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We propose a physically motivated parametrization for the unpolarized generalized parton distributions.
At zero value of the skewness variable, � , the parametrization is constrained by simultaneously fitting the
experimental data on both the nucleon elastic form factors and the deep inelastic structure functions. A
rich phenomenology can be addressed based on this parametrization. In particular, we track the behavior
of the average: (i) interparton distances as a function of the momentum fraction, X, (ii) X as a function of
the four-momentum transfer, t; and (iii) the intrinsic transverse momentum k? as a function of X. We
discuss the extension of our parametrization to � � 0 where additional constraints are provided by higher
moments of the generalized parton distributions obtained from ab initio lattice QCD calculations.
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I. INTRODUCTION

Most information on the quark and gluon structure of
hadrons has come so far from inclusive Deep Inelastic
Scattering (DIS) type experiments. With an appropriate
selection of probes and reactions, accurate measurements
conducted through the years allowed one to map out in
detail the different components of proton structure, the
Parton Distribution Functions (PDFs) in a wide kinemati-
cal region of the four-momentum transfer, Q2, and of the
longitudinal momentum fraction of the proton’s momen-
tum, xBj � Q2=2M�, � being the energy transfer and M
the proton mass.

Recently, a whole new dimension was added to our
understanding of hadronic structure, with the observation
that in a number of exclusive experiments one can, on one
side, study a wider range of flavor and spin dependent
combinations of PDFs with respect to those obtained
from inclusive scattering, and on the other, new, qualita-
tively different information can in principle be extracted
from a specific class of experiments, including Deeply
Virtual Compton Scattering (DVCS), and hard Exclusive
Meson Production (EMP). The information from these
processes is coded in terms of ‘‘off-forward’’ contribu-
tions, or the Generalized Parton Distributions (GPDs) [1–
3]. GPDs allow us to access partonic configurations with a
given longitudinal momentum fraction, similarly to DIS,
but also at a specific (transverse) location inside the hadron
[4].

PDFs are extracted directly from inclusive measure-
ments of the DIS structure functions at a given Q2.
Perturbative QCD (PQCD) evolution connects the PDF
values at Q2 with the ones at an initial scale, Q2

o. The

initial PDFs are usually given in parametric forms that
broadly reproduce the behavior expected in a few limiting
cases: they include, for instance, a Regge-type behavior at
low xBj, and a quark-counting type behavior in the limit
xBj ! 1. A number of sum rules such as Adler’s, and the
momentum sum rule provide additional constraints. It is
also generally understood that the proton is an ‘‘emptier’’
object dominated by its minimal—valence—components
at low Q2. The sea quark content is determined both by
quark-antiquark pairs and gluons radiations which charac-
terize perturbative evolution from the initial low scale, and
by ‘‘intrinsic’’ components also expected to be present at
low scales. PDF parametrizations have become more so-
phisticated through the years both because of the continu-
ous addition of DIS data in increasingly extended
kinematical regimes, and because of phenomenological
developments allowing one to extend the number of hard
processes from which PDFs can be extracted. It is now
possible to describe the proton structure functions with
relative accuracy in the regime: 10�4 & xBj & 0:75, and
1 & Q2 & 104 GeV2 [5].

The matching between measured quantities and leading
order predictions for DVCS/EMP and GPDs should pro-
ceed, in principle, similarly to the inclusive case, in view of
the factorization theorem discussed in Ref. [2]. There are
however a few important caveats due to the fact that GPDs
describe the nonperturbative contribution to an amplitude.
Both the real and imaginary parts of the amplitude are
physical observables in the ��P! �P0 process, obtained
from the interference term for the DVCS and Bethe-Heitler
(BH) processes (see [6] and reviews in [7,8]).

The leading order amplitude for DVCS is shown in
Fig. 1 along with the relevant kinematical variables,
namely: the longitudinal momentum fraction taken by
the initial quark, X,Q2 � �q2

�, the four-momentum trans-
fer squared between the initial and final proton states, t �
��2, and the longitudinal momentum transfer fraction of
the initial proton momentum, the so-called ‘‘skewness’’, � .
Because of the extra two parameters, � and t, obtaining
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initial parametrizations in a similar fashion as for inclusive
parton distributions is a formidable task. Furthermore,
experimental measurements of GPDs are remarkably
more complicated than in inclusive DIS, essentially due
to the exclusive nature of DVCS/EMP. Despite the high
performance of current facilities such as Jefferson
Laboratory, one cannot realistically expect in the near
future a similar amount and quality of data as in inclusive
experiments.

Given the importance of the physics underlying GPDs,
and the far reaching consequences of their study related to
a number of key questions such as the contributions of the
partons angular momentum to the nucleon’s spin, the
exploration of 3D spatial images of the nucleon, and the
connection to Transverse Momentum Distributions
(TMDs) [7,8], it is most important at the present stage, to
explore whether currently available inclusive data can also
provide additional constraints on GPDs. These constraints
can both supplement the, so far, scarce experimental results
obtained directly from DVCS/EMP, and at the same time
provide a guidance for future precision exclusive experi-
ments at both Jefferson Lab at 12 GeV, and future colliders.

Experimental constraints from other-than-DVCS-type
data on GPDs are obtained from: (i) The nucleon form
factors providing integrals of GPDs over X at a fixed t;
(ii) The PDFs, representing the ��; t! 0� limit of GPDs.
An additional check is also provided by the relation,
through simple Fourier transformation, between zero
skewedness GPDs and Impact Parameter Dependent
PDFs (IPPDFs) [4]. Physically meaningful GPDs should
in fact reproduce the correct behavior of partonic configu-
ration radii obtained from their impact parameter space
representation.

Because both the form factors and PDFs are independent
of � , these constraints apply exclusively to the case � � 0,
t � ��2

?. Zero skewness GPDs extracted using available
experimental constraints were first considered in the initial
phenomenological studies of Refs. [9–12]. Fully quantita-
tive fits were subsequently performed in Refs. [13,14].
Defining a parametrization at � � 0, however, requires

the additional condition of polynomiality to be satisfied
[7] Moreover, a physical interpretation in terms of partonic
components becomes less transparent both at X � �—the
‘‘stopped returning quark’’ region—and at X < � where
the dominating process is scattering from a q �q pair emerg-
ing from the initial nucleon. The only guidance for a
parametrization at � � 0 has been provided, so far, by
the Double Distribution (DD) hypothesis [15,16], that has
a built-in property of polynomiality. More recently, the
Mellin-Barnes integral representation [17], and the dual
representation [18] were proposed, where the GPDs were
obtained within a generalization of the anti-Mellin trans-
form approach used for PDFs. Nevertheless, similarly to
what found for DIS [19,20], the extraction of GPDs from
moments formally requires a continuation to complex n
that, because of an oscillating term inherent in the mo-
ments integral, can be a source of ambiguities. This has so
far hampered an accurate extraction using other than sim-
plified models.

Motivated by this situation, in this paper, we introduce a
practical method to extract GPDs from experimental data,
that can be extended also at � � 0, by using additional
�-dependent constraints from ab-initio lattice QCD calcu-
lations of the first three moments of GPDs [21,22]. We
stress that differently from the DDs, representing a model
calculation, our approach is, for the first time to our knowl-
edge, an attempt to obtain a realistic parametrization.
Given the paucity of current direct experimental measure-
ments of GPDs, our goal is to provide more stringent,
model independent predictions that will be useful both
for model builders, in order to understand the dynamics
of GPDs, and for the planning of future DVCS type
experiments.

Our paper organization is as follows: In Sec. II we
describe our approach for a physically motivated parame-
trization valid both in the � � 0 and � � 0 cases. We
consider the unpolarized GPDs, H and E, for which the
lattice moments are the most accurate. In Secs. III and IV
we discuss in detail the � � 0 case: in III we perform a
detailed comparison with the data on both form factors and
PDFs; In IV we show the phenomenology of GPDs at � �
0 by illustrating the role of the various quantities: the
quarks transverse radii hyqi, the intrinsic transverse mo-
mentum k?, the average X values contributing to the
nucleon form factors as a function of t. We also discuss
the feasibility of the extraction using lattice results and
introduce our method. For ease of presentation, a number
of graphs and more quantitative results on the � � 0 case
are reported in a following paper [23]. In Sec. V we draw
our conclusions.

II. A PHYSICALLY MOTIVATED
PARAMETRIZATION FOR UNPOLARIZED GPDS

GPDs parameterize the nonperturbative vertex in the
DVCS process depicted in Fig. 1. Scattering from an un-

 

q

k+=X P+, k⊥ k′ +=(X-ζ)P+, k⊥′ =k⊥-∆⊥

P+ P′ +=P+(1-ζ)

q′=q+∆

FIG. 1. Amplitude for DVCS at leading order in Q2. The light-
cone coordinates for the active quarks and nucleons are explic-
itly written.
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polarized proton (neutron) is described by two independent
GPDs: H, and E, from the vector (��) and tensor (���)
interactions, respectively, that depend on three kinematical
invariants, besides the initial photon’s virtuality, Q2:
the longitudinal momentum transfer, � � Q2=2�Pq�, the
four-momentum transfer squared, �2 � �t, and the
variable X � �kq�=�Pq�, representing the Light Cone
(LC) momentum fraction carried by the struck parton
with momentum k. The relations between the variables
used in this paper and the analogous set of kinematical
variables in the ‘‘symmetric’’ system, frequently used
in the literature are given along with the definitions of
the hadronic tensors components in Refs. [24]. Note
the slightly different choice from Ref. [25] for which the
sea quarks GPDs are also defined at X > 0 (see
Appendix A).

At present, due to both the small experimental coverage
mentioned above, and to the somewhat less transparent
physical interpretation of the observables, an important
role in the shaping of a parametrization for GPDs is played
by the intuition on the underlying nonperturbative
dynamics.

In the general case of nonzero skewedness, one distin-
guishes two kinematical regions: (i) � < X < 1, where the
dominant process is where a quark from the initial proton
with LC momentum fraction X, is struck by the initial
photon and is subsequently reabsorbed in the proton
(with X� � > 0); (ii) 0<X < � , where the final quark
propagates backwards, or, correspondingly, a quark-
antiquark pair from the initial proton, with an asymmetric
partition of LC momenta, participates in the scattering
process.

The physics of the two regions is most easily understood
within a field theoretical description where the lowest order
is given by a covariant quark-nucleon scattering amplitude,
with the nucleon-quark-diquark vertex being a Dirac ma-
trix multiplied by a scalar function.1 Physical intuition on
DVCS processes can then be obtained by viewing the
covariant diagrams as the sum of all possible time ordered
diagrams. The invariant amplitude for DVCS corresponds
to 4! time ordered diagrams. They are grouped into the
following classes of processes (Fig. 2): (a) all particles
moving forward [Fig. 2(a)]; (b) the initial photon splits
into a quark-antiquark pair that then interacts with the
hadronic system; (c) an initial quark-antiquark pair origi-
nates from the initial proton and scatters from the probe
[Fig. 2(b)]. Each process has a corresponding ‘‘crossed
term’’ (not drawn in the figure).

We consider the following choice of frame, and four-
momentum components2:

 

q � �0; q; 0� (1a)

P �
�
P�

M2

2P
; 0; P

�
(1b)

k �
�
XP�

k2
? �m

2
q

2XP
; k?; XP

�
(1c)

kX �
�
�1� X�P�

k2
? �M

2
X

2�1� X�P
;�k?; �1� X�P

�
(1d)

k0 �
�
�X� ��P�

�k? ��?�
2 �m2

q

2�X� ��P
; k?

� �?; �X� ��P
�

(1e)

P0 �
�
�1� ��P�

�2
? �M

2

2�1� ��P
;��?; �1� ��P

�
(1f)

� �
�
�P�

�t��2
?

2�P
; �?; �P

�
(1g)

where, moreover, q0 � q� �. Equation (1d) gives the
components of a spectator system, i.e. a diquark, that is
our main assumption in the following sections, namely,
that the spectral distribution of states appearing in principle
in the quark correlator can be replaced by one state with a
given mass. Finally, in the given frame, contributions
dominated by the hadronic components of the initial pho-
ton (case (c)) are absent. More generally, all processes
where one of the particles is moving backwards (or one
of the particles has a longitudinal momentum opposite to
the protons’ one) vanish as inverse powers of P.

A. The X > � region

At X > � , the proton splits into a quark carrying a LC
momentum fraction X � k�=P�, transverse momentum
k?, and a spectator system with 1� X;� k�X =P

�, and
�k? [Fig. 2(a)]. Similarly the right side vertex describes
the coalescence of the final quark and the spectator system
into an outgoing proton (all particles are moving forward).
With an appropriate choice for the P! �kkX� and P0 !
�k0kX� vertices, i.e. assuming a spectator diquark with both
scalar and axial vector components, the DVCS matrix
element, F�X; �; t�, can be written at leading order in Q2,
as (see also Ref. [28])

 

F�X; �; t� �
1

2P�

�
�U�P0; S0����Hq�X; �; t�

�
i�����

2M
Eq�X; �; t��U�P; S�

�

�
������������
1� �

p
Hq�X; �; t� �

1

4

�2������������
1� �
p Eq�X; �; t�

�

����
X
p �������������

X� �
p

1� X

Z
d2k?�q�k2; k02�: (2)

In Eq. (2)

1The most general case involves a linear combination of Dirac
matrices [26,27])

2We use the notation a� � �a0 � Ea; a?; a3�, and a� �
�a0 � a3�=

���
2
p

.
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 ������������
1� �

p
�

1

2P�
TrfU�P; S� �U�P0; S0���g (3a)

1

4

�2������������
1� �
p �

1

2P�
Tr
�
U�P; S� �U�P0; S0�

�i
2M

�����

�
; (3b)

where the traces over the nucleon spinors are for the same
spin, S � S0, case. The factors

����
X
p �������������

X� �
p

, are obtained
similarly from the traces over the quarks spinors implicit in
Eq. (2) [28]. Having taken care of the spin structure, we
then model �q�k2; k02� as:

 �q�k2; k02� �N
��k02�

k02 �m2
q

��k2�

k2 �m2
q
; (4)

mq is the struck quark’s mass, ��k2� is a scalar vertex
function whose form will be specified in Sec. III, and N
is a normalization constant.

By using the components in Eqs. (1a) we obtain for
Hq�X; �; t�:

 Hq�X; �; t� �
Z d2k?
�1� X�

A��k2; �����k02; ��
	�2Ek��Ep � Ek � EX�
	�2Ek0 ��Ep0 � Ek0 � EX�


�
Z
d2k?

A��k2; �����k02; ��

�M2
0�X� �

k2
?

1�X�m
2
q��M

2
� �X� �

1��
1�X 	k? �

1�X
1�� �
2 �m2

q�
; (5)

where we have rendered explicit the connection between
the time ordered diagram in Fig. 2(a) and the covariant
expression in Eq. (4). Furthermore, in Eq. (5):

 M 2
� �X� � �X� ��=�1� ��M

2 � �X� ��=�1� X�Mq2
X ;

(6)

and

 A �N
X

1� X

�������������
X� �
X

s
1������������

1� �
p : (7)

The GPD, Eq�X; �; t� is modeled similarly to Hq, but
imposing a different normalization, namely: N E �

	qN H, (N H �N in Eq. (4)), where 	q is the quark’s
q component of the anomalous magnetic moment.

The invariant mass of the spectator, k2
X � Mq

X, appearing
in Eq. (5) through Eq. (6), is a flavor dependent parameter.
Both in Eq. (5), and in the results presented in Sec. III the
value of Mq

X is considered to be fixed for each configura-
tion. However, a spectral distribution in Mq2

X � �P� k�
2

should in principle be introduced for large values of the
invariant mass. This affects mainly the low X region, i.e.
whereMq

X is large, and it has been successfully reproduced
in deep inelastic scattering processes by introducing anMq

X
dependence of the spectral function consistent with Regge
behavior [29]. The role of t-channel exchanges in DVCS

 

(a) (b)

(c)

FIG. 2. Time ordered diagrams for DVCS: (a) dominant contribution in X > � region; (b) a q �q pair is first produced from the nucleon
and subsequently interacts with the photons. This process dominates the X < � region; (c) the initial photon splits into a q �q pair that
interacts with the hadronic system. The crossed-terms where two of the particles in the same class are switched, are not shown in the
figure.
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and related processes was addressed recently in [30] where
the rather extreme point of view was taken that GPDs
measure mostly the parton content of the reggeons. A
full treatment of this important point is beyond the scope
of the present work and will be considered in a forthcom-
ing paper. Here, we introduce directly a � and t dependent
Regge-motivated term, in addition to the ‘‘diquark’’ term
given by Eq. (5), and we study their relative contribution to
phenomenology in Section IV.

In Eq. (5) we have written explicitly the dependence on
the size parameter �, which is similar to the one used in the
‘‘overlap representation’’ based models (cf. e.g. the equiva-
lent parameter for the more commonly used ‘‘gaussian
form’’ discussed in Ref. [31]). We underline that the model
considered here is, in fact, consistent with the ‘‘overlap
representation’’ derived for DVCS in [25,32], but, due to
the covariance of the vertex function, it differs from con-
stituent quark models. Because of the covariance of the
vertex function, the spectator model captures two essential
features, or ‘‘self-consistency’’ conditions: (i) the GPDs
are not imposed to be zero at the endpoint X � � , thus
allowing for an imaginary part of the DVCS amplitude.
This is also in accordance with the experimental observa-
tion from DVCS experiments at both HERMES [33] and
Jefferson Laboratory [34]; (ii) the GPDs are continuous at
the endpoint X � � . Calculations similar to the one pre-
sented here were performed both within QED [25], and in a
simplified version of the covariant model with scalar par-
ticles in [35]. Both cases are however presented as illus-
trations that are not meant to be quantitatively compared to
data. On the other side, attempts similar to ours to extract
GPDs from the data [13], although physically motivated,
are leaning towards mathematical forms similar to ‘‘PDF-
type’’ parametrizations.

This paper’s goal is to combine both the essential dy-
namical aspects described above, with a fully quantitative
analysis that is made possible by the flexibility of our
simplified model. A direct comparison with inclusive ex-
perimental data is only possible in the � � 0 region. At
� � 0, one needs to include in the analysis the higher
moments of GPDs, that are �-dependent, besides the nu-
cleon form factors. Higher moments are currently available
from lattice QCD [36] and can be implemented within an
extension of our analysis to this case.

B. A special case: � � 0

The case � � 0 where the momentum transfer is entirely
transverse, �2 � ��2

?, plays a special role since pro-
cesses of type (b), and (c) (see Fig. 2) are suppressed.

The following relations hold (we set Hq�X; 0; t� �
Hq�X; t�):

 Hq�X; t � 0� � q�X�; (8)

where q�X� is the parton distribution for quark ‘‘q’’. The
transverse DIS structure function, FT�X� � F1�X� is given

by
 

FpT�X� �
4
9H

u�X; 0� � 1
9H

d�X; 0� � 1
9H

s�X; 0� (9a)

FnT�X� �
1
9H

u�X; 0� � 4
9H

d�X; 0� � 1
9H

s�X; 0�; (9b)

where we implicitly assume the Q2 dependence, and the
structure function F2 is obtained from Callan-Gross’s re-
lation 2XF1�X� � F2�X�. Furthermore, the following rela-
tions:
 Z 1

0
dXHq�X; t� � Fq1 �t� (10a)

Z 1

0
dXEq�X; t� � Fq2 �t�; (10b)

define the connection with the quark q’s contribution to the
Dirac and Pauli form factors. The proton and neutron form
factors are obtained as
 

Fp1�2��t� �
2
3F

u
1�2��t� �

1
3F

d
1�2��t� �

1
3F

s
1�2��t� (11a)

Fn1�2��t� � �
1
3F

u
1�2��t� �

2
3F

d
1�2��t� �

1
3F

s
1�2��t�; (11b)

where Fs1�2��t�was found to be consistent with zero [37]. In
our analysis we fitted linear combinations of the integrals
of GPDs obtained from Eq. (10) to the electric and mag-
netic form factors, for which the experimental data are
more readily accessible
 

Gp�n�
E �t� � Fp�n�1 �t� �

t

4M2 F
p�n�
2 �t� (12a)

Gp�n�
M �t� � Fp�n�1 �t� � Fp�n�2 �t�: (12b)

Equations (8)–(12) define all the constraints used in our
fit. A detailed description of the results of the fit is pre-
sented in Sec. III.

C. The X < � region

When X < � , the dominating process is the one where a
quark with X � k�=P�, and transverse momentum, k?,
and an antiquark with � � X � k0�=P� > 0, and k0? �
�? � k? emitted from the initial proton, undergo the
electromagnetic interaction [Fig. 2(b)]. While in the cal-
culation of form factors, and of the � � 0 GPDs, process
(b) is always suppressed, at � � 0, it can represent a
situation with ‘‘all particles moving forward’’ so long as
X < � . This is evident by inspecting the energy denomi-
nators in this kinematical region that are, in fact, charac-
terized by similar cancellations as for process (a) at X > �
(Eq. (5)).

The physical interpretation of this region still presents,
however, a few debatable points. Within the overlap rep-
resentation, GPDs are given exclusively by the higher Fock
states—a minimum requirement being the (q �qqqq) state.
The latter are not sufficiently constrained by phenomeno-
logical studies. Recently, higher Fock states were consid-
ered in Ref. [38] within a LC constituent quark model for
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the pion GPDs, where their contribution was shown to be
indeed sizable at X � � (the so-called crossover point).
Notice, however, that as X decreases, a large number of
Fock components would need to be introduced.
Quantitative calculations were performed both within
QED [25], and in a scalar model [35], where it was shown
that the sum of the X > � and X < � contributions natu-
rally provides a covariant expression, thus satisfying the
polynomiality condition. This is the independence of the
form factor from the parameter � , which if not observed,
would signal the presence of an artificial frame dependence
[32]. An alternative description is where the q �q pair con-
tribution to GPDs is interpreted as t-channel exchanges
[15] (modulo appropriate color factors [32]) of either a
single meson, or a tower of mesons, as recently proposed in
[18].

Lacking a uniform picture, and given the important role
that will be played by GPDs in the X < � region for the
interpretation of a number of experiments: from �pp, and
�pA, exclusive reactions [39], to deep inelastic pion pro-
duction and other semi-inclusive experiments at forthcom-
ing facilities, we propose a strategy that can provide further
guidance in this region.

Starting from the accurate parametrization of the � � 0
case presented in this paper, and obtained directly from
experimental data, we subsequently study the constraints
for the � > 0 case. These are provided, on one side, by the
higher-order Mellin moments of H and E’s that govern the
behavior with � of the GPDs. Moments of order n � 3 can
be obtained from lattice calculations [21,22]. On the other
side, we notice that the X > � region is dominated by the
same ‘‘valence type’’ configurations as for the � � 0 case
described by Eq. (5), and it can be therefore obtained by
extending our � � 0 parametrization to this kinematics
using the same constraints. In this approach, polynomiality
is imposed at every step, within a ‘‘bottom up’’ type of
approach, rather than the ‘‘top down’’ method implicit in
both the double distributions [15]. In Sec. IV we illustrate
the type of information that can be obtained from lattice
results in the specific cases of � � 0. Information on the
X < � behavior using higher moments, combined with the
experimentally constrained X > � behavior, is extracted
according to a deconvolution procedure described in detail
in a forthcoming paper [23].

III. RESULTS

We now present our quantitative determination of the
unpolarized GPDs, H and E, obtained at � � 0 using all
available data on the proton and neutron electromagnetic
form factors, as well as the valence quarks distributions
from DIS measurements. Our fit is obtained at a low scale,
Q2
o � 0:1 GeV2, in line with the approach of Ref. [40]

where it is assumed that at a low scale the nucleon consists
mostly of valence quarks, the bulk of the gluon and anti-
quark distributions being generated dynamically.

We reiterate that, although direct measurements of
DVCS cannot be currently implemented, our procedure
produces effectively a ‘‘parametrization’’, in that
parameter-dependent physically motivated functional
forms are fitted to data. The goodness of the fit is tested
by means of a 
2, whose values, along with the parameter
errors have been quantitatively evaluated and are given
below. We, of course, support the future usage of DVCS
data because they are more directly linked to GPDs [41],
and we are actively considering their implementation [23].
The amount of data and their kinematical range is however
too limited at present to provide sensibly more stringent
constraints. We would also like to add that parametrization
shapes do represent a possible bias in the present analysis
as well as in any type of fitting (see e.g. discussion in
Ref. [42]), for instance the shape of the gluon distribution
functions has been oscillating through the years between
‘‘valencelike’’ to hard-peaked at x! 0. The problem of
the initial bias can be attacked in a similar way for GPDs,
by tuning in possible new shapes as constraints from new
sets of data become available, allowing for more refined
fitting.

Starting from Eq. (5), with the inclusion of the Regge
term discussed in Sec. II A we obtained two slightly differ-
ent forms that are both constrained by current experimental
data:
Set I

 HI�X; t� � G�I

MI
X
�X; t�X��

I��I1�1�X�
pI

1 t (13)

 EI�X; t� � 	G�I

MI
X
�X; t�X��

I��I2�1�X�
pI

2 t (14)

Set II

 HII�X; t� � G�II

MII
X
�X; t�X��

II��II1 �1�X�
pII

1 t (15)

 EII�X; t� � G ~�II
~MII
X
�X; t�X�~�II��II2 �1�X�

pII
2 t: (16)

All parameters except for p1 and p2 are flavor depen-
dent; we omit, however, the ‘‘q’’ symbol (unless specifi-
cally needed) for ease of presentation. The function G has
the same form for both parametrizations, I and II as,

 G�
MX
�X; t� �N

X
1� X

Z
d2k?

��k2; ��
D�X;k?�


��k02; ��

D�X;k? � �1� X��?�
; (17)

where

 D�X;k?� � k2 �m2; (18)

and

 k2 � XM2 �
X

1� X
M2
X �

k2
?

1� X
(19)
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 k02 � XM2 �
X

1� X
M2
X �
�k? � �1� X���2

1� X
; (20)

m being the struck quark mass, and M, the proton mass.
The normalization factor includes the nucleon-quark-
diquark coupling, and it is set to N � 1 GeV6.
Equation (17), was obtained using the following Dirac
structure for the vertex in Eq. (5)

 ��k; P��� �
X
�

u��k; �� �U��P; ����k
2; �2�; (21)

where [27]3

 ��k2; �� �
k2 �m2

jk2 � �2j2
: (22)

Finally, the u and d quarks contributions to the anomalous
magnetic moments are:

 	 � 	q �
�
	d � 2:03; for q � d
	u=2 � 1:67=2; for q � u

: (23)

A few comments are in order:
(i) At present it is important to provide a parametriza-

tion that allows one to address a richer phenomenol-
ogy, including the interplay of coordinate and
momentum space observables. The spectator model
used here is ideal because despite its simplicity, it
has proven to be sufficiently flexible to describe (and
predict) the main features of a number of distribution
and fragmentation functions in the intermediate and
large X regions, as well as the unintegrated PDFs
[26,43]. The spectator system can be a scalar or a
spin 1 vector, thus allowing us to access both the u
and d quark distributions. In Ref. [26] it was shown
that the value of the spectator mass in the two cases is
crucial in shaping the parametrizations for u and d
quarks, respectively. Here we have let also the mass
parameter � be flavor dependent.

(ii) Similarly to the case of DIS structure functions the
spectator model is not able to reproduce quantita-
tively the very small X behavior of the GPDs (this
problem is again present in the very small t behavior
of the nucleon form factors and GPDs). This mis-
match is not very visible in the results of
Refs. [26,27,43] because of the linear scale used in
the plots; it is, however, responsible for a violation of
the baryon number sum rule that becomes particu-
larly important in GPD parametrizations since one
needs to achieve a precise agreement with the nu-
cleon form factors as well. We introduced therefore a
‘‘Regge-type’’ term multiplying the spectator model

function G�
MX

in Eqs. (13)–(16). A similar behavior
was considered in the ‘‘profile functions’’ of
Refs. [13,14]. However, our procedure is distinc-
tively different (as discussed also in our results be-
low) because in our case a simultaneous fit to both
the PDFs from DIS and to the nucleon form factors is
performed. In Refs. [13,14] the PDF limit (Eq. (8)) is
trivially satisfied, whereas the form factors and the
additional constraints from the expected Regge be-
havior are subsequently used to define the GPDs
shape.

(iii) We considered the two variants shown above, in
order to estimate the sensitivity to different proce-
dures as also described in (ii). Set I and II differ in the
determination of E, that is in principle unrelated to
the forward PDFs, and therefore less constrained by
the data.

A. Results of fit from nucleon form factors and PDFs

The experimental data on the nucleon form factors
implemented in the fit are: Gp

E [44], Gp
M [45], Gn

E [46],
Gn
M [47] and Gp

E=G
p
M [48]. The data selection is the same

that was used in Ref. [49], where for�t > 1 GeV2 only the
measurements based on polarization transfer techniques
were considered, while the Rosenbluth separation ones
were discarded. In the fitting procedure all of the form
factor data enter simultaneously in the parametrizations for
Hq and Eq, respectively. This is at variance with imple-
menting data on the F1 and F2 form factors, which also
require extrapolations from different data sets. By fitting
directly to the electric and magnetic form factors we
obtained a more precise determination since no data ma-
nipulation is necessary. In particular, an accurate descrip-
tion of the low t region is important in view of future
comparisons with the lattice determinations [23].

The 
2 per number of data points in each data set, as
well as for the total number of data points, is listed in
Table I for parametrization Sets I and II. The comparison
with form factor data is shown in Fig. 3 for the proton, and
in Fig. 4 for the neutron. The ratio Gp

M=G
p
E is shown in

Fig. 5. To check to what extent our parametrization is
dominated by the data from Gp

M, we also repeated the fit

TABLE I. The 
2=Ndata of the different nucleon form factors
obtained from Set I and Set II. Ndata is the number of data points
available for each set of form factor data.

Data Set 
2=Ndata Set 1 
2=Ndata Set 2 Data Points

GEp 1.049 0.963 33
GMp

1.194 1.220 75
GEp=GMp

0.689 0.569 20
GEn 0.808 1.059 25
GMn

2.068 1.286 24
TOTAL 1.174 1.085 177

3With this choice of diquark form factor, one ensures that the
value of the quark mass, or equivalently the position of the pole
in the quark propagator, does not play a dynamical role in the
model. The values of the quark masses are consequently not
determined in our fit.
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by weighting each form factor by the number of corre-
sponding data points. The effect for the listed values of 
2

was less than 2%.
The parameters in the t! 0 limit were determined by

fitting to the LO set of Alekhin PDFs [50] within the range

10�5 � x � 0:8 and 4 � Q2 � 240 GeV2, and imposing
the baryon number and momentum sum rule such that

 

Z 1

0
dXu�X;Q2

0� � 2 (24)

 

Z 1

0
dXd�X;Q2

0� � 1 (25)

 

Z 1

0
dXX	u�X;Q2

0� � d�X;Q
2
0�
 � 1: (26)

The parameters involved in this step, Mq
X, �q and �q,

q � u, d, obtained at an initial scale Q2
o (Q2

o �
0:094 GeV2), are listed in Table II. Notice that: (i) they
are the same for both Sets I and II; (ii) in Set I they are by
definition the same for the functionsH and E (see Eqs. (13)
and (14)). The parameters in the PDCD evolution were
chosen as in CTEQ6L1 [51].

Similar results can be in principle obtained from other
current PDF parametrizations [51,52], however the valence
contributions from Ref. [50] tend to more readily agree
with the shape given in Eqs. (13) and (14). The experimen-
tal data on DIS structure functions were not used directly,
because our parametrization does not include an ansatz for
the sea quarks. Therefore it is not possible to reproduce
within this context the low x behavior of the DIS structure
function F2�X;Q2�. For the same reason, the estimated
errors of Alekhin’s PDFs were not used in the fit. This
aspect is beyond the scope of the present analysis, and will
be improved in future work on by extending our model to
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FIG. 5 (color online). The ratio of proton electric and magnetic
form factors, �pG

p
M�t�=G

p
E�t�. Experimental data from [48].

Notation as in Fig. 3.

TABLE II. Parameters fixing the shape of Hq, q � u, d, at t �
0. The parameters are the same for both Set I and Set II.
Moreover, they also define the t � 0 limit for Eq in Set I, as it
can be seen from the definitions given in Eqs. (13) and (14).

Flavor MX (GeV) � (GeV) �

u 0.4972 0.9728 1.2261
d 0.7918 0.9214 1.0433
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FIG. 4 (color online). The neutron magnetic form factor, Gn
M,

divided by the dipole, GD � 1=�1� �2=0:71 GeV2�2, and elec-
tric form factor, Gn

E, respectively, plotted vs �2. Experimental
data from [47] (GMn

) and [46] (Gn
E). Notation as in Fig. 3.
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FIG. 3 (color online). The proton magnetic and electric form
factors, Gp

M and Gp
E, respectively, divided by the dipole, GD �

1=�1�Q2=0:71 GeV2�2, plotted vs �2. Experimental data from
[44] (GEp ); [45] (GMp

). The full line was obtained using pa-
rametrization I, Eqs. (13) and (14); the dot-dashed line corre-
sponds to parametrization II, Eqs. (15) and (16).
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include sea quarks [23]. It should be noticed that, as in
similar approaches [26,27,35], higher-order effects might
be important especially considering the low value of the
initial scale, Q2

0, resulting from the requirement that only
valence quarks contribute to the momentum sum rule
(Eq. (26)). However, on one side some of the previous
evaluations [27,40] do not seem to find quantitatively large
higher-order effects, on the other, the fact that Q2

0 is a
parameter in our model, determined itself by fitting the
valence PDF to the (parametrization of the) data [50] in the
large Q2 regime, lends self-consistency to our procedure
(see also [40,53]). In order to gauge the effects of pertur-
batuive evolution, a dedicated study of NLO is being
considered in upcoming future work.

With the parameters given in Table II the values of the
baryon number sum rules for u and d are: 1.9998 and
1.0003, respectively. The momentum at the initial scale

adds up to 1.0016. For Set II we imposed the additional
normalization condition

 

Z 1

0
dXEq�X; t � 0� � 	q; (27)

the experimental values of 	q, q � u, d being given in
Eq. (23), while our fitted values were 1.6715 and -2.0309,
for u and d respectively. The comparison with the PDF
parametrization of Ref. [50] is shown in Fig. 6.

The parameters �1, �2, p1 and p2, in Set I, and all
parameters defining E in Set II (Eq. (16)), were fitted to
the nucleon electric and magnetic form factors, Eqs. (12),
with the values of Mq

X, �q, and �q fixed as in Table II.
In Table III we list the values of the parameters for Set I,

with their corresponding 1-� errors (which for 6 parame-
ters corresponds to �
2 � 7:04). The error band on the
form factors resulting from the 1-� errors on the parame-
ters is displayed in Figs. 3–5,.

In Table IV we show the values of �1, �2, p1 and p2 for
Set II. We do not present their corresponding errors be-
cause due to the additional number of parameters in this
variant of the parametrization, the fit tends to be over-
determined, and therefore not completely quantitative.
This problem can be in principle circumvented either
with an increased flow of new data from DVCS experi-
ments, or by reducing the number of parameters by keep-
ing some of their values fixed. While these strategies can
be addressed in the future, we consider variant II of our fit
as an indicative measure of the model dependence of the E
component.

Additional parameters in Eqs. (15) and (16) are given
by: ~MII

Xu
� 1:5780 GeV, ~MII

Xd
� 0:3902 GeV, ~�IIu �

0:2678 GeV, ~�IId � 0:9589 GeV, ~�IIu � 0:005381, ~�IId �
0:7501. Despite the larger number of parameters, the over-
all agreement with the data is not significantly different
from Set I: the small t shape of theGMn

data seems is better
reproduced, due to the increased flexibility, whereas with
Set I one obtains a slightly better description at large t.

TABLE III. Parameters fixing the t behavior of the GPD forms given in Set I (Eqs. (13) and
(14)). The subscript 1(2) is for function Hq�Eq�, for each flavor.

Flavor �1 (GeV�2) �2 (GeV�2) p1 p2

u 1:9263� 0:0439 3:0792� 0:1318 0:720� 0:028 0:528� 0:031
d 1:5707� 0:0368 1:4316� 0:0440 0:720� 0:028 0:528� 0:031

TABLE IV. Parameters fixing the t behavior of the GPD forms
given in Set II (Eqs. (15) and (16)). The subscript 1(2) is for
function Hq�Eq�, q � u, d.

Flavor �1 (GeV�2) �2 (GeV�2) p1 p2

u 1.9567 0.1767 0.742 0.270
d 1.5896 3.2866 0.742 0.270
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FIG. 6 (color online). Parton distribution functions, Xuv�X�
and Xdv�X� plotted vs X, at the initial scale, Q0 � 0:3 GeV,
and at Q � 5 GeV. The parton distributions parameters, includ-
ing the value of the initial scale were obtained directly from our
fit. The fitted parameters are: MX, �, � for both parametrization I
and II. Our results are shown together with the LO set of Alekhin
PDFs [50] used in the fit.
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B. � � 0 GPDs for u and d quarks

Our results for the GPDs are presented in Figs. 7–11,
respectively. In Fig. 7 we show Hu and Hd plotted vs X at
different values of t for the parameters in Set I (results for
Set II are within the 2% error band shown in the figure.
Plots for Eu and�Ed are shown in Fig. 8 for Set I. In Fig. 9
we display results for Eu and Ed, for both Set I and Set II.
Differently from H, in this case there is a much bigger
discrepancy in the shape of the curves at the initial scale,
Q2

0, due to the fact that the constraint from the PDFs is
missing in this case. As is will shown later on, however,
PQCD evolution reduces substantially this discrepancy.

In Fig. 10 we show the separate contributions to Hu of
the diquark, G�

MX
, Eq. (17), and Regge terms, R �

X�����1�X�
p1 t, respectively, at the fixed values of t �

�0:08 GeV2, and t � �1:8 GeV2. From the figure it ap-
pears clearly that the form of the GPDs is determined by
the diquark shape, with an ‘‘envelope’’ provided by the
Regge term.

We reiterate that we did not attempt at guiding the values
for the parameters in our Regge-motivated term, based on
results from soft hadron interactions phenomenology, as
done instead in Ref. [13,14], respectively. Therefore, our
final parametrization, does not depend entirely on the
Regge or diquark behaviors in either the low or large X
regions, but on a mixture of both.

In Fig. 11 and 12 we show the importance of the Regge
term, in a quantitative fit of PDFs. In Fig. 11 the u-valence
distribution, uv�X;Q2� for our full parametrization, includ-
ing both the Regge and quark-diquark term (see Eqs. (13)
and (15), is compared to both the PDF fit of Ref. [50], and
to fits performed by excluding the Regge term, at Q2 �
5 GeV2. The quality of the ‘‘non-Regge’’ type fits is simi-
lar to those performed e.g. in [27,43], however it is clear
that the diquark fit alone does not provide hard enough
distributions at low X. This result is also independent from
whether one relaxes the constraints from the baryon num-
ber and momentum sum rules. We reiterate that the term,
X�� which is essential in obtaining the argument at low X,
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is also necessary in order to obtain the correct value of the
baryon sum rule. To test this we performed weighted fits to
the low X region without the Regge term. By forcing the
model to fit accurately at low X resulted in a large mis-
match at larger X. Similar results are obtained from other
variants of the diquark model. We conclude that the di-
quark model is not apt to reproduce the low X behavior,
and the baryon sum rule which is in turn fundamental for a
quantitative fit of GPDs from the nucleon form factors.
Figure 12 emphasizes the low X region on a logarithmic
scale. It is shown, in particular, how the final result (full

curve) is determined by both contributions of our Regge-
motivated term (thick dotted curve), and the diquark model
term (dashed curve). Our fit curve is shown to be in
relatively good agreement with the term: X��

0��0t, where
�0 and�0 take values consistent with Regge determinations
of soft hadronic cross sections (shaded area in the figure).
The interplay between the diquark model and the Regge
term explains why the values of the ‘‘Regge’’ parameters in
our fit differ sensibly from the results from hadronic cross
sections, nevertheless giving an accurate description of the
low X and low t regions.
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Both recent parametrizations from Ref. [13,14], are
compared with ours for Hu�d� in Fig. 13, and in Fig. 14,
respectively. A similar comparison for Eu�d� is performed
in Figs. 15 and 16. The results presented in the figure were
obtained by evolving to Leading Order (LO) the parame-
trizations at the initial scale Q2

0 � 0:1 GeV2 to the values
of Q2 � 1 GeV2, and Q2 � 4 GeV2, where the parametri-
zations from [13,14] were, respectively, given. We reiterate
that in principle higher-order effects are important espe-
cially considering the low values of the scale, and that
PQCD evolution for GPDs involves many more subtleties
that already appear at NLO (see e.g. [7] and references
therein). Lacking however, any knowledge from experi-
ment, it is still important to take into account the effects of
PQCD evolution, as indicators of the general trend fol-
lowed by GPDs.

At low twe notice a very good agreement in bothHu and
Hd among all three approaches, essentially because the
GPDs tend to the forward limit constrained by PDFs,
whereas a disagreement appears in in the large t behavior.
This is clearly an effect of perturbative evolution that sets
in earlier in our case with respect to Refs. [13,14], and that
does not conserve the form of the initial function, as also
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FIG. 13 (color online). Comparison with the quantitative ex-
traction of GPDs from data from Ref. [13]. Hu (left) and Hd
(right) as a function of X for �t � 0; 0:3; 5 GeV2, for our
Parametrizations I and II, respectively, evolved at Q2 �
4 GeV2 used in Ref. [13] While a clear agreement is seen at
low values of t, this becomes worse at larger values of t.
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noticed in [13]. One can gain insight on this point, as first
observed in the preliminary study of Ref. [12], by plotting
the quantity
 

hXq�t�i �

R
1
0 dXXH

q�X; t�R
1
0 dXH

q�X; t�
�

1

Fq1�t�

Z 1

0
dXXHq�X; t�; (28)

representing the average value of X contributing, respec-
tively, to the u and d components of the nucleon form
factors, Fu1 and Fd1 (Eq. (11)). In Fig. 17 we plot hXq�t�i at
Q2 � Q2

0. The contribution to the proton form factor is
obtained as

 hXp�t�i �
2

3

Fu1
Fp1
hXu�t�i �

1

3

Fd1
Fp1
hXd�t�i: (29)

Notice that the total momentum carried by the valence u
and d quarks is instead given by:

 hXi � 2hXu�0�i � hXd�0�i: (30)

From Fig. 17 one can see that at Q2 � Q2
0, hXi � 1, i.e. all

the momentum is carried by the valence quarks. PQCD
evolution implies that
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FIG. 17 (color online). Average value of X, Eq. (28), plotted vs
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0 for the u and d quarks contributions to the proton
Dirac form factor, Eq. (11). The average vale of X for the proton
is also shown at Q2 � 4 GeV2 (dot-dashed line).
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 hXq�t;Q2�i � hXq�t; Q2
0�i	�s�Q

2�=�s�Q
2
0�


d2 ; (31)

where �s is the strong coupling constant, and the anoma-
lous dimension yields d2 � 0:4267. One can therefore
observe that although larger values of X tend to dominate
the form factor as t increases, the effect of PQCD evolution
reduces the large X components by a Q2-dependent shift.
This effect explains the discrepancies in the curves at�t �
5 GeV2 in Figs. 12–15.

A similar behavior is observed for Eu�d�, although all
parametrizations tend to quantitatively differ also at low t,
since they are not constrained by the PDFs.

IV. PHENOMENOLOGY

With the results of a precise fit at hand, we can address
some issues in the phenomenology of GPDs at zero
skewness.

A. Coordinate space observables

A most interesting aspect is the relation with the nucleon
Impact Parameter dependent PDFs (IPPDFs), q�X;b�, re-
lated via Fourier transformation to Hq�X; t � ��2

?� [4]

 q�X;b� �
Z
d2�eib��Hq�X; t�; (32)

q�X;b� is the probability of finding a quark in the proton
carrying momentum fraction X, at impact parameter b.

The quark’s average impact parameter can be derived as

 hb2
q�X�i �

R
d2bq�X;b�b2R
d2bq�X;b�

� 4
@
@t

logHq�X; t�jt�0; (33)

from which an average ‘‘interparton distance’’ [54] can be
defined as:

 hy2
q�X�i �

hb2
q�X�i

�1� X�2
: (34)

Similarly, Eq can be interpreted in terms of a distribution
function in a transversely polarized target, through

 qX�X;b� � q�X;b� �
by
M

@

@b2

Z
d2�eib��Eq�X; t�; (35)

where polarization is along the x axis and by is the com-
ponent of b along the y axis. qX�X;b� measures the proba-
bility of finding a quark carrying momentum fraction X in
the transversely polarized proton, at impact parameter b.
The average shift in the quark’s distance along the y-axis
for polarization along the x-axis direction is obtained from
Eq. (35) as [4]

 hbyq�X�i �

R
d2bqX�X;b�byR
d2bqX�X;b�

�
1

2M
Eq�X; 0�
Hq�X; 0�

: (36)

The shift relative to the spectator quarks is obtained anal-
ogously to Eq. (34) as:

 hsq�X�i �
hbyq�X�i
1� X

: (37)

The average interparton distances, and the transverse shifts
are shown in Fig. 18 and 19, respectively.

In our approach the radii are a result of the fitting
procedure rather than an additional constraint as in
Refs. [13,14]. We studied the role of the Regge-type and
diquark terms from Eq. (5). Because of the factorized form,
hy2
q�X�i can be expressed in fact as the sum of the two

terms. We find a larger than intuitively expected contribu-
tion of the diquark term to both the d and u quarks
interparton distances. Notice that the interparton distances
are subject to PQCD evolution. In Fig. 18 we display
results at our initial low scale, Q2

0. The effect of evolution
is shown by plotting the total interparton distance—in-
cluding both Regge and diquarks terms—at Q2 �
4 GeV2. One can see that the interparton distances tend
to decrease with Q2, as the term @H=@t in Eq. (33) evolves
more steeply than H.

The total radius squared of the nucleon is obtained by
considering
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FIG. 18 (color online). hy2
u�X�i (left panel) and hy2

d�X�i (right panel) in our model, plotted vs X. The contribution of the Regge and
diquark term, respectively, (see text) are shown separately along with the total result, at the initial scale. The total result is then evolved
to Q2 � 4 GeV2.
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 hrq2
1 i �

R
dXq�X�hb2

q�X�i

Fq1 �t�

��������t�0
� 4

@
@t

logFq1 �t�jt�0; (38)

and using isospin symmetry
 

hrp2
1 i �

4
3hr

u2
1 i �

1
3hr

d2
1 i (39a)

hrn2
1 i � �

2
3hr

u2
1 i �

2
3hr

d2
1 i: (39b)

The charge radii are given by
 

hrp2
E i � hr

p2
1 i �

3

2

	p
M2 (40a)

hrn2
E i � hr

p2
1 i �

3

2

	n
M2 : (40b)

We find that hru2
1 i � 0:654 fm2, hrd2

1 i � 0:666 fm2,
hrp2

1 i � 0:650 fm2, hrn2
1 i � 0:0078 fm2. The calculated

values for the total charge radii are: hrp2
E i � 0:76 fm2 and

hrn2
E i � �0:118 fm2, in agreement with the experimental

results. Therefore our results for the fit parameters �q �
1� 1:2 in Eq. (5) are in line with the constraints on the
Regge parameters studied in Ref. [14].

The transverse shift, sq, (Fig. 19) constitutes in principle
a test on the GPD Eq. Our results, plotted at the initial
scale, show a marked difference between Set I and Set II.
One should keep in mind however, that PQCD evolution
largely diminishes the discrepancy.

B. Intrinsic transverse momentum

An observable related to transversity that can be ac-
cessed witihin our model, is the partons’ average intrinsic
transverse momentum, hk2

?�X�iq. Notice that k?, although
not Fourier conjugate to b, it can be related to q�X;b� as
shown in Ref. [12].4 In other words, k? is not directly
observable in DVCS type processes. However, it can be
evaluated using the same input to Eq. (5), as

 

hk2
?�X�iq �

R
d2k? j ��k2; �2� j2 k2

?R
d2k j ��k2; �2� j2

; (41a)

hk2
?�X�i � hk

2
?�X�ip �

4
9hk

2
?�X�iu �

1
9hk

2
?�X�id: (41b)

In Fig. 20 we show hk2
?�X�i from our model. In order to

assess the range of possible variations for this observable,
we compare our evaluation with the values extracted from
Refs. [13,14], by assuming a gaussian k? dependence of
the vertex functions that could originate such parametriza-
tions. We also compare with the hypothesis originally
advanced by Burkardt [55] on the form of the combined
X and t dependences of the gaussian’s exponent (or the
profile function in [13,14]). Finally, we compare with the
values used in Semi-Inclusive DIS (SIDIS) parametriza-
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FIG. 19 (color online). hsu�X�i (left panel) and hsd�X�i (right panel) in our model, plotted vs X. All curves are at the initial scale, Q2
0.

The average interparton distance: hy2
q�X�i

1=2 is shown for comparison.

 

This paper
Diehl (05)
Guidal (05)
Burkardt n=3
Burkardt n=2
Jakob (02)
Anselmino (05)

x

< 
k2  >

 (
G

eV
2 )

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
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4Such relation is of general validity, unrelated to nonrelativ-
istic many body theory as quoted in [8].

GENERALIZED PARTON DISTRIBUTIONS FROM . . . PHYSICAL REVIEW D 75, 094003 (2007)

094003-15



tions [43,56]. The exploratory work presented here is
aimed at defining a few guidelines for future quantitative
studies of the connection between GPDs and SIDIS reac-
tions [4,57]. In Fig. 21 we show the ratios:

 R1�2�
kmax
�t� � F1�2��t; kmax�=F1�2��t� (42)

 R1�2�
Xmax
�t� � F1�2��t; Xmax�=F1�2��t� (43)

in order to determine what k?, and X components the form
factors are dominated by. The numerators were obtained by
setting the upper limit of integration in Eq. (10) to different
values of k? � kmax, and X � Xmax, respectively. It can be
clearly seen that for all values of t the form factor ratio,
R�1�kmax

�t�, is saturated by setting kmax � 1 GeV (for F2, even
larger values of k? seem to be important). This is in turn an
indication of a semihard distribution, as opposed to the soft
gaussian forms used elsewhere. On the other side, the ratio
R1�2�
Xmax
�t� clearly shows the coupling between the X ! 1

behavior of the GPDs and the large t behavior of the
form factors.

C. Implementation of lattice QCD results

Lattice QCD provides the only ‘‘model independent’’
constraints that are necessary to parametrize GPDs at � �

0. It is, however, important to illustrate the type of infor-
mation that can be obtained on GPDs starting from the � �
0 case. The � � 0 case requires in addition, a more in-
volved ‘‘deconvolution’’ procedure from the first three
moments that will be described in a following dedicated
paper [23].

Current lattice results can reproduce the dipole fall-off
of the form factors up to �t � 3 GeV2. However, even
after performing a linear extrapolation to low values of the
pion mass, such calculations overshoot the experimental
results [13,21,22]. As a result, predictions from the lattice
are at the moment characterized by a rather large uncer-
tainty. This becomes problematic especially for the higher
moments of GPDs where no comparison with experimental
results can be made. In order to evaluate the impact of such
uncertainty on possible extractions of GPDs, we performed
a test based on a prescription proposed in [36] by
Schierholz, according to which the value of the dipole
mass, �n, appearing in5:

 Mn�t� �
Z 1

0
dXH�X; t�Xn�1 � Mn�0�

1

�1� t
�2
n
�2
; (44)
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FIG. 21. Contribution of both the intrinsic transverse momentum components (upper panels) and X components (lower panels) to the
proton form factors, Fp1 �t� (left), and Fp2 �t� (right).

5We reiterate that Eq. (44) is not of general validity but a result
of fits to the lattice calculations of [21,22].
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can be first extracted from the lattice evaluations for n � 3,
and subsequently extended to all n values by performing a
fit based on a Regge-motivated ansatz of the type

 

�������
�2
n

q
�
n� �0

�v
(45)

(in Eq. (44) H � Hu �Hd � Hu�d evaluated at Q2 �
4 GeV2). The n-dependence of the moments described
above allows one to perform the anti-Mellin transform,
thus obtaining GPDs analytically. Results using Eqs. (44)
and (45), are compared with the evaluations from our
analysis atQ2 � 4 GeV2, in Fig. 22. The band in the figure
includes the estimate of the lattice error. One can observe a
good agreement with both our results and other current
parametrizations for the Hu at �t & 2 GeV2. The agree-
ment however, deteriorates at lower t for the d-quark. We
therefore conclude that within the range of t shown in the
figure, it is acceptable to use current lattice results in order
to extend our analysis of the extraction of GPDs at � � 0.

V. CONCLUSIONS AND OUTLOOK

In this paper we proposed a fully quantitative physically
motivated parametrization of generalized parton distribu-
tions that is constructed directly from a covariant model for
the quark-nucleon scattering amplitude. Therefore, we do
not implement a specific form for the forward limit given
by the parton distribution functions of DIS, but we obtain
that limit from fitting directly to the valence contribution to
DIS data. This allows us, in particular, to better study the
role of Regge-type exchanges, that are disengaged, in our
case, from the specific form of parton distributions. The
other constraints defining our parametrization at zero
skewness are provided by the electric and nucleon form
factor data.

The advantages of this approach are that on one side,
using the same initial formalism, we can predict additional
quantities such as the unintegrated, k?-dependent, parton
distribution functions. This degree of flexibility is desirable
in view of both future interpretations of both coordinate
space observables, and of transversity. Furthermore, ana-
lyzing directly the vertex structure of the scattering ampli-
tude allows us to easily extended our predictions to the
nonzero skewness case. This can be, in fact, obtained by
extending the range of the kinematical variables in our
expressions for the quark scattering dominated region,
and by considering separately the X < � region where a
quark-antiquark pair from the initial proton participates in
the scattering process. Additional constraints need how-
ever to be provided by the higher, �-dependent, moments
of the GPDs. These are in principle available from recent
lattice calculations but are necessarily fraught with uncer-
tainties. Here were able to assess the impact of such
ambiguities on the extraction of GPDs. We conclude that
current extrapolated lattice values can be used for �t &

2 GeV2. A detailed description of the � dependent parame-
trization is given in a forthcoming paper.

With this type of parametrization in hand we can on one
side provide predictions for both recent [41,58] and future
DVCS measurements at Jefferson Lab. On the other, our
approach is geared towards providing a practical and more
flexible method to reconstruct generalized parton distribu-
tions from their first few moments.
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APPENDIX A: CONNECTION BETWEEN
DIFFERENT SETS OF KINEMATICAL VARIABLES

By defining [2], x � �k� � k0��=�P� � P0��,  �
��=�P� � P0��, and t, the following mappings with the
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FIG. 22 (color online). Comparison of both the results of our
analysis, and of Ref. [13], with an extraction of GPDs from
lattice calculations according to the prescription of Ref. [36].
The band includes an estimate of the error from lattice calcu-
lations.
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kinematical variables defined in the paper obtain: The
regions � < x <  and  < x < 1 are mapped into 0<
X < � and � < X < 1 respectively, via

 

X �
x� 
1� 

(A1a)

� �
2

1� 
; (A1b)

while the region �1< x<� maps into � < X < 1,
via

 

X �
�x� 
1� 

(A2a)

� �
2

1� 
: (A2b)

APPENDIX B: ANALYTIC EXPRESSIONS FOR
THE NUCLEON’S RADIUS

We give the analytic expressions for hb2
q�X�i, obtained

from the factorized form in Eq. (13)

 

hb2
q�X�i � 4

@
@t

logHq�X; t�jt�0

� �
1

2�

�@ lnG�
MX

@�
�
@ lnR
@�

�����������0

� �hb2
q�X�iG � hb

2
q�X�iR�

1

q�X�

�
3

5

1� X

��M2 � X
1�XM

q2
X � �

2
q�
� �1�1� X�

p1 logX

(B1)

with � �
������
�t
p

, G�
MX

given in Eq. (17), and R �

X����1�1�X�p1 t.
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