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In the heavy quark and large Nc limits, ordinary (exotic) heavy baryons can be considered as bound
states of heavy mesons (antimesons) and chiral solitons. In these limits, the heavy mesons (or antimesons)
and the chiral solitons are extremely heavy and are presumed to fall to the bottom of the effective
potential. Previous studies have approximated the effective potential as harmonic about the minimum.
However, when realistic masses for the heavy meson and chiral soliton are considered, longer range parts
of the effective potential can become relevant. In this paper, we show that these longer-ranged effects yield
effective wave functions which are qualitatively very different from those expected from the combined
large Nc and heavy quark limits. These potentials can support bound heavy pentaquarks under some
conditions. The consequence of these new energy states and wave functions on the Isgur-Wise function for
the semileptonic decay of heavy baryons is also considered.
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I. INTRODUCTION

It has been known for a number of years that heavy
baryons can be constructed in the heavy quark and largeNc
limits from the binding of heavy mesons with light chiral
solitons [1–5]. In these limits, both the heavy meson and
the chiral soliton have large masses, and it is legitimate to
describe the system in terms of a collective degree of
freedom between the heavy meson and baryon. The large
masses drive the particles to the bottom of the effective
potential. In most cases considered, this minimum occurs
at the origin of the relative coordinate, causing both parti-
cles to be situated on top of one another. Previous attempts
at describing heavy baryon physics within this model
assumed that particles would only experience small har-
monic perturbations in the potential away from their mini-
mum. The previous works showed that the channels which
constituted physical heavy baryons had attractive poten-
tials while those channels which did not correspond to
physical particles had repulsive potentials [1–3]. Since
the physical world does not correspond to the extreme
heavy quark and largeNc limits, which guided the previous
work, it is interesting to ask the extent to which realistic
masses drive the particles to the bottom of the potential (as
expected in the combined limit) when the harmonic ap-
proximation to the effective potential is replaced by the
leading order potential to all distances. In this paper, we
look at a class of corrections to this picture. Similar issues
have arisen for nucleon-nucleon forces in large Nc [6]. We
continue to assume that the heavy quark mass and Nc are
large enough to enable us to describe the dynamics in terms
of a collective degree of freedom which is describable as a
nonrelativistic effective potential. However, we do not
automatically assume that the masses are so large as to
drive the particles into the vicinity of the minimum of the

potential. Instead, we focus on examining the consequen-
ces of considering the complete potential with realistic
particle masses on heavy baryon physics. As we will
show, the physics is qualitatively quite different from
what one would expect if the world were close to the
idealized limit.

Baryons described as solitons in a chiral Lagrangian
were first considered by Skyrme [7]. These chiral solitons
have the correct quantum numbers as baryons in the large
Nc limit [8] when the Wess-Zumino term is included [9].
While the extensive early calculations [10] focused on
SU(2) solitons, the theory was also extended to include
baryons with strange quarks. This was done by either
considering the strange quark as light, and extending the
SU(2) chiral fields to SU(3) [11,12], or by considering the
strange quarks as heavy, compared to the lighter quarks,
and strange baryons as bound states of the SU(2) soliton
and K-mesons [13,14].

To extend the theory to include even heavier quarks,
such as charm and bottom, the former approach of extend-
ing the soliton group structure is not reasonable since the
mass of the heavy quarks is vastly different from the lighter
three quarks. Therefore, the appropriate manner is the
latter, put forth in the strange case by Callan and
Klebanov, where the heavy baryon states are considered
bound states of light quark chiral solitons and heavy me-
sons. For simplification, we will focus our attention on
models made from SU(2) chiral solitons, as was done in
previous work [1–3]. Furthermore, the theory must also
exhibit heavy quark symmetry [15–17]. Thereby, the
heavy meson is treated by heavy quark effective theory
(HQET). HQET treats the heavy mesons as the dynamical
degrees of freedom and provides a systematic expansion, in
powers of the hadronic scale, �, over the heavy quark
mass, mQ, to examine the Lagrangian and subsequent
interactions.

This method can also be used to bind heavy antimesons
with chiral solitons to form pentaquark states. Such calcu-
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lations have been performed previously, for the case of
strange quarks [18]. This work showed that the pentaquark
channel was not sufficiently attractive to yield bound pen-
taquark states or prominent resonances. Previously, it has
been argued on general model-independent grounds that in
the extreme heavy quark and large Nc limits, bound heavy
pentaquark states must exist, primarily because the heavy
particles fall to the bottom of the potential well [19].
However, it was shown that unlike in the extreme heavy
quark and large Nc limits in which the long-range one-
pion-exchange potential automatically binds heavy penta-
quarks regardless of the details of the short distance inter-
actions, for physical masses the existence of bound
pentaquarks was highly sensitive to the details of the
short-distance interaction. The Skyrme type chiral soliton
models provide one framework for treating the short-
distance physics, and thereby it is interesting to determine
if such theories could support heavy pentaquark binding.
More significantly, the experience with the exotic channels
suggests the possibility that the behavior in the nonexotic
channels may also be substantially different from the limit
on which the standard Skyrme analysis is based.

The interest in determining the heavy baryon energy
spectrum and wave function within a chiral soliton model
has also led to studies of the Isgur-Wise function for
transitions between heavy baryons. Formally, the Isgur-
Wise function describes the nonperturbative physics asso-
ciated with the form factor of the semileptonic weak decay
of �b ! �ce� ��e [20]. Traditionally it is expressed as a
function of the transition velocity. If the dynamics of the
heavy baryons are known exactly, this function can be
calculated for all velocities. The Isgur-Wise function has
been calculated previously when the effective potential
was approximated as harmonic both in the context of the
Skyrme model [3] and in a model-independent context
[4,5]. This paper considers the longer range effects of the
interaction between the heavy and light degrees of freedom
and leads to a nonuniversal form of the Isgur-Wise function
dependent on the details of the interaction.

We are by no means the first group to consider applying
the Skyrme model to attempt to explain either heavy
baryons or exotic particles. In addition to [1–3], heavy
baryons spectroscopy within the Skyrme model has been
previous considered by the work of Oh and his collabora-
tors [21]. In recent years, a variety of work associated with
pentaquarks states has been presented in the literature.
These works have included heavy pentaquarks, in the
context of several different models, [19,22–24], and light
pentaquark states either in the context of the Skyrme
model, [25–29], or in terms of other models, [30–33].
Exotic dibaryon states have also been examined using the
Skyrme model [34]. Additionally, decays of heavy baryons
have been previously considered within the Skyrme model
[35].

