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Flavor-dependent long range (LR) leptonic forces, like those mediated by the Le � L� or Le � L�
gauge bosons, constitute a minimal extension of the standard model that preserves its renormalizability.
We study the impact of such interactions on the solar neutrino oscillations when the interaction range RLR

is much larger than the Earth-Sun distance. The LR potential can dominate over the standard charged
current potential inside the Sun in spite of strong constraints on the coupling � of the LR force coming
from the atmospheric neutrino data and laboratory search for new forces. We demonstrate that the solar
and atmospheric neutrino mass scales do not get trivially decoupled even if �13 is vanishingly small. In
addition, for � * 10�52 and normal hierarchy, resonant enhancement of �13 results in nontrivial energy
dependent effects on the �e survival probability. We perform a complete three generation analysis, and
obtain constraints on � through a global fit to the solar neutrino and KamLAND data. We get the 3� limits
�e� < 3:4� 10�53 and �e� < 2:5� 10�53 when RLR is much smaller than our distance from the galactic
center. With larger RLR, the collective LR potential due to all the electrons in the galaxy becomes
significant and the constraints on � become stronger by up to two orders of magnitude.
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I. INTRODUCTION

The standard electroweak model is now a well-
established theory but it is believed to be incomplete and
one expects some physics beyond the standard model (SM)
to exist. Most extensions of SM postulate new physics at
scales higher than the electroweak scales starting from TeV
to the grand unification or Planck scale. There however
exists an interesting possibility that new physics may exist
at scales below the electroweak scale. This may arise from
the existence of exactly or nearly massless gauge [1,2] or
Higgs bosons [3–5] which have remained invisible be-
cause of their very feeble couplings to the known matter.
Various scenarios involving new physics at low energy and
their possible signatures [6–10] have been studied.

Gauged extension of the SM is one possible scenario
with new physics below the electroweak scale. Such a
possibility is strongly constrained theoretically from the
renormalizability, however there exist [1] three possible
U�1�X gauge extensions of the standard model which are
anomaly free with minimal matter content. These corre-
spond to X � Le � L�, Le � L�, L� � L�. The extra
gauge boson corresponding to U�1�X may not have been
discovered if it is very heavy or if it is (nearly) massless but
couples to the matter very weakly. The former possibility is
analyzed in Ref. [1,11]. The latter possibility, recently
analyzed in Ref. [9], is strongly constrained by the search
for the long range (LR) forces [12,13].

Unlike the gravitational force, the U�1�X induced force
couples only to the electron (and neutrino) density inside a

massive object. As a consequence, the resulting accelera-
tion experienced by an object depends on its leptonic
content and mass. Such forces that violate the equivalence
principle are strongly constrained. In case of the force with
a range of �AU, the most stringent bound comes from
lunar ranging [12,13] which measures the differential ac-
celeration of the Earth and moon towards the Sun. If �
denotes the strength of the long range potential then these
experiments imply �< 3:4� 10�49 (2�) for a range � *

1013 cm.
The flavor-dependent long range force [8] induced, for

example, by Le � L�;� [9,10] can still influence neutrino
oscillation in spite of such strong constraints on �. This
happens because (i) the X-charge of the electron flavor is
opposite to that of muon or tau flavor, so that these two
flavors propagate differently in matter and (ii) the large
number of electrons (e.g. inside the Sun) and the long
range of interaction compensates for the smallness of
coupling and gives rise to a significant potential. For
example, the electrons inside the Sun generate a potential
Ve� at the Earth surface given by [9]

 V�e��Res� � �e�
N�e
Res
� 1:3� 10�11 eV

� �e�
10�50

�
; (1)

where �e� �
g2
e�

4	 corresponds to the gauge coupling of
Le � L��� � �; �� symmetry which we will sometimes
collectively refer to as �. Here N�e � 1057 is the total
number of electrons inside the Sun [14] and Res is the
Sun-Earth distance � 7:6� 1026 GeV�1. This is to be
compared with the typical value of �m2=E� 10�12 eV
for the atmospheric neutrinos. It follows that Ve� can
induce significant corrections to neutrino oscillations at
the Earth even for �� 10�50.
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One can define a parameter

 
 	
2EVe�
�m2 ; (2)

which measures the effect of the long range force in any
given neutrino oscillation experiment. The bound on �
from Refs. [12,13] implies that 
 < 750 in atmospheric
or a typical long base line experiment, while 
 < 35 for
the typical parameters of the KamLAND experiment.
Relatively large values of 
 tend to suppress the atmos-
pheric neutrino oscillations. The observed oscillations can
then be used to put a stronger constraint on � which were
analyzed in Ref. [9]. One finds the improved 90% C.L.
bound

 �e� < 5:5� 10�52; �e� < 6:4� 10�52; (3)

in case of the Le � L�;� symmetry, respectively.
With the improved bound on � given in Eq. (3), the

value of 
 for KamLAND becomes rather small: 
 < 0:06.
So one expects the KamLAND results to be influenced by
the LR interactions to a very small extent. However, the
potential Ve� at the surface of the Sun is V�e��r�� � 2:8�
10�9��e�=10�50� eV, which may be compared with the
Mikheyev-Smirnov-Wolfenstein effect (MSW) contribu-
tion VCC � 6:0� 10�12 eV at r � 0:05r�. Therefore one
expects the long range potential to change or disturb the
large mixing angle (LMA) MSW solution of the solar
neutrino problem [15]. Note that the effects on the solar
and KamLAND experiments are qualitatively different,
since KamLAND only probes the potential at the Earth
given in Eq. (1) while the solar neutrinos experience a long
range potential that varies with the distance from the center
of the Sun. It is thus important to do a combined analysis of
these two experiments.

The aim of this paper is to discuss new physical effects
associated with this force and also make a quantitative
analysis of the combined solar and KamLAND data to
obtain a bound on �. It turns out that the long range
potential produces physically interesting and quantitatively
significant effects which can be used to constrain its
strength. The bound obtained on � is more stringent than
that obtained [9] from the atmospheric results alone by
more than an order of magnitude. If RLR * Rgal where Rgal

is our distance from the galactic center �10 kpc, the
constraints become even stronger by up to two orders of
magnitude.

The plan of the paper is as follows. In Sec. II we present
our basic formalism where we describe the main features
of the LR potential inside and outside the Sun. In Sec. III,
we present an analytic discussion of our results on neutrino
masses, mixing angles and the resonances they undergo in
case of the Le � L� symmetry. The corresponding analysis
for the Le � L� is similar and the relevant analytic expres-
sions are given in the Appendix A. Sec. IV analyzes the
KamLAND and the solar neutrino data numerically to

obtain bounds on � for RLR 
 Rgal. The case RLR * Rgal

is analyzed in Sec. V. A summary of the results is given in
Sec. VI. In addition, Appendix B gives a brief discussion of
the impact of the LR potential on the neutrinos from a core
collapse supernova.

II. FORMALISM

We consider the standard electroweak model with its
minimal fermionic content but assume the presence of an
additional gauged U�1�X symmetry. The cancellation of
anomalies requires X � Le � L�, Le � L� or L� � L�
[1]. The last symmetry does not play any significant role
in the solar neutrino oscillations because of the absence of
muons or tau leptons inside the Sun (or Earth). We will
therefore concentrate on the first two and the couplings of
the mediating vector bosons. The value of � is positive in
this case.

The observed neutrino oscillations imply that the U�1�X
gauge symmetry cannot be an exact symmetry in nature.
This is easy to argue. If it were exact, then the effective five
dimensional neutrino mass operator following from any
mechanism (e.g. seesaw) would be invariant under it.
Consider the case of Le � L�. Invariance under this dic-
tates the following structure for the effective neutrino mass
matrix:

 meff �

0 me� 0
me� 0 0

0 0 m��

0
@

1
A: (4)

This structure implies a Dirac and a Majorana neutrino
which remain unmixed and therefore cannot give any
neutrino oscillations. