc. Other
aspects of high energy interactions are connected with
small momenta of secondary particles and high multiplic-
ities. This regime has relevance to collective phenomena of
particle production. The search for new physics in both
regions is one of the main goals of investigations at
Relativistic Heavy Ion Collider (RHIC) at BNL and
Large Hadron Collider (LHC) at CERN. Experimental
data on particle production can provide constraints for
different theoretical models. Processes with high trans-
verse momenta of produced particles are most suitable
for a precise test of perturbative quantum chromodynamics
(QCD). The soft regime is suitable for the verification of
nonperturbative QCD and investigation of phase transi-
tions in non-Abelian theories.

Nucleus-nucleus interactions are very complicated. In
order to understand their nature one often exploits phe-
nomenology and comparison with simpler proton-proton
and proton-nucleus collisions. Many approaches to the
description of particle production are used to search for
regularities reflecting general principles in these systems at

high energies [5–14]. One of the most basic principles is
the self-similarity of hadron production valid both in soft
and hard physics. Other general principles are locality and
fractality which can be applied to hard processes at small
scales. The locality of hadronic interactions is confirmed
by results from numerous experimental and theoretical
studies. These investigations have shown that the interac-
tions of hadrons and nuclei can be described in terms of the
interactions of their constituents. Fractality in hard pro-
cesses is a specific feature connected with the substructure
of the constituents. This includes the self-similarity over a
wide scale range.

Fractality of soft processes concerning the multiparticle
production was investigated by many authors [15–17].
Fractality in inclusive reactions with high-pT particles
was considered for the first time in the framework of the
z-scaling [18]. The approach is based on principles of
locality, self-similarity, and fractality. It takes into account
the fractal structure of the colliding objects, the interaction
of their constituents, and particle formation. The scaling
function  �z� and the variable z are constructed using
the experimentally measured inclusive cross section
Ed3�=dp3 and the multiplicity density dN=d�. In the
original version [18], the construction was based on the
assumption that gross features of the inclusive particle
distribution for the inclusive reaction

 M1 �M2 ! m1 � X (1)

at high energies can be described in terms of the corre-
sponding exclusive subprocess

 �x1M1� � �x2M2� ! m1 � �x1M1 � x2M2 �m2�: (2)
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HereM1 andM2 are the masses of the colliding hadrons (or
nuclei) and m1 is the mass of the inclusive particle. The
mass parameter m2 is introduced in connection with inter-
nal conservation laws (for isospin, baryon number, strange-
ness, . . .). The symbols x1 and x2 stand for momentum
fractions of the incoming four-momenta P1 and P2 of the
colliding objects. The scaling variable zwas constructed as
a fractal measure with a characteristic power dependence
on the nucleon fractal dimension � in space of the momen-
tum fractions fx1, x2g. The scale of the variable z was
determined to be proportional to the dynamical quantity-
average multiplicity density dNch=d�j0 of charged parti-
cles produced in the central region of the interaction
(� � 0). The z-scaling for nonbiased collisions was estab-
lished as the independence of the scaling function  �z� on
the collision energy

���
s
p

and the angle � of the inclusive
particle for a single constant value of �.

The concept of the z-scaling was generalized for various
multiplicities Nch of produced particles [19]. The relation
of the z-scaling to the entropy S and the heat capacity c of
the colliding system was found. The generalization was
connected with the introduction of a momentum fraction y
in the final state written in the symbolic form

 �x1M1� � �x2M2� ! �m1=y� � �x1M1 � x2M2 �m2=y�:

(3)

It was shown that the generalized scaling represents a
regularity in both the soft and hard regime in proton-
(anti)proton collisions over a wide range of initial energies
and multiplicities of the produced particles. However, the
generalization of the scaling for various multiplicities was
obtained at the expense of the angular independence of the
scaling function observed for y � 1 [18].

In this paper we show that independence of the scaling
function  �z� on the collision energy

���
s
p

, multiplicity
density dNch=d�, and the production angle � can be
restored simultaneously, if two fractions ya and yb for the
scattered constituent and its recoil are introduced, respec-
tively. The paper is organized as follows. A concept of the
generalized z-scaling and the method of construction of the
scaling function  �z� are described in Sec. II. Results of the
analysis of experimental data on inclusive cross sections of
hadrons produced in pp collisions in the z-presentation are
given in Sec. III. We have analyzed the transverse momen-
tum spectra of the charged particles, negative pions, kaons,
antiprotons, and �’s measured at ISR and RHIC energies.
Calculations of hadron spectra in the next-to-leading order
of QCD are presented in Sec. IV. Predictions based on the
CTEQ5m parton densities and KKP fragmentation func-
tions are confronted with the scaling function  �z� in
the region of large z. The discussion of the possible paral-
lels with the pQCD is presented in Sec. V. Conclusions
are summarized in Sec. VI. Some ideas concerning physi-
cal interpretation of the variable z are mentioned in
Appendix A. Appendix B contains formulae for the trans-

formation from the variables pT and y to the variables z and
� used in the z-presentation of the experimental cross
sections.

II. NEW GENERALIZATION OF THE z-SCALING

The collision of extended objects like hadrons and nu-
clei at sufficiently high energies is considered as an en-
semble of individual interactions of their constituents. The
constituents are partons in the parton model or quarks and
gluons in the theory of QCD. A single interaction of
constituents is illustrated in Fig. 1. Structures of the collid-
ing objects are characterized by parameters �1 and �2.
Interacting constituents carry the fractions x1 and x2 of
the momenta P1 and P2 of the incoming objects. The
inclusive particle carries the momentum fraction ya of
the scattered constituent with a fragmentation character-
ized by a parameter �a. A fragmentation of the recoil
constituent is described by �b and the momentum fraction
yb. Multiple interactions are considered to be similar. This
property represents a self-similarity of the hadronic inter-
actions at the constituent level.

A. Momentum fractions x1, x2, ya, and yb
The idea of the z-scaling is based on the assumption [10]

that gross features of an inclusive particle distribution of
the reaction (1) can be described at high energies in terms
of the kinematic characteristics of the corresponding con-
stituent subprocesses. We consider the subprocess to be a
binary collision

 �x1M1� � �x2M2� ! �m1=ya� � �x1M1 � x2M2 �m2=yb�

(4)

of the constituents (x1M1) and (x2M2) resulting in the

 

FIG. 1. Diagram of the constituent subprocess.
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scattered (m1=ya) and recoil �x1M1 � x2M2 �m2=yb� ob-
jects in the final state. The inclusive particle with the mass
m1 and the 4-momentum p carries the fraction ya of the 4-
momentum of the scattered constituent. Its counterpart
(m2), moving in the opposite direction, carries the 4-
momentum fraction yb of the produced recoil. The binary
subprocess is subject to the condition

 �x1P1 � x2P2 � p=ya�2 � �x1M1 � x2M2 �m2=yb�2:

(5)

The associate production of (m2) ensures conservation of
the quantum numbers. Besides the main channel the pa-
rameter m2 makes it possible to take into account contri-
butions from additional channels with the production of
any particles or states.

Let us take for definiteness inclusive production of K�

mesons in proton-proton collisions. The main channel of
K� production is usually considered with the simultaneous
formation of the K� meson. The corresponding value of
the parameter m2 is determined by means of the exclusive
reaction p� p! K� � p� p� K�. Using Eq. (5) for
x1 � x2 � ya � yb � 1, we get m2 � m�K�� in this case.
Strangeness conservation allows also other reaction chan-
nels than the main whose effect, in specific kinematics,
must not be negligible compared with the dominant chan-
nel. Possible configurations including production of the
associate particles such as �� or �� can be effectively taken
into account by using somewhat larger values of m2. In the
next section we will demonstrate that the main channel
dominance with respect to the determination of m2 is a
reasonable assumption for the kinematical range of data
analyzed in this paper.

Equation (5) is an expression of the locality of the
hadron interaction at a constituent level. It represents a
kinematic constraint on the momentum fractions x1, x2, ya,
and yb which determine a subprocess (4). Next we intro-
duce the function
 

��x1; x2; ya; yb� � �1� x1�
�1�1� x2�

�2�1� ya�
�a�1� yb�

�b

(6)

which connects the momentum fractions with structural
characteristics �1, �2, �a, and �b of the interacting objects.
Physical interpretation of � is given in Appendix A. For
proton-proton collisions we set �1 � �2 � �. In the case
of nucleus-nucleus collisions �1 � A1� and �2 � A2�,
where A1, A2 are atomic numbers [18]. We assume that
the fragmentation of the scattered and recoil constituents
can be described by the same parameter � � �a � �b
which depends on the type of the inclusive particle. For
given values of � and �, we determine the fractions x1, x2,
ya, and yb in a way to maximize the function
��x1; x2; ya; yb�, simultaneously fulfilling condition (5).
The momentum fractions x1 and x2 obtained in this way
can be decomposed as follows

 x1 � �1 � �1; x2 � �2 � �2: (7)

Using the decomposition, the subprocess (4) can be rewrit-
ten in a symbolic form

 x1 � x2 ! ��1 � �2� � ��1 � �2�: (8)

This relation means that the �-parts of the interacting
constituents contribute to the production of the inclusive
particle, while the �-parts are responsible for the creation
of its recoil. The �0s are functions of ya and yb (see
Appendix A),

 �1 � 	1=ya � 
1=yb; �2 � 	2=ya � 
2=yb;

�0 � �
0=y
2
b � 
0=y

2
a;

(9)

where

 	1 �
�P2p�

�P1P2� �M1M2
; 	2 �

�P1p�
�P1P2� �M1M2

;

(10)

 
1 �
M2m2

�P1P2� �M1M2
; 
2 �

M1m2

�P1P2� �M1M2
;

(11)

 
0 �
0:5m2

1

�P1P2� �M1M2
; �
0 �

0:5m2
2

�P1P2� �M1M2
:

(12)

The �0s are expressed via �0s as follows

 �1 �
�������������������
�2

1 �!
2
1

q
�!1; �2 �

�������������������
�2

2 �!
2
2

q
�!2;

(13)

where

 �2
1 � ��1�2 � �0��

1� �1

1� �2
;

�2
2 � ��1�2 � �0���1 1� �2

1� �1
;

(14)

and !i � �iU (i � 1, 2). The quantity

 U �
�� 1

2
����
�
p 
 (15)

is proportional to the kinematical factor

 
 �

�����������������������������������
�1�2 � �0

�1� �1��1� �2�

s
; (16)

�0 � 
 � 1� and depends on the ratio of � � �2=�1. It
vanishes for collisions of the identical objects ��1 � �2�.
The maximum of the function (6) with the condition (5)
can be obtained by searching for the unconstrained maxi-
mum of the function

 F�ya; yb� � ��x1�ya; yb�; x2�ya; yb�; ya; yb� (17)
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of two independent variables ya and yb. Here xi�ya; yb� are
given explicitly by the expressions (7) and (9)–(16). There
exists a single maximum of the function F�ya; yb� for every
value of the momentum p in the allowable kinematic
region. Values of ya and yb corresponding to this maximum
have been determined numerically. Having obtained x1, x2,
ya, and yb, we evaluate the function � according to Eq. (6).
For fixed numbers � and � we obtain in this way the
maximal value of � for every momentum p of the inclu-
sive particle.

Since the momentum fractions are determined by means
of the maximization of the expression (6), they implicitly
depend on � and �. The parameter � enables to take
effectively into account also prompt resonances out of
which the inclusive particle of a given type may be created.
Without changing the mass parameter m2, larger values of
� correspond to smaller ya and yb, which in turn give larger
ratios m2=yb and m1=ya. In our phenomenological picture
this means that production of the inclusive particle (m1)
and its counterpart (m2) is a result of fragmentation from
larger masses which mimic in a sense processes with
prompt resonances. The contribution to soft and hard par-
ticles from prompt resonances is different. This is reflected
by different values of the momentum fraction ya which
carries the inclusive particle. The fraction ya increases with
the transverse momentum pT . The creation of soft particles
from prompt resonances is characterized by small values of
ya. Hard particles carry substantially larger fractions ya of
the momenta of their ancestors which may be resonances
produced directly in the constituent interaction. In this
way, the degree of increase of ya with pT , governed by
the parameter �, simulates partially creation of prompt
resonances and their relative contribution to soft and hard
particles. On the other hand the constant m2 does not
depend on pT and represents minimal effective mass
needed for conservation of quantum numbers in the reac-
tion channels under consideration. Values of these parame-
ters are determined in accordance with the experiment and
are discussed in the next sections.

B. Scaling variable z and scaling function  �z�

The self-similarity of hadron interactions reflects a prop-
erty that hadron constituents and their interactions are
similar. This is connected with the dropping of certain
dimensional quantities out of the description of physical
phenomena. The self-similar solutions are constructed in
terms of the self-similarity parameters. We search for a
solution

  �z� �
1

N�inel

d�
dz

(18)

depending on a single self-similarity variable z. Here �inel

is an inelastic cross section of the reaction (1) and N is an
average particle multiplicity. The variable z is a specific
dimensionless combination of quantities which character-

ize particle production in high energy inclusive reactions.
It depends on momenta and masses of the colliding and
inclusive particles, structural parameters of the interacting
objects, and dynamical characteristics of the produced
system. We define the self-similarity variable z as follows

 z � z0��1; (19)

where

 z0 �
s1=2
?

�dNch=d�j0�c �m
(20)

and � is given by Eq. (6). For a given reaction (1), the
variable z is proportional to the transverse kinetic energy
s1=2
? of the constituent subprocess (4) consumed on the

production of the inclusive particle (m1) and its counterpart
(m2). The energy s1=2

? is determined by the formula

 s1=2
? � Ta � Tb; (21)

where

 Ta � ya�s
1=2
� �M1�1 �M2�2� �m1; (22)

 Tb � yb�s
1=2
� �M1�1 �M2�2� �m2: (23)

For more details see Appendix B. The terms

 s1=2
� �

���������������������������������
��1P1 � �2P2�

2
q

; s1=2
� �

����������������������������������
��1P1 � �2P2�

2
q

(24)

represent the energy for production of the scattered con-
stituent and its recoil, respectively. The quantity
dNch=d�j0 is the multiplicity density of charged particles
produced in the central region of the reaction (1) at the
pseudorapidity � � 0. The average total charged multi-
plicity densities for inelastic collisions have been used in
(20) for all particle species in the case of nonbiased events.
They are a known function of the collision energy

���
s
p

. For
events with various selection criteria the multiplicity den-
sities dNch=d�j0 of all charged particles in the expression
(20) depend on trigger. Their values corresponding to
spectra with different multiplicity biases were taken from
literature. The multiplicity density in the central interac-
tion region is related to a state of the produced medium in
the colliding system. The parameter c characterizes prop-
erties of this medium. It is determined from multiplicity
dependence of inclusive spectra. The mass constant m is
arbitrary and we fix it at the value of nucleon mass.

The scaling function  �z� is expressed in terms of the
experimentally measured inclusive invariant cross section
Ed3�=dp3, the multiplicity density dN=d�, and the total
inelastic cross section �inel. Exploiting the definition (18)
one can obtain the expression

  �z� � �
�sA1A2

�dN=d���inel
J�1E

d3�

dp3 ; (25)
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where s is the square of the center-of-mass energy of the
corresponding NN system, A1 and A2 are atomic weights,
and

 J �
@z
@	1

@�
@	2
�

@z
@	2

@�
@	1

(26)

is the corresponding Jacobian (see Appendix B). The
Jacobian depends on kinematic variables characterizing
the inclusive process (1). The multiplicity density
dN=d� in the expression (25) concerns particular hadrons
species. It depends on the center-of-mass energy, on vari-
ous multiplicity selection criteria, and also on the produc-
tion angles at which the inclusive spectra were measured.
The procedure of obtaining the corresponding values of
dN=d� from the pT spectra is described in Appendix B.
The function  �z� is normalized as follows

 

Z 1
0
 �z�dz � 1: (27)

The above relation allows us to interpret the function  �z�
as a probability density to produce an inclusive particle
with the corresponding value of the variable z.

III. PROPERTIES OF THE SCALING FUNCTION
 �z�

Let us investigate properties of z presentation of experi-
mental data obtained in proton-proton collisions at high
energies.

A. Energy independence of  �z�

We have analyzed experimental data [20–28] on inclu-
sive hadron (h	; ��; K�, and �p) production in minimum-
biased proton-proton collisions. The data on inclusive
cross sections were measured in the central rapidity region
at FNAL, ISR, and RHIC energies

���
s
p
� 19–200 GeV.

The energy dependence of the charged hadron spectra on
the transverse momentum is shown in Fig. 2(a). The dis-
tributions cover the range up to pT ’ 10 GeV=c. The cross
sections change within the range of 12 orders of magni-
tudes. The strong dependence of the spectra on the colli-
sion energy

���
s
p

increases with transverse momentum.
Figure 2(b) shows the z-presentation of the same data.
The scaling variable z depends on the average multiplicity
density of charged particles produced in the central pseu-
dorapidity region of the collision. We have used experi-
mentally measured values of dNch=d�j��0 [29] for
minimum-biased collisions in the analysis of energy and
angular properties of �z�. The independence of the scaling
function  �z� on the collision energy

���
s
p

is found for the
constant values of the parameters c � 0:25, � � 0:5, and
� � 0:2. The form of  �z� manifests two regimes of par-
ticle production. The hard regime is characterized by the
power law  �z� 
 z�� for large z. Soft processes corre-

spond to the behavior of  �z� for small z. The slope of the
scaling curve decreases with z in this region.

The invariant cross sections for the ��-meson produc-
tion as a function of the collision energy and transverse
momentum are plotted in Fig. 3(a). The spectra were
measured over a wide transverse momentum range pT �
0:1–10 GeV=c. The cross sections change from 102 to
10�10 mb=GeV2. The strong dependence of the pion spec-
tra on

���
s
p

was observed in analogy with the case of the

 

(a)

(b)

FIG. 2. (a) Transverse momentum spectra of the charged had-
rons produced in pp collisions at

���
s
p
� 19–200 GeV.

Experimental data are taken from Refs. [20,21,23,25]. (b) The
corresponding scaling function  �z�.
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charged hadron production. The z presentation of the same
data is shown in Fig. 3(b). For pions (as well as for all other
types of the particles—kaons, antiprotons, . . .) the depen-
dence of z on the charged particle multiplicity density
dNch=d�j��0 has been used in the formula (20). On the
other hand, the scaling function (25) is normalized to the
multiplicity density of pions. Independence of the scaling
function for pions on

���
s
p

was obtained for c � 0:25, � �
0:5, and � � 0:2, as well as for the charged hadrons. The
shape of  �z� is found to be the same in both cases.

Transverse momentum spectra for the K�-meson pro-
duction are shown in Fig. 4(a). The cross sections were
measured in the range pT � 0:1–8 GeV=c. The data [28]
for the K0

s -mesons obtained by the STAR Collaboration at
RHIC are also presented in Fig. 4(a). The K-meson spectra
demonstrate the strong dependence on the collision energy���
s
p

. The corresponding scaling function  �z� is depicted in
Fig. 4(b). The independence of  �z� on

���
s
p

is restored for
c � 0:25, � � 0:5, and � � 0:3. The similar features of the

 

(a)

(b)

FIG. 4. (a) Transverse momentum spectra of the K�-mesons
produced in pp collisions at

���
s
p
� 19–200 GeV. The spectrum

of K0
s -mesons is shown by filled squares (�). Experimental data

are taken from Refs. [20,21,24,27,28]. (b) The corresponding
scaling function  �z�.

 

(a)

(b)

FIG. 3. (a) Transverse momentum spectra of the ��-mesons
produced in pp collisions at

���
s
p
� 19–200 GeV. Experimental

data are taken from Refs. [20,21,24,26]. (b) The corresponding
scaling function  �z�.
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pT and z presentations of experimental data [20,21,24,27]
on the antiproton production are presented in Figs. 5(a) and
5(b). The energy independence of  �z� for antiprotons was
established for c � 0:25, � � 0:5, and � � 0:35.

Based on the obtained results we can conclude that the
energy independence of the scaling function  �z� is valid
for different types of hadrons in a wide range of the center-
of-mass energy

���
s
p

and the transverse momentum pT .

B. Angular independence of  �z�

We have analyzed experimental data [21,30] on the
angular dependence of negative hadrons (pions, kaons,
and antiprotons) measured at ISR energies. The data
were obtained in the central and fragmentation regions.
Results of our analysis are demonstrated at the energy���
s
p
� 53 GeV.

Invariant cross sections for the ��-meson production as
a function of the center-of-mass angle � and the transverse
momentum pT are shown in Fig. 6(a). The angles cover the
range � � 3�–90�. The central and fragmentation regions
are distinguished by a different behavior of differential
cross sections. The z presentation of the same data is shown
in Fig. 6(b). The total charged hadron multiplicity density
dNch=d�j��0 represents an angular independent factor in
the definition of the variable z. Contrary to this, the scaling
function (25) is normalized to the multiplicity density
dN=d� of pions depending on the angle �. The angular
and energy independence of the scaling function for pions
was obtained for the same values of c � 0:25, � � 0:5, and
� � 0:2. Let us remark that the function  �z� is sensitive to
the value of m2 for small �. This parameter is determined
from the corresponding exclusive reaction

 p� p! �� � p� p� ��: (28)

The above reaction is a limiting case of the subprocess (4)
for x1 � x2 � ya � yb � 1. From Eqs. (5) and (28) we get
m2 � m���� � 0:14 GeV. This value was used in our
analysis for the inclusive ��-meson production.

Transverse momentum spectra for the K-mesons and
antiprotons produced in pp collisions at different angles
are shown in Figs. 7(a) and 8(a). In addition to the ISR data
at

���
s
p
� 53 GeV, the data from RHIC at

���
s
p
� 200 GeV

are also shown. The angular dependence of the spectra
demonstrates a strong difference between the central and
fragmentation regions. The corresponding function  �z�
for kaons and antiprotons is plotted in Figs. 7(b) and 8(b),
respectively. For both particles, the charged hadron multi-
plicity density dNch=d�j��0 represents an angular inde-
pendent factor in the definition of the variable z. The
scaling function (25) is normalized to the angular depen-
dent multiplicity density dN=d� of kaons and antiprotons,
respectively.

The independence of  �z� on the angle � is obtained for
c � 0:25, � � 0:5, and � � 0:3 for kaons and for c �
0:25, � � 0:5, and � � 0:35 for antiprotons. The values
of these parameters allowed us to obtain simultaneously
the angular and energy independence of the scaling func-
tion. Analogous to the case of ��-mesons, the function
 �z� for kaons and antiprotons is sensitive to the value of
m2 at small angles �. The corresponding values of the
parameter m2 are determined from the exclusive reactions

 p� p! K� � p� p� K�; (29)

 

(a)

(b)

FIG. 5. (a) Transverse momentum spectra of the antiprotons
produced in pp collisions at

���
s
p
� 19–200 GeV. Experimental

data are taken from Refs. [20,21,24,27]. (b) The corresponding
scaling function  �z�.
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 p� p! �p� p� p� p: (30)

Using Eq. (5) for x1 � x2 � ya � yb � 1 and Eqs. (29)
and (30), we get m2 � m�K�� � 0:5 GeV and m2 �
m�p� � 0:94 GeV for the inclusive production of the
K�-mesons and antiprotons, respectively.

The new data [31] on the angular dependence of the
transverse momentum spectra of charged hadrons obtained

by the BRAHMS Collaboration at RHIC are shown in
Fig. 9(a). The data cover a wide range of the center-of-
mass angles (� � 5�–90�) and the transverse momenta
(pT � 0:25–5:65 GeV=c) of the produced hadrons at the
collision energy

���
s
p
� 200 GeV. As seen from Fig. 9(a),

 

FIG. 7. (a) Transverse momentum spectra of the K�-mesons
produced in pp collisions for different angles at

���
s
p
� 53 GeV.

The K� and K0
s -meson spectra for �cms ’ 90� at

���
s
p
� 200 GeV

are shown by a filled circle (�) and diamond (�), respectively.
Experimental data are taken from Refs. [21,27,28,30]. (b) The
corresponding scaling function  �z�.