The overall goal of this paper is to explore the properties
of heavy baryons in the Skyrme model in which the col-

lective degree of freedom between the heavy meson and
the remainder of the system is beyond the harmonic region
of the ideal heavy quark and large Nc limits. In the next
section, we derive the complete effective potential and
show that when the full potential is considered, for realistic
parameters, the heavy baryon wave function extends well
beyond the region where the harmonic approximation is
applicable. This will be followed by a demonstration that
the simplest type of interactions do not create bound states
with realistic binding energies for the heavy baryons—
indeed they give the same mass for ordinary heavy baryons
and pentaquarks. This motivates the inclusion of additional
terms in the potential terms which allow for the correct
binding energies and distinguish between heavy baryon
and heavy pentaquark states. The consequences of these
new potentials will be considered. Lastly, we will examine
how these newly calculated wave functions for the heavy
baryons influences the Isgur-Wise function.

II. DERIVATION OF THE EFFECTIVE POTENTIAL

The framework of this paper is based on the standard
treatment of heavy baryons in the Skyrmion in terms of a
collective degree of freedom between the heavy meson and
the remainder of the system [1–3]. To begin the analysis of
heavy baryons, the effective potential for this degree of
freedom needs to be determined. The relevant Lagrangian
for this purpose can be divided into the soliton sector and
the HQET sector,

 L � LSkyrme �LHQET: (1)

The soliton portion determines the dynamics of the ordi-
nary baryons. For concreteness we will consider the sim-
plest such model; the one originally proposed by Skyrme:

 L Skyrme �
1

16
f2
� Tr�@��y@���

�
1

32e2 Tr��@����y; �@����y�2

�
1

8
m2
�f

2
��Tr��� � 2�; (2)

where f� is the pion decay constant, e is the Skyrme
parameter, m� is the pion mass, and � is the chiral soliton
field [7]. The last term provides the pion with a mass and
fixes it to its physical value. As we will see below, this
simplest model is not adequate phenomenologically.
However, we will begin with an analysis of this model
and consider more sophisticated models subsequently.

Conventionally, the chiral soliton is treated classically as
a first approximation and the ansatz taken for the form of
the chiral field is

 �0� ~x� � Exp�i ~� � x̂F�r��; (3)

where F�r� is the profile function determined by minimi-
zation of the soliton mass. Since this solution breaks both
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rotational and isorational invariance, any rotation within
the isospin space will lead to a degenerate classical solu-
tion. That is,

 �� ~x� � A�0� ~x�A�1; (4)

where A is an SU(2) matrix of the form A � a0 � i ~� � ~a
where a0 and ~a (with a2

0 � ~a � ~a � 1) leads to a degenerate
solution. This classical degeneracy is lifted when a0 and ~a
are promoted to quantum collective variables leading to
baryons with the physical quantum numbers [10].

However, there is a subtlety concerning the use of the
quantization scheme of Ref. [10] for the regime considered
here. There are two types of collective motion—the rota-
tional/isorotational degrees of freedom of Ref. [10] and the
collective vibration of the heavy meson off of the baryon.
Provided that the natural time scales for these types of
motion are very different they decouple. Formally, in the
large Nc and heavy quark limits, when the collective vibra-
tional degree of freedom resides near the bottom of the
potential well and vibrates harmonically its natural time
scale goes as ��1=2 [36] while the time scale of the
Ref. [10] collective coordinate is ��1, where � is an overall
counting parameter for the combined limit:

 

1

Nc
	
MH

�
	 �; (5)

where � is the characteristic hadron mass scale. Formally,
in the ideal limit, �! 0 and the two scales decouple.
However, in the present study where we are explicitly
looking for effects beyond the �! 0 limit the situation
is more problematic.

As a practical matter, in order to proceed, we will
assume that the motions do decouple. This can be justified
in part on empirical grounds. The splitting between the �c
and the �c in the extreme limit would be ascribed to a
rotation excitation and hence of order �. The splitting
between the first negative parity �c (the �c�2593�) and
the �c is vibrational (in the ideal limit) and hence is of
order �1=2 which is perimetrically higher than the rota-
tional excitation. In practice M�c

�M�c

 170 MeV

while M�c�2593� �M�c

 320 MeV. Thus, the ordering is

what one expects. However, it is by no means obvious that
one can legitimately take 320 MeV to be considered to be
qualitatively large compared to 170 MeV.

There is another reason why it is reasonable to treat the
motions as though they decouple for certain qualitative
purposes. If our goal is to assess whether the standard
Skyrmion treatment for charmed and bottom baryons
(which implicitly works in the neighborhood of the com-
bined limit) is self-consistent, two issues arise. The first is
whether the rotational and vibrational motion decouple.
The second is whether the collective vibrational wave
function is well localized near the bottom of the effective
potential well. This paper is investigating the second ques-
tion. As a logical matter, if one finds that the collective

wave function does not remain well localized under the
assumption that rotational and vibrational motion de-
couple, then there are important corrections to the standard
treatment regardless of whether the assumption of decou-
pling is justified. Therefore, by showing that the collective
wave function is not localized as in the ideal limits, our
assumptions that the standard quantization method is ap-
plicable will be justified a posteriori.

Having argued that the standard quantization of the
collective coordinates is applicable for our purposes, we
turn our attention to the heavy meson sector of the
Lagrangian. Near the heavy quark limit, the heavy mesons’
momentum is essentially carried entirely by the heavy
quark, and its properties are constrained by the emergent
heavy quark symmetry [37]. Because of this, there is an
approximate degeneracy between the spin-0 and spin-1
heavy meson states. To incorporate this into the theory,
HQET combines these two fields into one overall field,

 Ha �
�1� 6v�

2
�P�a��� � Pa�5�; (6)

where v� is the four-velocity of the heavy quark with v2 �
1, P�a� is the heavy vector meson field, Pa is the heavy
scalar meson field, and the index a is a light quark flavor
index. The vector meson field is further constrained by
v�P�a� � 0. Additionally, the field, �Ha, can be defined as

 

�H a � �0Hya�0 � �P�ya��� � P
y
a�5�

�1� 6v�
2

: (7)

Using these combined fields as the relevant degrees of
freedom, the chiral Lagrangian for the heavy mesons can
be written as,
 

LHQET � �iTr �Hav�@
�Ha �

i
2

Tr �HaHbv
���y@���ba

�
ig
2

Tr �HaHb�
��5��y@���ba � . . . ; (8)

where the ellipsis denotes terms with more derivatives and
inverse powers of the heavy quark mass, 1=mH [15–17]. It
should be noted that in this basis of the heavy meson, the
heavy fields have an unusual transformation under parity
[2]. The field Ha transforms under parity as

 Ha�x0; ~x� ! �0Hb�x0;� ~x��0�yba�x
0;� ~x�: (9)

This transformation has the interesting property that when
the soliton and the heavy meson are located at the same
point, �y � �1 in the transformation, while when they are
separate �y � 1. Thus, the heavy mesons act as though
they have negative parity at long distances (as they must)
but effectively as positive parity particles at short distances
(when the antiquark parity is also included).

The idealized �! 0 limit was uniform; i.e., the ordering
of the large Nc and heavy quark limits was irrelevant [36].
It is hoped that in the current problem the ratio of the heavy
quark mass to the ordinary baryon mass is equally irrele-
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vant provided they are both large. If so, it is legitimate to
calculate the effective potential assuming the heavy quark
mass is infinite (but the nucleon mass is not). We will do
that calculation here and subsequently verify that the result
did not depend on this procedure. We will show the same
effective potential arises if the nucleon mass is taken to be
infinite and the heavy quark mass finite.

Since we are considering the complete spatially ex-
tended potential as a function of the relative separation
distance between the particles, instead of the standard
soliton ansatz, we will consider

 �� ~x� ~x0�t�� � A�t��0� ~x� ~x0�t��A�1�t�;

�0� ~x� ~x0�t�� � Exp
�
i ~� �

~x� ~x0

j ~x� ~x0j
F�j ~x� ~x0j�

�
;

(10)

where ~x is the position of the heavy meson, ~x0 is the
position of the soliton, and the soliton coordinate and the
collective coordinates are time dependent while the heavy
meson coordinate is not. This will fix the heavy meson to a
specific location, which we will later choose to be the
origin, and allows us to work in the rest frame of the heavy
meson. Therefore the four-velocity of the heavy meson is
v� � �1; ~0�.

Even with this different choice for the soliton ansatz, the
only term that produces an interaction between the heavy
meson and the chiral soliton is

 HI � �
ig
2

Z
d3 ~xTr �HaHb�

j�5��y@j��ba: (11)

The summation is only over the spatial coordinates in the
interaction as the spin trace with the temporal coordinate is
zero. When the appropriate soliton ansatz is inserted into
the interaction followed by some manipulation, the inter-
action term is written as
 

HI �
g
2

Z
d3 ~xTr �HaHb�

j�5

�
A
�
yj

j ~yj
ŷ � ~�

�
F0 �

sin�2F�
2j ~yj

�

�
�j

2j ~yj
sin�2F� � �jmkyk�m

sin2�F�

j ~yj2

�
A�1

�
ba
; (12)

where ~y � ~x� ~x0 is the separation distance between the
soliton and the heavy meson. This can then be further
simplified by factoring out � from each term,
 

HI�
g
2

Z
d3 ~xTr �HaHb�

j�5�A�iA�1�ba

�
yjyi

j ~yj

�
F0 �

sin�2F�
2j ~yj

�

�
sin�2F�

2j ~yj
�ij��

jikyk
sin2�F�

j ~yj2

�

�
g
4

Z
d3 ~xTr �HaHb�

j�5��m�baTr�A�iA�1�m�

�

�
yjyi

j ~yj2

�
F0 �

sin�2F�
2j ~yj

�
�

sin�2F�
2j ~yj

�ij��jikyk
sin2�F�

j ~yj2

�
:

(13)

By noting that the isospin operator of the heavy meson on
the H field is

 IjHHa � �Hb
��j�ba

2
; (14)

and the spin operator of the light degrees of freedom of the
heavy meson on the H field is

 SklHHb � �Hb
	k

2
; (15)

along with the fact that Hb�
j�5 � �Hb	

j in the rest
frame of the H field, the interaction Hamiltonian can be
written as
 

HI��gI
m
HS

j
lHTr�A�iA�1�m�

Z
d3 ~xTr �HaHa

�

�
yjyi

j ~yj2

�
F0 �

sin�2F�
2j ~yj

�
�

sin�2F�
2j ~yj

�ij��jikyk
sin2�F�

j ~yj2

�
:

(16)

These simplifications are similar to those performed in [1],
whereas here we are considering the effective potential to
all distances. The integral can now be performed by ex-
plicitly fixing the heavy meson to be located at the origin
by equating Tr �HaHa and ��� ~x�. Upon replacing the soli-
ton position label ~x0 with the more standard ~r, the effective
potential reads:

 HI � V� ~r�

� gImHS
j
lH Tr�A�iA�1�m�

�
rjri

r2

�
F0 �

sin�2F�
2r

�

�
sin�2F�

2r
�ij � �jikrk

sin2�F�

r2

�
: (17)

The effective potential that we have just derived in
Eq. (17) has three major aspects which are interconnected
with each other. First, the potential is dependent on the spin
and isospin of the light quarks in the heavy meson. Second,
the term Tr�A�iA�1�m� is related to the spin and isospin of
the chiral soliton and is dependent on the collective coor-
dinate quantization as well as the states being considered.
The last part of the potential is the spatially dependent
term. This term is a function of the separation distance ~r as
well as the profile function F�r�. The profile function can
be derived numerically from the chiral soliton sector of the
Lagrangian. Traditionally, it is achieved by minimizing the
mass of the soliton either in the presence of a pion mass
[38] or without a pion mass [10], subject to the constraints
that F�0� � �� and F�1� � 0. Furthermore, if the pion
wave function is expanded in powers of r and only terms of
order r2 are kept in the effective potential of Eq. (17), one
can easily show that our potential reduces to the one
considered by Jenkins, Manohar, and Wise [3]. Therefore
in the limit that the heavy meson and chiral soliton are
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close together, the effective potential is the same as pre-
viously considered.

Let us turn our attention to the portion of the potential
that is dependent on the chiral soliton, viz. Tr�A�iA�1�m�.
This term is dependent on the spin and isospin of the
soliton, yet neither spin nor isospin are guaranteed to be
valid quantum numbers of the operator. That is, in some
cases the chiral soliton term allows mixing between nu-
cleon and delta states within the heavy baryon system. To
simplify this issue, we will only consider the isoscalar
heavy baryons, as in the �H. This simplifies the problem
because in order to create an isoscalar from a heavy meson
and a soliton, the soliton must have isospin- 1

2 .
Additionally, large Nc forces chiral solitons to exhibit the
property that they have the same spin and isospin.
Therefore, the only soliton that can bind with a heavy
meson to form an isoscalar heavy baryon has spin- 1

2 and
isospin- 1

2 , or a nucleon. When the chiral soliton is confined
to the nucleon sector, it can be shown that Tr�A�iA�1�m� is
equivalent to �8ImNS

i
N=3, where ImN and SiN are the isospin

and spin of the nucleon, respectively. Making this replace-
ment in the effective potential and summing over repeated
indices leads to a potential operator that reads:

 V�~r� � �
8g
3
� ~IH � ~IN�

�
� ~SlH � r̂�� ~SN � r̂�

�
F0 �

sin�2F�
2r

�

� � ~SlH � ~SN�
sin�2F�

2r
� � ~SlH � ~SN� � r̂

sin2�F�
r

�
:

(18)

Having derived a potential operator, the problem reduces
to finding the eigenvalues and eigenstates of this operator.
In order to determine the eigenstates of this potential
operator, let us consider states labeled by the total isospin
I, the total spin s, and the spin of the light degrees of
freedom sl. These states can be written as jI; s; sli. For a
total isospin-0, we can construct three states; j0; 1

2 ; 0i,
j0; 1

2 ; 1i, and j0; 3
2 ; 1i. From the potential, it is clear that

total isospin is a good quantum number for the states,
however, the spin of the light degrees of freedom is not
obviously a good choice here as the cross product term
changes the spin state. Therefore, instead of the simple
state jI; s; sli, the appropriate wave function that should be
considered has the form:

 ��0 � �1�D�r�~r � � ~SlH � ~SN��
��������0; 1

2; 0
�

� ~r� (19)

for the j0; 1
2 ; 0i state, and

 

��1 � �1�D
0�r� ~r � � ~SlH � ~SN�

� E0�r�� ~SlH � ~r�� ~SN � ~r��
��������0; 1

2; 1
�

� ~r� (20)

for the j0; 1
2 ; 1i and j0; 3

2 ; 1i states. There is a degeneracy for
the light quark spin-1 states because of the degeneracy

between the pseudoscalar and vector heavy mesons in the
heavy quark limit. It can be shown that the wave function
for the light quark spin-0 state is in fact the eigenfunction
of the potential operator when

 D�r� �
�2�cos�F� � 1�

r sin�F�
(21)

with an eigenvalue of

 V�0�r� � �
g
2
F0�r� � g

sin�F�
r

: (22)

The effective potential for the isospin-0 light quark spin-1
channel can be obtained in a similar manner. Here, the
form given above is the eigenfunction when

 D0�r� �
�4�1� cos�F��

r sin�F�
and E0�r� � �

4

r2 (23)

with the eigenvalue

 V�1�r� � �
g
2
F0�r� � g

sin�F�
r

: (24)

The previous discussion was based on taking the heavy
meson mass to be arbitrarily large so that collective dy-
namics involved the soliton moving. We have argued that
the resulting dynamics ought to be independent of this
assumption. To demonstrate this, the effective potential
with the soliton’s position held fixed can be calculated
with the methods described above with a few caveats.
First, since the heavy meson is now moving, the kinetic
energy term of the heavy meson needs to be explicitly
considered. From HQET [39] the additional term in the
Lagrangian for the heavy meson fields is

 L kinetic � Tr �Ha
�D2
?�ba

2MH
Hb; (25)

where D�
? is the covariant derivative perpendicular to the

velocity and is defined as �D�
?�ba � �D

��ba � v��v �
D�ba. The velocity of the heavy meson is given by v, and
D� is the covariant derivative defined by �D��ba �

@��ba �
1
2 ��

y@���ba. The Roman indices are the light
quark flavor indices, as before. Second, even though we are
allowing the heavy meson to move, we would still want to
be close to the heavy quark limit, therefore, the heavy
meson’s velocity will be small; v� � �1; ~��.

The effective potential can still be derived from the
interaction term as written in Eq. (11) except the integral
is now over x0 —the soliton’s position rather than the
heavy meson’s position. The use of only the spatial direc-
tions in this equation is still justified since corrections to
this are of order �, which will remain small. The calcu-
lation proceeds as previously illustrated until Eq. (16). The
substitution of the spin of the light quark in the heavy
meson from the previous formula is still possible with
again corrections of O���. At this point, the integral can
be performed analogously as before, but by fixing the
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soliton’s position to be x0 � 0. However, unlike before, we
are left with the term Tr �HH in the expression of the
effective potential. This term is dependent on the heavy
meson wave function. However, the heavy meson wave
function can be expressed as an exponential, i.e., H 	
Exp�if�x��, where f�x� is some unknown function of the
heavy meson’s position. With the appropriate normaliza-
tion, we can thereby set Tr �HH � �1. Thus we have
(practically) derived the same effective potential as in
Eq. (17). The careful observer will notice that the potential
derived with the soliton held fixed is identical with Eq. (17)
except for the sign of the last term which we will show will
lead to the same physical system.

The eigenfunctions and eigenvalues of the new potential
operator can be constructed just as before. However, when
we use the effective potential having held the soliton fixed
instead, D�r� and D0�r� in Eqs. (22) and (23) have the
opposite sign. This sign difference compensates exactly
the sign difference between the potentials discussed above.
Thereby both methods lead to the same physical effective
potentials in Eqs. (22) and (24). Since both methods lead to
the same physical effective potentials we have demon-
strated the commutativity of the large Nc and heavy quark
limits in this problem.

To complete the discussion of these wave functions, we
need to establish the correspondence between the jI; s; sli
states and the physical �H states. From the states’ quantum
numbers it is clear that the light quark spin-0 state, j0; 1

2 ; 0i,
corresponds to the ground state of �H, while the light
quark spin-1 states are spin excitations of this ground state
which have yet to be observed. The observed excited states
to �c, ��c �2593�, and ��c �2625�, would constitute radial
excitations of the light quark spin-0 state. However, even
with these apparently clear assignments, the parity of the
heavy baryon states is not immediately clear in this lan-
guage. The wave functions for both the light quark spin-0
and spin-1 states written above do not appear to have
definite parity. Thus when the orbital momentum between
the heavy meson and the soliton is considered in the l � 0
state, the ground state wave function contains parts which
are characteristic of both s- and p-wave states. The states
achieve definite parity when we recall that the heavy
meson state itself is negative under parity when near the
soliton and positive when far apart, as pointed out in Eq. (9)
and the sentences following that equation. The wave func-
tions in Eqs. (19) and (20) show that when the heavy meson
and soliton are close together, the state has a positive parity
(positive from the s-wave, positive from the heavy meson)
while when they are far apart, the state still has positive
parity (negative from the p-wave, negative from the heavy
meson). Thereby, the ground states, and thus subsequent
excitation, have the same parity as their physical particle
states, which completes the assignment between wave
functions and physical states. Note again, the subtlety
associated with orbital momentum states since the orbital

momentum is not a good quantum number. Henceforth in
this paper we will label these states by the l used in the
Schrödinger equation. This can be thought of as the orbital
momentum state when the heavy meson and soliton are
close together. In previous studies, since they were only
concerned with small motion of the potential away from
the heavy meson and soliton sitting at the same place, these
long distance effects on the parity of the states did not
matter. Thus, in their work the states could be clearly
labeled by the orbital momentum between the heavy me-
son and the soliton.

We have derived the effective potential of a heavy meson
and a nucleon in terms of the profile function F�r� for the
isospin-0 light quark spin-0 and spin-1 channels. Note that
these potentials are completely radial. These potentials
include short and long-distance behavior for the binding
which inherently has not been considered before. It should
be noted that when both of these potentials are examined at
short distances, they reduce to the potentials and values at
the origin that have been previously identified [1–3].

III. DETERMINATION OF BOUND STATES

At this point, the effective potentials that we have con-
structed can be used in a Schrödinger equation, and the
bound states can be calculated. At the time of the previous
studies the heavy meson-soliton coupling g was undeter-
mined. In recent years this has been measured to be
 0:59
from the decays of D� meson into D mesons and pion
emissions [40]. We have assumed that this coupling is the
same for B mesons (as it should be in the heavy quark
limit) since an experimental determination via pion emis-
sion is not energetically possible. The physical mass of the
spin-0 heavy meson was used (1864 MeV forDmeson and
5279 MeV for Bmeson [41]), while the mass of the soliton
was calculated from the profile function.

The short and long-distance structure of the profile
function F�r� was obtained by examining the differential
equation that minimized the mass of the chiral soliton.
From there, the profile function was constructed by pa-
rametrizing the functional form consistent with the short
and long-distance behavior with two parameters. These
two parameters were determined by an iterative method
that minimized the mass of the soliton while keeping the
nucleon-pion coupling gA and the pion decay constant f�
constant. This procedure constructed the Skyrmion profile
function that is plotted in Fig. 1 and fixed the Skyrme
parameter, e � 4:10, and the soliton mass,M � 949 MeV.

The Schödinger equation with the appropriate effective
potential for this system was solved to observe the pres-
ence of bound states. Figure 2 shows the potential for the
light quark spin-0 state with the harmonic oscillator ap-
proximation overlaid. When the equation was solved, we
found for the charm case, a binding energy of 155 MeVand
for the bottom case, a binding energy of 177 MeV. In both
cases a weakly bound radial excited state was also ob-
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served; 6.18 MeV for charm and 19.32 MeV for bottom.
The observed ground states are more tightly bound than the
ground state in the harmonic oscillator approximation.
Therefore the inclusion of the entire potential increases
the binding energy and favors a stronger bound state.
Furthermore, the wave function of the nucleon in the
ground state is much broader with the extended potential
compared with the wave function of the harmonic oscil-
lator (see Fig. 3). This increase in the wave function

breadth indicates that the nucleon is influenced by the
long-distance part of the potential.

It is clear that for this particular model, both the shape of
the wave function and the binding energy are vastly differ-
ent when the entire effective potential is considered as
compared to when the potential is assumed to be harmonic
with the collective degree of freedom tightly localized.
Large amplitude motion clearly occurs and the standard
analysis appears to be invalid for this system.

For this system, orbital excited states can also be seen.
Both the charm and bottom cases have an l � 1 excited
state; the binding energy is 42.0 MeV (charm) and
68.0 MeV (bottom). Neither system appears to have a
bound l � 2 state.

For the case when the light quark system carries spin-1,
no bound states were found. The potential in this channel
has a strong repulsive core with a very shallow attractive
region which appears to be too weak to support bound
states.

The previous calculations were performed using the
assumption (valid in the heavy quark limit) that vector
and pseudoscalar heavy mesons are degenerate. This is
obviously not true in the physical case, that is, the D and
the D� or the B and the B� have different masses. The
calculation can be extended to include the physical mass
splittings between the heavy meson states. When these
splittings are included, there are still bound �H states,
however, the binding is weaker. The binding energy of
the ground state is reduced by 88.7 MeV for charm and
35.9 MeV for bottom.

To reiterate, these results clearly illustrate that the ef-
fective potential is not strong enough to localize the col-
lective variable in the harmonic region for these models.
The underlying assumption that the system is sufficiently
close to the large Nc and heavy quark limits to use the
harmonic approximation is not justified. Clearly it is im-
portant to see whether the breakdown of the combined
heavy quark and large Nc limit is generic for realistic
nucleon and heavy quark masses. This is particularly true
since the model considered has serious phenomenological
flaws, as will be discussed below. The key question is
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FIG. 2. Light quark spin-0 state effective potential (solid
curve) with harmonic approximation (dashed curve) as a func-
tion of separation distance.
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FIG. 3. (a) Calculated normalized wave function for the ground state �c from the complete potential (solid curve) and the harmonic
approximation (dashed curve). (b) Calculated normalized wave function for the ground state �b from the complete potential (solid
curve) and the harmonic approximation (dashed curve).
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whether the standard treatment works for ‘‘realistic’’
models.

IV. TOWARDS THE EFFECTIVE POTENTIAL IN
REALISTIC MODELS

The model considered in the previous section is unsat-
isfactory in terms of phenomenology. In the first place the
mass of the heavy baryons is well off from the empirical
ones. The relevant issue is not how large the fractional
error is for the mass since a large fraction of the mass is
simply from the heavy quark itself. The relevant issue is the
fractional error in the binding energy—i.e., the difference
between the mass of a nucleon plus a heavy meson from
the mass of the heavy baryon mass. In the model consid-
ered above Mn �MD �M�c

� 155 MeV. In nature it is
approximately 520 MeV. This is certainly not very good.

Moreover, the model considered above has the feature
that the interaction is identical under the exchange of a
heavy meson to a heavy antimeson. That is, our extended
potential will give the same bound states for ordinary
heavy baryons as for heavy pentaquark states. Clearly
this is unphysical. While heavy pentaquark states are
known to exist in the extreme heavy quark and large Nc
limits [19], there exists no symmetry of QCD in that limit
which implies a degeneracy between pentaquarks and or-
dinary heavy baryons. Moreover, strong-interaction-stable
heavy pentaquarks have not been detected despite intensive
searches, suggesting that for realistic masses they do not
exist.

If we wish to make a more realistic model it is necessary
to include additional interaction terms between the heavy
meson and the soliton which split the ordinary heavy
baryon from the pentaquark. Such an interaction should
be strong enough to give heavy baryons with approxi-
mately the correct mass. Heretofore, we have only included
an interaction term between the pion fields and the heavy
quark which was lowest order in the chiral expansion.
However, in the soliton there is no chiral power counting
and thus no necessity to restrict the interaction to this term.
The spirit of model building in Skyrme type models is to
include a small number of terms to make the problem
tractable. Although there is no systematic power counting,
the hope is that one can get qualitatively sensible results by
choosing coefficients for these which compromise between
the various observables. The simplest model realistic
enough to get the binding of the heavy baryons correct
while pushing up the mass of the heavy pentaquarks above
threshold will require one new interaction term.

The simplest term that we can consider, which distin-
guishes between interactions between heavy mesons and
antimesons, is coupling the light quark baryon current to
the heavy quark vector current. Note that if a heavy anti-
meson binds with a nucleon, the heavy quark current will
switch sign compared with the heavy meson case while the
baryon current (associated with the nucleon) will not.

Therefore we add the term

 L baryon � g0 Tr �HaHa��B� (26)

to the Lagrangian, with the baryon current B� given by the
standard form,

 B� �
�����

24�2 Tr���y@�����y@�����y@����; (27)

where the notation �0123 � ��0123 � 1 was used. By in-
serting the functional form for the solitons into this term,
and working in the rest frame of the heavy (anti)meson, the
interacting potential can be derived as:

 Vbaryon� ~r� � g0B0�r� �
g0

2�2

sin2�F�

r2 F0�r�: (28)

The coupling constant g0 and its relative sign are unknown,
but the sign will be chosen such that this potential is
attractive for heavy meson-nucleon interactions while re-
pulsive for heavy antimeson-nucleon interactions. In the
spirit of this class of model, we will tune g0 in order to get a
reasonable mass for the heavy baryon (either �b or �c). Of
course, this procedure is quite ad hoc, but Skyrme type
models always require some ad hoc procedure. One useful
check on whether the model obtained is sensible is whether
the coupling obtained has a natural size, i.e., whether it is
of O�1�.

When the Schödinger equation with the combined po-
tential was used to calculate bound states, the coupling
constants needed to have bound states with physical bind-
ing energies were determined to be �3:27 for �c and
�3:34 for �b. These are natural in size. Furthermore, the
two coupling constants obtained via fitting for the two
types of heavy baryons are quite close to one another;
they differ by only 2% suggesting that the procedure is
robust for physical values. For simplicity, the heavy meson
mass splittings were not included in this calculation.

Because of the lack of the heavy meson mass splitting,
we would expect the first excited state to be a superposition
of the two physically observed excited states, ��c �2593�
and ��c �2625�. It is not unbelievable to surmise that this
combined state would weight the two states by the relative
spins of the states. This would lead to a mass of the
combined state of 2614 MeV or an excitation energy of
328 MeV above the ground state. With the coupling con-
stants considered here, the excitation energy from the
combined potential was found to be 324 MeV and
316 MeV for the charm and bottom cases, respectively.
This is in surprisingly good agreement with the expected
excitation from the physically seen states.

With the inclusion of the baryon current term to the
potential, the light quark spin-1 state becomes bound for
the coupling constants considered here. The binding ener-
gies are weak, 125 MeV for charm and 173 MeV for
bottom, compared with their spin-0 counterparts,
521.6 MeVand 593.4 MeV for the �c and �b, respectively.
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This binding is driven solely by the size of the baryon
current coupling. The presence of a bound state in the spin-
1 channel does not invalidate nor should it limit our
method. It is not unreasonable to believe that the strength
of the additional potentials that is needed to be included to
drive the binding energy down to physical values might
also bind light quark spin-1 states. Therefore the lack of
any observation of these states could be associated with the
difficulty in detection and not in the lack of the presence of
these states.

A harmonic approximation can also be made for the
combined potential with the provided coupling constants.
The energy levels for the approximation are again different
from that of the combined potential and the ground state is
bound weaker. An examination of the shape of the wave
function for the combined potential compared with the
harmonic wave functions shows again that the wave func-
tions for the combined potential are broader than the
harmonic wave functions and extend beyond the harmonic
region. We again find ourselves not driven to the effective
potential minimum by the realistic masses suggesting that
the physical states are not close to the extreme largeNc and
heavy quark limits. These observations confirm the results
from the previous section that the long-distance potential
greatly influences heavy baryon formation.

Unlike with our original potential, the new combined
potential is sensitive to the difference between regular
heavy baryons and heavy pentaquarks. We can examine
whether a bound pentaquark state is possible within the
combined potential by flipping the sign of the coupling
constant of the baryon current term. When this is per-
formed, a very weakly bound pentaquark state can be
found with a binding energy of 33.4 MeV for a charm
type pentaquark, and 42.9 MeV for a bottom type penta-
quark. These are rather small binding energies compared
with the binding energies of the regular heavy baryons, and
are small compared to the deeply bound pentaquark states
suggested by the large Nc and heavy quark limits [19].
Furthermore, the potential for the heavy pentaquark is
repulsive at short distance creating the attractive region
and localization of the wave function away from the origin.
Therefore, even in the ground state, the pentaquark formed
here has a fixed separation between the heavy antimeson
and the nucleon. However, due to the strong repulsion at
short distance this is a very delicate state. If we turn off the
potential which is identical for the heavy baryon and heavy
pentaquark states, and tune the baryon current coupling
such that heavy baryons are still bound with the appropri-
ate binding energy, we find that the heavy pentaquark
effective potential is completely repulsive and thereby no
heavy pentaquark state is bound. The coupling constants
needed to achieve this condition were�5:52 for the charm
case and �5:49 for the bottom case. These couplings are
again neither unreasonably large nor small. This indicates
that this model is capable of binding a heavy pentaquark

state, but with minor changes it is just as reasonable not to
support a bound heavy pentaquark state. The relative ease
for the state to become unbound furthers the point in [19]
that heavy pentaquark binding with physically reasonable
parameters is subject to the dynamical details of the model.

We have justified the inclusion of an additional interac-
tion term based upon the coupling of the heavy quark
current to the baryon current. This interaction was derived
for all separation distances. The coupling of the interaction
was determined by having the ground state binding energy
correspond to the physical value. With this potential in
place, our simple model gives phenomenologically reason-
able results concerning ordinary heavy baryons while si-
multaneously being reasonably consistent and inconsistent
with a bound heavy pentaquark state.

V. CALCULATION OF THE ISGUR-WISE
FUNCTION

The Isgur-Wise function is a universal function in the
heavy quark limit that describes the semileptonic decay of
all heavy hadrons in an SU�2NH� multiplet (where NH is
the number of heavy flavors). In our case we can consider
heavy hadrons of the � type [20]. Thus the process in
question is �b ! �ce� ��e. Previous work has shown that
the Isgur-Wise function is completely determined in the
combined large Nc and heavy quark limit [3]. In this limit
the effective potential is purely harmonic in nature, and the
Isgur-Wise function would be dependent on only one
parameter, the harmonic ‘‘spring constant’’ [4,5].
Therefore it has been pointed out that if the excitation
energy of heavy baryons were measured, the spring con-
stant would be fixed and thus Isgur-Wise function would be
completely determined up to higher order corrections.

Unfortunately, we have shown thus far that for realistic
parameters, the system does not remain in the harmonic
region and the expansion appears to break down. Of
course, from the wave functions we have already calcu-
lated, the Isgur-Wise function can also be calculated, and
again we would expect distinct results from the harmonic
oscillator case.

The most interesting aspect of the Isgur-Wise function
near the combined limit is related to the fact that this entire
universal function is dependent on one measurable pa-
rameter. We wish to test the reliability of this result when
one deviates from the ideal limit, viz., for the real world.
Ideally one could test this by using the empirical value of
the excitation energy of the first excited state plus the
assumption that one is near the combined large Nc and
heavy quark limits to compute the Isgur-Wise function;
this ought then to be compared with the experimental
Isgur-Wise function for an empirical test. However, the
Isgur-Wise form factors have not been measured.

In the absence of such data, we can still get some idea of
how robust the prediction is by using realistic models.
Since these models indicate that system is quite anhar-
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monic, we do not expect a close agreement of the Isgur-
Wise function with the harmonic approximation based on
the energy of the first excited state. Instead of considering
the entire Isgur-Wise function, we will focus our attention
on the curvature at zero recoil, , of the Isgur-Wise func-
tion. We chose to do this as  is proportional to the mean
radius squared in the heavy quark limit, and thereby pro-
vides a single number with which to compare and does so
in a physically transparent way.

The Isgur-Wise function in momentum space from [3] is

 �0 �
Z
d3 ~p
�c� ~p�mN ~v

0�
b� ~p�: (29)

In the case of harmonic wave functions this reduces to

 �HO�z� �
2
			
2
p
�3=8
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�
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�
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�
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�
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�
;
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mNj ~vj

�
							
�b
p

�
						
�c
p
�1=2

;

(30)

mN is the mass of the nucleon, � is the harmonic coupling,
~v is the transfer velocity, and �c and �b are the reduced
mass of the heavy meson-nucleon system for either charm
or bottom, respectively. We can also express the Isgur-
Wise function in terms of position space wave function as

 �0 �
Z
d3 ~x �c� ~x� b� ~x�

sin� mN
j ~vjj ~xj�

mNj ~xjj ~vj
: (31)

These expressions for the Isgur-Wise function lead to the
following leading order expressions for the curvature at
zero recoil,

 HO 
@2�HO
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�
						
�c
p
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for the harmonic case, and

  
@2�

@z2 �z � 0� � �
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p

�
						
�c
p

3

Z
d3 ~x �c� ~x� b� ~x�j ~xj

2

(33)

for the spatial wave function case.
We will calculate  in three different manners. First, 

can be calculated by approximating the potential by a
harmonic oscillator to generate a harmonic coupling �.
Equation (32) can then be used for this value of �, along
with physical values of the mass variables, to calculate .
Second, the wave functions of the ground state of the
complete potential can be used directly in Eq. (33) to
calculate . Of course, this is the proper way to calculate
 and the Isgur-Wise function since the complete potential
is being considered. We would expect a vast difference
between the first two methods since we have been observ-
ing differences in the wave function between the harmonic
wave functions and the complete potential wave functions.
Lastly, even though we know that the energy levels calcu-
lated by using the entire effective potential are not har-
monic in nature, we could use the excitation energy of the
first excited state to calculate � as though it were derived
from a harmonic oscillator, and then use this value of � to
calculate  using Eq. (32). That is, instead of deriving the
harmonic coupling from an approximation to the actual
potential, we are constructing a new harmonic potential,
which is unrelated to the original harmonic potential and to
the complete potential, except that the energy gap between
the ground state and the first excited state of this new
potential and the complete potential are identical. Of
course, the third method has no underlying theoretical
basis unless the system is harmonic (in which case it will
agree with the first two). It is useful to consider it, however,
because it simulates theoretically the empirical procedure
outlined above.

When the curvature of the Isgur-Wise function at zero
recoil, , was calculated in these manners, using physical
mass of the nucleon and the heavy baryons, the following
results were obtained. The normalized wave functions are
shown in Fig. 4, remembering that  is proportional to the
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FIG. 4. (a) Calculated normalized wave functions for the ground state �c from the complete potential (solid curve), the harmonic
approximation (smaller dashed curve), and the harmonic approximation from the excitation energy (larger dashed curve).
(b) Calculated normalized wave functions for the ground state �b form the complete potential (solid curve), the harmonic
approximation (smaller dashed curve), and the harmonic approximation from the excitation energy (larger dashed curve).
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expectation value of r2. Method 1 yielded �53:8�
10�6 MeV�3=2 when g0 was chosen to have the appropriate
coupling constant for the bottom sector. Method 2 yields
�121� 10�6 MeV�3=2. Note that by using the complete
wave functions, the curvature is a factor of 2 larger than the
case of using harmonic oscillator wave functions. Lastly,
Method 3, of using the excitation energy from the full
potential and assuming it came from a harmonic oscillator
potential, yields �111� 10�6 MeV�3=2 with the bottom
case coupling constant. This result is different from
Method 1 as one might have expected, but is quite similar
to the Method 2 (which gives the ‘‘correct’’ result). This is
quite surprising since Method 3 can only be justified via
the harmonic approximation which appears to be badly
violated (as seen from the result of Method 1). Given the
fact that Method 3 simulates the natural way to test the
harmonic approximation empirically, it is important to test
whether the success of Method 3 in getting close to the
correct result is a mere numerical accident for this model or
whether it is a robust feature. As we will see it is quite
robust.

In order to test the extent to whether Method 3 generi-
cally reproduces the correct result of Method 2, one needs
to consider a wide variety of models and compare the
results. Since the effective potential only depends on the
Skyrme profile function we have considered a variety of
profile functions (which we constructed on an ad hoc basis
entirely for the purpose of testing the validity of Method 3).
The curvature at zero recoil of the Isgur-Wise function was
calculated for these effective potentials using the three
methods detailed above. The effective potentials that
were considered are shown in Fig. 5 while the results of
the calculations of  are presented in Table I. One can
clearly see that with all effective potentials considered, the
curvature at zero recoil calculated with harmonic wave
functions is different from the calculations performed
with the other two methods. However, for all the potentials
considered, the latter two methods provide similar results.

Although not depicted in Table I, when an effective poten-
tial with a global minimum away from the origin is con-
sidered, Methods 2 and 3 give different results. This can be
attributed to the wave function calculated with the com-
plete effective potential being peaked away from the ori-
gin, where Method 3 assumes that the wave function is still
peaked at the origin.

The fact that Method 3 works so well, even when the
system is quite anharmonic, appears to have some impor-
tant consequences. In the first place, it means the prediction
of  from the excited state energy (using the harmonic
approximation) may be expected to hold reasonably well
and, hence, one has some real predictive power even if the
system is rather anharmonic. The converse of this appears
to be that the degree to which  is accurately predicted via
Method 3 is a poor test of the degree to which the system is
harmonic.

In fact, the situation is a bit more subtle than this.
Qualitatively it is clear what is happening: the anharmonic
nature of the potential lowers the excitation energy com-
pared to that of a harmonic potential with the same curva-
ture at the minimum. Fitting this excitation with a
harmonic oscillator means that the fitted oscillator will
have a smaller curvature (i.e., spring constant) than the
actual spring constant at the minimum. This has the effect
of spreading out the wave function compared to the har-
monic approximation based on the true curvature which in
turn means a larger value of ; this acts to simulate the true
wave function which is also wider than the naive harmonic
result. Thus, generically, the sign of the effect of anharmo-
nicity on the excitation energy and  helps explain the
viability of Method 3. The degree to which the method
works quantitatively may still seem remarkable, however.
The quantitative success is at least partially understandable
analytically. It is straightforward to calculate the leading
order effect of the anharmonicity on both the excitation
energy of the lowest excited state [5]. As it happens, the
shift in the excitation energy exactly compensates the shift
in  to leading order in the anharmonicity, and the accord-
ing inaccuracies due to using Method 3 only appear at
next-to-next-to leading order. Thus, the system can be
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FIG. 5. Variety of effective potentials: (a) solid curve; (b) long
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TABLE I. The curvature at zero recoil, , of the Isgur-Wise
function calculated in three different manners in units of
10�6 MeV�3=2. The first line is the original profile function
we considered. All calculations were performed with the cou-
pling constant g0, chosen to bind �b with the appropriate binding
energy.

Potential Method 1 Method 2 Method 3

a (Original) �53:8 �121 �111
b �83:3 �175 �171
c �109 �216 �215
d �101 �142 �139
e �132 �225 �231
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rather anharmonic and Method 3 can remain reasonably
accurate. It is nevertheless remarkable how well Method 3
appears to work since the wave functions appear to be
qualitatively quite different from the harmonic ones of
Method 1.

In conclusion, we have constructed the effective poten-
tial for the binding of the heavy (anti)meson and nucleon to
form regular and exotic heavy baryons for variations of the
Skyrme model. We have demonstrated that this effective
potential gives excitation energies and collective wave
functions which are qualitatively different from those ob-
tained with a harmonic oscillator approximation to the
potential: the wave functions with realistic particle masses
are not concentrated near the potential minimum, as ex-
pected from the large Nc and heavy quark limits. This
indicates that the masses are not heavy enough to have

heavy baryons exhibit the properties of these limits.
Calculations with the full effective potential showed that
heavy pentaquark states are possible in this class of model
but the existence of bound pentaquarks depends sensitively
on the details of the model studies. We also showed that
despite strong anharmonicities the description of the Isgur-
Wise function derived from the harmonic approximation
works remarkably well provided that the effective har-
monic coupling derived from the first excitation energy is
used.
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