 

(a)

(b)

FIG. 6. (a) Transverse momentum spectra of the ��-mesons
produced in pp collisions for different angles at

���
s
p
� 53 GeV.

Experimental data are taken from Refs. [21,30]. (b) The corre-
sponding scaling function  �z�.
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the difference between the spectra for � � 50 and � � 90�

enhances with the transverse momentum and reaches the
order of magnitude at pT � 3 GeV=c. For low pT <
1 GeV=cmore systematic study of the angular dependence
of the spectra is needed to establish reliably the behavior of
 �z� in the range. The z-presentation of the data [see
Fig. 9(b)] demonstrates the angular independence of the

scaling function for the same parameters c � 0:25, � �
0:5, � � 0:2, andm2 � 0:3 GeV as found in the case of the
charged hadrons at lower energies

���
s
p
� 19–63 GeV.

C. Multiplicity independence of  �z�

The STAR Collaboration obtained the new data [32] on
the multiplicity dependence of the inclusive spectra of
charged hadrons produced in pp collision in the central

 

(a)

(b)

FIG. 9. (a) Transverse momentum spectra of the charged had-
rons produced in pp collisions for different angles at

���
s
p
�

200 GeV. Experimental data are taken from Ref. [31]. (b) The
corresponding scaling function  �z�.

 

(a)

(b)

FIG. 8. (a) Transverse momentum spectra of the antiprotons
produced in pp collisions for different angles at

���
s
p
� 53 GeV.

The antiproton spectrum for �cms ’ 90� at
���
s
p
� 200 GeV is

shown using diamonds (�). Experimental data are taken from
Refs. [21,27,30]. (b) The corresponding scaling function  �z�.
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rapidity range j�j< 0:5 at the energy
���
s
p
� 200 GeV. The

transverse momentum distributions were measured up to
9:5 GeV=c using different multiplicity selection criteria.
Figure 10(a) demonstrates a strong dependence of the
spectra on the multiplicity density at dNch=d� � 2:5,
6.0, and 8.0. The same data are shown in Fig. 10(b) in the
scaling form. The scaling function  �z� changes over 6

orders of magnitude in the range of z � 0:2–10. The
independence of  �z� on the multiplicity density
dNch=d� was obtained. The result provides a restriction
on the parameter c. We have found its value to be c � 0:25.

The STAR Collaboration measured the multiplicity de-
pendence of the K0

S-meson and �-baryon spectra [33]
in the central rapidity range j�j< 0:5 at the energy

 (a)

(b)

FIG. 10. (a) Transverse momentum spectra of the charged
hadrons produced in pp collisions for different multiplicity
densities at

���
s
p
� 200 GeV. The spectra are normalized at pT �

0:4 GeV=c. Experimental data are taken from Ref. [32]. (b) The
corresponding scaling function  �z�.

 

(a)

(b)

FIG. 11. (a) Transverse momentum spectra of the K0
s -mesons

produced in pp collisions for different multiplicity densities at���
s
p
� 200 GeV. The K0

s -meson spectrum for nonbiased pp
collisions at

���
s
p
� 200 GeV is shown by filled triangles (�).

Experimental data are taken from Ref. [28,33]. (b) The corre-
sponding scaling function  �z�.
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���
s
p
� 200 GeV as well. The spectra are presented in

Figs. 11(a) and 12(a). The charged multiplicity density
was varied in the range dNch=d� � 1:3–9:0. The trans-
verse momentum distributions were measured up to
4:5 GeV=c. The corresponding function  �z� is shown in
Figs. 11(b) and 12(b), respectively. The scaling behavior

provides a strong restriction on the value of c. The data
favor c � 0:25 in both cases.

We conclude that the analyzed experimental data on the
multiplicity dependence of the spectra of the charged
hadrons, the K0

S-mesons, and �-baryons produced in pp
collisions at RHIC confirm the generalized z-scaling and
indicate to the same value of the parameter c.

D. Flavor independence of  �z�

Flavor independence of z-scaling was studied in
Ref. [34]. It was shown that the value of the slope parame-
ter � of the scaling function  �z� at high z is the same for
different types of produced hadrons (�, K, �p). The hy-
pothesis was supported by results of the analysis of hadron
(�	;0, K, �p) spectra for high pT in pp and pA collisions.

The proposed generalization of the z-scaling provides a
unified description of the spectra of different hadrons over
a wide z-range. This includes both the large z region
corresponding to hard processes and the low z-region
characteristic for soft interactions. Restoration of the en-
ergy, angular, and multiplicity independence of the
z-presentation of experimental data gives the same shape
of the scaling function for different particle species.
Exploiting the property (A10), the scaling functions cor-
responding to pT spectra of negative pions, kaons, anti-
protons, and �0s can be reduced to a single curve. This is
illustrated in Fig. 13 where the transverse momentum
distributions of different hadrons produced in pp collisions
are shown in the unified form. It is important to stress that
the result is based on pT distributions which reveal strong
dependence on energy, angle, multiplicity, and type of the
produced particle. The data cover a wide range of collision

 

FIG. 13. Flavor independence of z-scaling. The spectra of �,
K, �p, and � produced in pp collisions in z presentation.

 

(a)

(b)

FIG. 12. (a) Transverse momentum spectra of the �-baryons
produced in pp collisions for different multiplicity densities at���
s
p
� 200 GeV. The �-baryon spectrum for nonbiased pp col-

lisions at
���
s
p
� 200 GeV is shown by filled triangles (�).

Experimental data are taken from Ref. [28,33]. (b) The corre-
sponding scaling function  �z�.
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energy, transverse momentum, and angle of detection. The
same applies to the pp reactions with various multiplicity
selection criteria connected with different centralities.

In conclusion, the analyzed spectra of negative pions,
kaons, antiprotons, and �0s can be described by a single
function  �z�. This is achieved by the transformation z!
�F � z and  ! ��1

F �  which does not change the shape
of  �z� in the log-log plot. The factor �F is a constant
independent of kinematical variables (

���
s
p
; pT , and �). The

mechanism of hadron production on the level of inclusive
cross sections can be characterized by the universal func-
tion  �z� and by the parameters �, �, and c. In the proposed
scheme, the production of different hadrons in high energy
proton-proton collisions is parametrized by different val-
ues of �. We assume that this phenomenological parameter
has a deep internal connection to the processes of forma-
tion of individual hadrons. The obtained results give strong
support for the assumption that flavor independence of the
scaling function  �z� over a wide z-range would also be
valid for secondary particles with heavy flavor content.

IV. HADRON SPECTRA IN NLO QCD AND
z-PRESENTATION

Here we present results of the next-to-leading order
(NLO) QCD calculations of inclusive cross sections of
hadrons over a wide range of collision energy (up to the
LHC energy) and transverse momentum. The dependence
of the spectra in pT and z presentations on the collision
energy, angle of produced particles for different parton
distribution, and fragmentation functions (PDFs, and
FFs) are studied. The sensitivity of the results to the choice
of the renormalization (�R), initial-state factorization
(�F), and final-state factorization (fragmentation) (�H)
scales is verified.

In the paper we use the code from Aversa-Chiappetta-
Greco-Guillet [35] of the NLO QCD production of high
transverse momentum hadrons. The inclusive differential
cross section for the production of a single hadron
(h	; �; K; . . . ) with the transverse momentum pT and the
pseudorapidity � is written as follows

 d2�h=d ~p2
Td� �

X
i;j;k

Z
dx1dx2fi=h1

�x1; �F� � fj=h2
�x2; �F�


 ���S��R�=2��2 � d2�̂ij;k=d ~p2
Td�

� ��S��R�=2��3

� Kij;k��R;�F;�H��dz=z2 �Dh
k�z; �H�:

(31)

The function fi=h1
�x1; �F� describes the distribution of a

parton i in the hadron h1 on the momentum fraction x1 at
the factorization scale �F. The fragmentation of a parton k
into the hadron h is described by the function Dh

k�z;�H�.
The parton momentum fraction carried by the hadron h at
the fragmentation scale �H is equal to z. The cross section

terms in the LO and NLO QCD are described by
d2�̂ij;k=d ~p2

Td� and Kij;k, respectively. The MS scheme is
used to subtract final-state collinear singularities. The
strong coupling �S��R� is defined in the MS renormaliza-
tion scheme at the scale �R. The parton distribution func-
tions CTEQ [36] and MRST [37] and the fragmentation
functions KKP [38] and BKK [39] were used in the
calculations.

The invariant cross sections for the charged hadron
production as a function of the collision energy

���
s
p

and
transverse momentum pT calculated in the NLO QCD are
shown in Fig. 14(a). The calculations depicted by the
dashed lines were performed with the parton distribution
functions CTEQ5m and the fragmentation functions KKP.
The renormalization, factorization, and fragmentation
scales were set to be equal to each other �R � �F �
�H � c � pT and c � 1. The spectra were calculated
over a wide range of the transverse momentum pT �
1–100 GeV=c and the energy

���
s
p
� 23–14 000 GeV at

�cms � 90�. As seen from Fig. 14(a) the strong depen-
dence of the spectra on the collision energy increases with
pT . The difference of the cross sections at

���
s
p
� 23 and

14 000 GeV reaches about 5 and 8 orders of magnitude at
pT � 5 and 10 GeV=c, respectively. Experimental data on
cross sections obtained at FNAL [20], CERN [23], and
BNL [25] are shown in Fig. 14(a) by a triangle (4 ), plus
sign (� ), and circle ( � ), respectively. The same data are
plotted in the dependence on the variable z in Fig. 14(b).
The solid line represents asymptotic behavior of the scal-
ing function  �z� (at constant value of the slope parameter)
for high z. The z presentation of the NLO QCD calcula-
tions of the charged hadron spectra is shown by the dashed
curves. Because data on multiplicity densities are not
available in the TeV energy region, the NLO QCD calcu-
lations were normalized at z � 1 following the procedure
described in Appendix B. A reasonable agreement between
experimental data and the corresponding NLO QCD cal-
culations presented in the framework of the z-scaling is
observed. One can see, however, that the NLO QCD pre-
dictions demonstrate dramatic deviation from the asymp-
totic behavior predicted by z-scaling as the collision energy
and transverse momentum increase in the region where
experimental measurements are not performed yet.

Figures 15 and 16 show pT and z presentations of the
inclusive spectra of � and K mesons produced in pp
collisions over a range pT � 1–100 GeV=c,

���
s
p
�

30–14 000 GeV, and j�j< 0:35. The NLO QCD calcula-
tions with the CTEQ5m parton densities and KKP frag-
mentation functions are plotted by the dashed lines.
Experimental data are depicted by points [triangle (4 ),
plus sign (� ), and circle ( � )]. The results shown in
Figs. 14–16 demonstrate that general features of both
presentations are independent of the type of the produced
hadron (h	; �; K). The z presentation of the NLO QCD
calculated results indicate considerable deviation from the
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asymptotic behavior predicted by the z-scaling. A similar
comparison of the angular dependence of charged hadron
and � meson spectra predicted by the NLO QCD with the
z-scaling results is shown in Figs. 17 and 18. In contrast to
the asymptotic behavior of  �z� (solid line) the NLO QCD
curves (dashed lines) demonstrate strong dependence on

the angle �cms over a range 3�–90� in the z-presentation.
The NLO QCD calculations with other parton (MRST)[37]
and fragmentation (BKK)[39] functions as well as with
the variation (c � 1=2, 1, 2) of the renormalization
(�R), factorization (�F), and fragmentation (�H) scales
give similar results. We would like to emphasize that

 

(a)

(b)

FIG. 15. The NLO QCD predictions of transverse momentum
spectra of the � mesons produced in pp collisions over a range���
s
p
� 30–14 000 GeV and j�j< 0:35 with CTEQ5m [36] parton

distributions and KKP [38] fragmentation functions in pT (a) and
z (b) presentations. Experimental FNAL [20], CERN [21,22],
and BNL [26] data are shown by a triangle (4 ), plus sign (� ),
and circle ( � ), respectively. The solid line is the prediction of
the asymptotic behavior of  �z� by the z-scaling.

 

(a)

(b)

FIG. 14. The NLO QCD predictions of transverse momentum
spectra of the charged hadrons produced in pp collisions over a
range

���
s
p
� 23–14 000 GeV and j�j< 0:35 with CTEQ5m [36]

parton distributions and KKP [38] fragmentation functions in pT
(a) and z (b) presentations. Experimental FNAL [20], CERN
[23], and BNL [25] data are shown by a triangle (4 ), plus sign
(� ), and circle ( � ), respectively. The solid line is the predic-
tion of the asymptotic behavior of  �z� by the z-scaling.
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z-presentation of all calculations was performed with the
same values of the parameters �, �, and c as obtained from
our analysis of experimental data. The results of the analy-
sis illustrate the qualitative and quantitative difference of
the NLO QCD predictions and the z-scaling regularity at
high pT .

Based on the obtained results we conclude that self-
similar features of particle production dictated by the
z-scaling give strong restriction on the asymptotic behavior
of the scaling function  �z�. The behavior is not repro-
duced by the NLO QCD evolution of cross sections with
the phenomenological parton distribution and fragmenta-
tion functions used in the present analysis.

 

(a)

(b)

FIG. 17. The NLO QCD predictions of angular dependence of
transverse momentum spectra of charged hadrons produced in
pp collisions at

���
s
p
� 200 GeV for �cms � 5�–90� with

CTEQ5m [36] parton distributions and KKP [38] fragmentation
functions in pT (a) and z (b) presentations. Experimental data
[31] obtained at RHIC are shown by the plus sign (� ), circle
( � ), triangle (4 ), and diamond (�). The solid line is the
prediction of the asymptotic behavior of  �z� by the z-scaling.

 

(a)

(b)

FIG. 16. The NLO QCD predictions of transverse momentum
spectra of the K mesons produced in pp collisions over a range���
s
p
� 30–14 000 GeV and j�j< 0:35 with CTEQ5m [36] parton

distributions and KKP [38] fragmentation functions in pT (a) and
z (b) presentations. Experimental FNAL [20], CERN [21], and
BNL [27,28] data are shown by a triangle (4 ), plus sign (� ),
and circle ( � ), respectively. The solid line is the prediction of
the asymptotic behavior of  �z� by the z-scaling.
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V. DISCUSSION

An analysis of experimental data on inclusive cross
sections for different hadron species performed in
z-presentation shows that the shape of the scaling function
 �z� for proton-proton collisions is the universal one. The

universality means that the scaling function is the same for
hadrons with different flavor content. The behavior of  �z�
is described by the power law,  �z� 
 z��, in the asymp-
totic (high-z) region. It was found however, that � is
different for pp and �pp collisions [18]. This holds for
direct photon and jet production as well. The scaling
function at high-z describes features of a hard mechanism
of particle production. In the low-pT (low-z) region corre-
sponding to the soft regime of particle production the
scaling function bends and straightens out in the logarith-
mic plot.

The suggested procedure for the construction of the
z-presentation of experimental data can be applied both
for the analysis of stable particles and resonances as well.
We consider that each type of an inclusive particle is
characterized by a corresponding value of the parameter
�. The general scheme is the same but the properties of
initial data should be taken into account. Among them are
momentum, mass, quantum numbers, and particle identi-
fication. The method of identification is essential to sepa-
rate possible mechanisms of the particle production
[40,41]. We assume that, at the level of cross sections,
mechanisms of soft and hard production of the same par-
ticle is described by the unique function  �z�. Both regions
demonstrate the self-similarity but different scale depen-
dence. Based on the obtained results one can expect that
analogous would hold also for particles with heavier flavor
content (c; s; t). Here suitable experimental data sets are
needed to fix the parameters �1, �2, �a, �b, and c. On the
other hand the assumption of the flavor independence of
the function  �z� can be used if data are known at least in
the restricted (usually low-z) kinematical range. In such a
case it is possible to exploit the asymptotic behavior of the
scaling function for �0 which is known up to z � 30.
Using the data on (�;�0; K?;�;�; J= ) production in-
cluding �0 cross sections one can perform the combined
analysis [42,43] in z-presentation. Nevertheless direct
verification of the universality of the scaling function
for various types of particles both in the low-z and
high-z-region is desirable.

Let us briefly discuss likeness and distinction which
takes place for the phenomenological description of inclu-
sive cross sections in terms of the scaling variables xF, z
and in the framework of pQCD. Primarily note that both
variables are dimensionless and were found from the phe-
nomenological analysis of experimental data. The behavior
of cross sections Ed3�=dp3 
 xnF�1� xF�

m for xF ! 0
and xF ! 1 are governed by Regge trajectories and the
quark-counting rules [13,14]. The exponents n and m are
found experimentally as energy, momentum, and angular
dependent parameters. The scaling of spectra in
xF-presentation is fulfilled for xF ! 1 only. It is violated
in the central interaction region. Different modifications
[44] of xF were suggested to restore the xF-scaling but they
are of no consecutive physical reasoning. In the central

 

(a)

(b)

FIG. 18. The NLO QCD predictions of angular dependence of
transverse momentum spectra of � mesons produced in pp
collisions at

���
s
p
� 53 GeV for �cms � 3�–90� with CTEQ5m

[36] parton distributions and KKP [38] fragmentation functions
in pT (a) and z (b) presentations. Experimental data [21,30]
obtained at ISR are shown by the circle ( � ), triangle (4 ), and
diamond (�). The solid line is the prediction of the asymptotic
behavior of  �z� by the z-scaling.
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rapidity range, the variable xT � 2pT=
���
s
p

was used for
parametrization of cross sections, Ed3�=dp3 
 p�lT f�xT�,
at high pT . The exponent l is usually not an integer number,
it depends on energy

���
s
p

, and its relation to the quark-
counting rules is not too obvious.

The procedure for construction of the variable z and the
function  �z� is aimed to reflect the principles of locality,
self-similarity, and fractality. In contrast to other scaling
variables, z represents a fractal measure, i.e. the scale-
dependent quantity. It means that the measure diverges,
z��� ! 1, as the resolution increases, ��1 ! 1. The
resolution should be understood with respect to all con-
stituent subprocesses which can contribute to the produc-
tion of an inclusive particle with a given momentum p. The
parameters � and � determine the fractal character of z and
have a meaning of fractal dimensions. They were found to
be constant over a wide range of

���
s
p

, pT , and �. Both self-
similarity and fractality (the scale independence of  �z�)
were established over a wide z-range.

The z-scaling gives strong constraint on the asymptotic
behavior of  �z� and consequently on Ed3�=dp3. This
behavior was confronted with the numerical predictions
in the framework of pQCD presented at high pT in Sec. IV.
Calculations based on the NLO QCD were compared with
RHIC data on �0 meson production measured in pp
collisions at

���
s
p
� 200 GeV and a good agreement was

found to be [45]. At the same time the description of
spectra for charged (h	) [26] and especially for strange
(K0

S;�;�) hadrons [40,41] are sensitive to the phenome-
nological fragmentation functions. We consider that suit-
able constraints on phenomenology of PDFs and FFs are
needed to verify the perturbative QCD in hadron collisions
with high accuracy and establish predictive power of the
theory in the nonperturbative region. This is feasible, in
particular, in the asymptotic regime where the behavior of
the scaling function  �z� can be used to impose restrictions
on the poor known gluon distribution function.

In the pQCD analysis [38,39,46–50] the structure and
fragmentation functions are taken from experiments on
deep inelastic scattering and e�e� annihilation processes.
A strong Q2-dependence (the scale dependence) of the
structure functions in the low-x (< 0:01) and high-x
(> 0:6) range is observed experimentally. Therefore the
results (cross sections) based on the Q2-evolution of the
structure functions are model dependent in the range of
high pT as well. This is true in respect to sensitivity of the
transverse momentum spectra on the renormalization, fac-
torization, and hadronizations scales. One of the methods
of the QCD analysis of structure functions is the
Jacobi polynomial expansion method [51]. In the method
the moments of structure functions satisfy the renormal-
ization equation [52]. The solution of the equation
gives the Q2-evolution of the moments Mn�Q2� �R

1
0 x

n�2F�x;Q2�dx of the structure function F�x;Q2� gov-
erned by the fractal dimensions �n calculated in the per-

turbative QCD. In the leading order the solution for the
nonsinglet structure function is written in the form
Mn�Q2� � Mn�Q2

0���S�Q
2�=�S�Q2

0��
�0;n
NS=2�0 . The ratio

dnNS � �0;n
NS=2�0 for nf � 3 is equal to 0.395, 0.775,

1.000, 1.162, and 1.289 for n � 2, 4, 6, 8, and 10, respec-
tively [52]. The dependence of the running coupling con-
stant �S on Q2 is governed by the renormalization
equation. We would like to note that there is substantial
difference between the QCD fractal dimensions �n and the
phenomenological dimensions � and � in the z-scaling
approach. The first ones are due to nonlinear interaction
of quantum gluon fields and as a result violation of the
dimension counting rule takes place. The latter determine
fractal character of the scaling variable z in terms of the
underlying constituent subprocesses in the space of the
momentum fractions x1, x2, ya, and yb. Yet, there exists a
common parallel between QCD fractal dimensions and the
phenomenological fractal dimensions in the z-scaling
scheme. Both of them determine the characteristic power
increase of the corresponding fractal measures at small
distances and both of them concern hadron interactions at
small scales. The unlimited increase of the moments
Mn�Q

2� with the resolution Q2 (anomalous dimensions
are negative for n < 1) is a typical fractal property.
Similar concerns the fractal measure z in the region where
x1, x2, ya, yb ! 1. So, in the first case the change of
external momentum scale pi ! �pi for the connected
Green’s function leads to the shift of the renormalization
point � and consequently to the change of the coupling
constant �S. The Green’s function is not invariant under
such a transformation. Therefore its dimension is modified
by the adding of an anomalous part (‘‘anomalous fractal
dimension’’) coming from the scale dependence of the
running coupling constant �S. Note that the variable z
reveals properties of a fractal measure as the resolution
increases while the moments (Mn�Q2�) of the structure
functions demonstrate such property only for n < 1
(low-x range). It is possible that the discrepancy between
z-scaling and NLO QCD predictions for high pT (high-z)
[see Figs. 14(b), 15(b), 16(b), 17(b), and 18(b)] in the TeV
energy region is due to the absence of the fractal property
for Mn with n > 1.

VI. CONCLUSIONS

The generalized z-scaling for the inclusive particle pro-
duction in proton-proton collisions was suggested. The
scaling variable z is a function of the multiplicity density
dNch=d�j0 of charged particles in the central region of
collision. The variable z depends on the parameters c, �,
and �, interpreted as a specific heat of the produced me-
dium, a fractal dimension of the proton, and a fractal
dimension of the fragmentation process, respectively. A
connection between the scaling variable z and the entropy
S of the interacting system was established.
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We have analyzed experimental data on inclusive cross
sections of hadrons (h	, ��, K�, K0

S, �p, and �) measured
in proton-proton collisions at FNAL, ISR, and RHIC. The
data cover a wide range of collision energy, transverse
momenta, and angles of the produced particles. Spectra
from minimum-biased events and events with various
multiplicity selection criteria have been studied. The en-
ergy, angular, and multiplicity independence of the scaling
function was established. It gives strong constrains on the
values of the parameters c, �, and �. It was shown that the
parameters are constant in the considered kinematical re-
gion. The scaling is consistent with the parameters c �
0:25 and � � 0:5 for all types of the considered inclusive
hadrons. The value of � increases with the mass of the
produced hadron. The shape of the scaling function  �z�
was found to be the same for different types of produced
hadrons over a wide range of z.

The variable z has the character of a fractal measure.
Fractal properties of z are determined by the parameters �
and � which are interpreted as fractal dimensions in the
space of the momentum fractions. The scaling function
 �z� manifests two regimes of the particle production. The
hard regime is characterized by the power-law  �z� 
 z��

for large z. The soft processes correspond to the behavior
of  �z� for small z. The value of the slope parameter of the
scaling curve decreases with z in this region. Based on the
results of the performed analysis we conclude that
z-scaling in proton-proton collisions is a regularity which
reflects the self-similarity, locality, and fractality of the
hadron interaction at the constituent level. It concerns the
structure of the colliding objects, interactions of their con-
stituents, and fragmentation process. Self-similar features
of particle production dictated by the z-scaling give strong
restriction on the asymptotic behavior of the inclusive
spectra in the high-pT region. This behavior is not repro-
duced in the TeV energy range by the NLO QCD evolution
of the cross sections with the phenomenological parton
distribution and fragmentation functions used in the
present calculations.

We consider that experimental verification of the NLO
QCD calculations and z-scaling predictions are important
for further tests of the QCD and more precise specification
of the phenomenological ingredients which enter the
pQCD calculations at small scales. The obtained results
may be exploited to search for and study new physics
phenomena in the particle production over a wide range
of collision energies, production angles, transverse mo-
menta, and large multiplicities in proton-proton and
nucleus-nucleus interactions at RHIC and LHC.
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APPENDIX A

The scaling variable z has the character of a fractal
measure. The boundaries of its range are 0 and 1. They
are accessible at any collision energy. The variable z con-
sists of a finite part z0 and of a divergent factor ��1. For a
given reaction (1), the finite part is proportional to the
transverse kinetic energy of the constituent subprocess
consumed on the production of the inclusive particle
(m1) and its counterpart (m2). The factor ��1 describes a
resolution at which the subprocess can be singled out of
this reaction. The ��x1; x2; ya; yb� is a relative number of
all parton configurations containing the incoming constit-
uents which carry the fractions x1 and x2 of the momenta
P1 and P2 and which fragment to the inclusive particle
(m1) and its counterpart (m2) with the corresponding mo-
mentum fractions ya and yb. The parameters �1 and �2

have relation to the fractal structure of the colliding objects
(hadrons or nuclei). They are interpreted as fractal dimen-
sions in the space of the momentum fractions. The parame-
ters �a and �b characterize the fractal behavior of the
fragmentation process in the final state. A common prop-
erty of fractal measures is their divergence with the in-
creasing resolution

 z��� ! 1 if ��1 ! 1: (A1)

For an infinite resolution the whole reaction (1) degener-
ates to a single subprocess (4), all momentum fractions
become unity (x1 � x2 � ya � yb � 1) and � � 0. This
kinematical limit corresponds to the fractal limit z � 1.

In the general case, the momentum fractions are deter-
mined from a principle of a minimal resolution of the
fractal measure z. The principle states that the resolution
��1 should be minimal with respect to all binary subpro-
cesses (4) in which the inclusive particle m1 with the
momentum p can be produced. This singles out the under-
lying interaction of the constituents which satisfies the
condition (5). This condition can be conveniently written
in the form

 x1x2 � x1�2 � x2�1 � �0 � 0: (A2)

Here we have used the notations (9)–(12) in which �1, �2,
and �0 are explicit functions of ya and yb. For given values
of ya and yb, the momentum fractions x1 and x2 are found
from a maximum of the functional

 ��x1; x2; ya; yb� � ��x1x2 � x1�2 � x2�1 � �0� (A3)

with a Lagrange multiplicator �. Taking the derivatives of
the expression (A3) with respect to x1 and x2 one can
obtain the equation
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 �1� x2��x1 � �1� � ��1� x1��x2 � �2�; (A4)

where � � �2=�1 is the ratio of the fractal dimensions of
the colliding objects. The explicit solution of the system of
two Eqs. (A2) and (A4) gives the formulae (7) and (13)–
(16). So the problem of finding a maximum of
��x1; x2; ya; yb� satisfying the condition (5) is reduced to
a task to search for an unconstrained maximum of the
function (17) of two independent variables ya and yb.
This is solved for every value of the momentum p
numerically.

There exists a connection between the variable z and
entropy. The scaling variable (19) is proportional to the
ratio

 z

s1=2
?

W
(A5)

of the transverse kinetic energy s1=2
? and the maximal value

of the quantity

 W�x1; x2; ya; yb� � �dNch=d�j0�
c ���x1; x2; ya; yb� (A6)

in the space of the momentum fractions. The average
multiplicity density dNch=d�j0 of charged particles pro-
duced in the central region of the reaction (1) depends on a
state of the produced medium in the colliding system. The
parameter c characterizes properties of this medium. The
quantity W is proportional to all parton and hadron con-
figurations of the colliding system which can contribute to
the production of the inclusive particle with the momentum
p.

According to statistical physics, entropy of a system is
given by a number of all statistical states W of the system
as follows

 S � lnW: (A7)

In thermodynamics, entropy for an ideal gas is determined
by the formula

 S � cV lnT � R lnV � const; (A8)

where cV is a heat capacity and R is a universal constant.
The temperature T and the volume V characterize a state of
the system. Using Eqs. (A6) and (A7), we can write
 

S � c ln�dNch=d�j0� � ln��1� x1�
�1�1� x2�

�2�1� ya�
�a


 �1� yb�
�b�: (A9)

Exploiting the analogy between Eqs. (A8) and (A9), we
interpret the parameter c as a ‘‘heat capacity’’ of the
produced medium. The multiplicity density dNch=d�j0
of particles in the central region characterizes a ‘‘tempera-
ture’’ of the colliding system [53]. Provided that the system
is in a local equilibrium, there exists a simple relation
dNch=d�j0 
 T

3 for high temperatures and small chemical
potentials. The second term in Eq. (A9) depends on the
volume in the space of the momentum fractions
fx1; x2; ya; ybg. This analogy emphasizes once more the

interpretation of the parameters �1, �2, �a, and �b as fractal
dimensions. In accordance with common arguments, the
entropy (A9) increases with the multiplicity density and
decreases with the increasing resolution ��1. In the con-
sidered analogy, the principle of a minimal resolution ��1

with respect to all subprocesses satisfying the condition (5)
is equivalent to the principle of a maximal entropy S of the
rest of the colliding system (A9).

Using the principle of a maximal entropy S�x1; x2;
ya; yb� under the condition (5) one fixes the values of the
momentum fractions xi and yi and singles out the most
effective subprocess which underly the inclusive reaction
(1). Assuming such a partition of an interacting system into
a single constituent binary collision and the rest of all other
microscopic configurations which lead to the produced
multiplicity, some general conclusions on dynamics of
the system can be made. The performed analysis shows
that the values of yb are considerably smaller than the
values of ya. It is fulfilled for all types of particles and
kinematics under consideration. This means that the mo-
mentum balance in the production of an inclusive particle
from a subprocess is more likely compensated by the states
with a higher multiplicity of particles with smaller mo-
menta than by a single particle with a higher momentum
moving in the opposite direction. Such an asymmetry
diminishes near the kinematical limit, where both ya and
yb tend to unity. Another interesting observation is that the
momentum fractions ya and yb decrease with the increas-
ing collision energy. This corresponds to the scenario in
which more multiplicity is produced from a single con-
stituent interaction at higher center-of-mass energies s1=2.
We stress that the general features mentioned above do not
depend on the specific values of the fractal dimensions �
and �.

Let us note that the entropy (A7) is determined up to an
arbitrary constant lnW0. Dimensional units entering the
definition of the entropy can be included within this con-
stant. In particular, it allows to account for a relation
between the dimensionless multiplicity density
dNch=d�j0 and the temperature. This degree of freedom
is related to the transformation

 z! W0 � z;  ! W�1
0 �  : (A10)

In such a way the scaling variable and the scaling function
are determined up to an arbitrary multiplicative constant.
The constant W0 is related to an absolute number of the
microscopic states of the system. Its value is restricted by
the positiveness of the entropy above some scale charac-
terized by a maximal resolution ��1. For the resolution
corresponding to the fractal limit, W0 is infinity. Thus, the
transformation (A10) is connected with a renormalization
of the fractal measure z in agreement with its physical
interpretation (A5).

The procedure for the construction of the z-presentation
of experimental data consists of several steps:
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(1) First of all we take some experimental data sets on
transverse momentum spectra of inclusive cross
sections Ed3�=dp3 corresponding to different
collision energies

���
s
p

, angles � of the produced
particles, and multiplicity classes Nch of events.
The charged particle multiplicity densities
dNch=d�j0�s� in the central interaction region �� �
0� at these collision energies are required as well.

(2) The general formulae presented in Sec. II allow us to
calculate the scalar invariants of all particle 4-
momenta P1, P2, p and determine the fractions x1,
x2, ya, and yb which correspond to the maximum of
the functional (A3).

(3) The scaling variable z and the scaling function  �z�
are expressed via the momentum fractions, multi-
plicity densities dNch=d�j0�s�, and the experimen-
tal data on the inclusive cross section Ed3�=dp3.

(4) The assumption of self-similarity transforms to the
requirement of the simultaneous description of all
the data sets by a scaling function  �z�. This gives
strong constraint on values of the parameters �, �,
and c and allows us to determine them. The fractal
dimensions � and � are sensitive to high-pT parts of
spectra as well as to spectra at small angles. The
dependence on the type of the produced particle is
regulated by the parameter �. The value of c is
determined from multiplicity dependence of the
cross sections.

APPENDIX B

The invariant differential cross section for the produc-
tion of the inclusive particle is normalized as follows

 

Z
E
d3�

dp3 dyd
2p? � �inelN: (B1)

The �inel is the inelastic cross section and N is the average
multiplicity. The differential cross section of identified
hadrons of a certain type is normalized to the correspond-
ing average multiplicity of this type. The inclusive cross
section can be expressed in terms of 	1 and 	2,

 E
d3�

dp3 � �
1

2�

������������������������������������
�P1P2�

2 �M2
1M

2
2

q
��P1P2� �M1M2�

2

d2�
d	1d	2

: (B2)

In the region of high energies, the formula can be written in
an approximate form

 E
d3�

dp3 � �
1

�sA1A2

d2�
d	1d	2

: (B3)

We suppose that the inclusive cross section is given by a
solution (18) as a function of a single variable z �
z�	1; 	2�. Another independent combination of 	1 and 	2

is the NN center-of-mass rapidity

 y �
1

2
ln
	1

	2
�

1

2
ln
A1

A2
: (B4)

Using both sets of independent variables, we obtain

 

Z d2�
d	1d	2

d	1d	2 �
Z d2�
dydz

dydz

� �inel

Z
~��y� ~ �z; y�dydz � �inelN:

(B5)

A detailed analysis of the experimental data on the angular
properties of the scaling function has shown that the facto-
rization

 

d2�
d�dz

� �inel���� �z� (B6)

is valid when pseudorapidity � rather than rapidity y is
used. Here ���� � dN=d� is the pseudorapidity density of
particles of the considered type. The quantity dN=d�
enters the formula (25) in the normalization of the scaling
function  �z�. Exploiting the relation between the rapidity
y and the NN center-of-mass pseudorapidity �,

 pT sinh� � mT sinhy; (B7)

one can express the pseudorapidity density of particles in
the following form

 

dN
d�
�
dN
dy
���

dy
d�
�
dN
dy
���

pT cosh�
mT coshy

�
dN
dy
���

p
E
:

(B8)

The rapidity densities dN=dy��� were obtained from the
normalization constants of the pT spectra measured at
various angles �. The parametrizations of the spectra are
often expressed as functions of the transverse momentum
pT or the transverse mass mT � �p

2
T �m

2
1�

1=2. Hence we
have fitted the corresponding transverse momentum distri-
butions by different functions. In dependence on the spec-
tral shapes, we have used a power-law function
 

E
d3�

dp3 �
�inel

�
dN
dy
���

2�n� 1��n� 2�

�n� 3�2hpTi
2

�
1�

2pT
hpTi�n� 3�

�
�n
;

(B9)

Levi function
 

E
d3�

dp3 �
�inel

�
dN
dy
���

�n� 1��n� 2�

2nT�m1�n� 2� � nT�




�
1�

mT �m1

nT

�
�n
; (B10)

exponential function

 E
d3�

dp3 �
�inel

�
dN
dy
���

1

2T�m1 � T�
exp

�
��mT �m1�

T

�
;

(B11)

GENERALIZED z-SCALING IN PROTON-PROTON . . . PHYSICAL REVIEW D 75, 094008 (2007)

094008-19



or Boltzman function

 E
d3�

dp3 �
�inel

�
dN
dy
���

mT

2T�m2
1 � 2m1T � 2T2�


 exp
�
��mT �m1�

T

�
: (B12)

For inclusive spectra dependent on multiplicities, the ex-
tracted values of dN=dy��� are functions of the multi-
plicity selection criteria characterized by different total
charged multiplicity densities dNch=d�j0.

The derivatives @�=@	i which enter the Jacobian (26)
can be expressed directly. Using Eq. (B4) and the expres-
sions

 	1 ’
E� p cos�
A1

���
s
p ; 	2 ’

E� p cos�
A2

���
s
p ; (B13)

we can rewrite the relation (B7) as follows

 sinh� �

���
s
p

2

�A1	1 � A2	2�������������������������������������
sA1A2	1	2 �m2

1

q : (B14)

From differentiating one can obtain

 

@�
@	1

� �
A1

���
s
p

2



sA2	2�A1	1 � A2	2� � 2m2

1

�sA1A2	1	2 �m
2
1�

��������������������������������������������������
s�A1	1 � A2	2�

2 � 4m2
1

q ;

(B15)

 

@�
@	2

� �
A2

���
s
p

2



sA1	1�A1	1 � A2	2� � 2m2

1

�sA1A2	1	2 �m2
1�

��������������������������������������������������
s�A1	1 � A2	2�

2 � 4m2
1

q :

(B16)

Inserting 	1 and 	2 from (B13), we get

 

@�
@	1

� �
A1

���
s
p

2p2
T

�p� E cos��; (B17)

 

@�
@	2

� �
A2

���
s
p

2p2
T

�p� E cos��: (B18)

The derivatives @z=@	i in (26) were calculated
numerically.

Let us make a brief comment on suitability of the
utilization of pseudorapidity instead of rapidity in the
factorization of the cross section. The main quantitative
difference is in the Jacobian. In the case of rapidity one
should use @y=@	1 � �1=�2	1� and @y=@	2 � �1=�2	2�
instead of (B17) and (B18) with a replacement of dN=d�

by dN=dy in the formula (25). We have verified that, for
pions, this would lead to perceivable discrepancy between
z-presentation of data in the central and fragmentation
region for small transverse momenta (z & 1). The differ-
ence is even more evident for heavier particles for which it
starts to occur at larger values of z. When using the
pseudorapidity instead of rapidity, the angular indepen-
dence of the scaling function for all particles (pions, kaons,
and antiprotons) is preserved up to very small momenta
and production angles. In this sense z-presentation of data
on inclusive cross sections is naturally connected with
geometry in particle production.

Finally, we will examine the transverse kinetic energy
s1=2
? (21) which enters definition of the scaling variable z.

In the central interaction region, the formulae (22) and (23)
can be expressed in a simple approximate form. We have
checked therefore that �1�2 ’ 	1	2=y2

a is valid with good
accuracy in this region. The transverse energy balance in
the constituent subprocess is guarantied by the identity

 �1�2 � �1�2 � �1�2 � �0: (B19)

Using these relations and neglecting the masses Mi�i and
Mi�i of the interacting constituents, we get

 Ta ’ ya
������������������������
�1�22P1P2

p
�m1 ’

������������������������
	1	22P1P2

p
�m1

’
�������������������
p2
? �m

2
1

q
�m1 (B20)

and

 Tb ’ yb
������������������������
�1�22P1P2

p
�m2

� yb
���������������������������������������
��1�2 � �0�2P1P2

q
�m2

’ yb
���������������������������������������������������������������������
�p2
? �m

2
1�=y

2
a �m

2
2=y

2
b �m

2
1=y

2
a

q
�m2

�
�������������������
~p2
? �m

2
2

q
�m2: (B21)

In the last equation we have used the transverse momentum
balance

 p?=ya � ~p?=yb; (B22)

valid in the constituent subprocess. The symbols p and ~p
stand for the momenta of the inclusive particle (m1) and its
counterpart (m2), respectively. The above approximations
are valid with an accuracy better that 10% for all analyzed
spectra in the central interaction region. They are however
not applicable in the fragmentation region (� & 100) where
the expressions on the right-hand side of the relations
(B20) and (B21) significantly differ from the formulae
(22) and (23). This difference is more pronounced in the
case of kaons and antiprotons and other particles with
heavier masses.
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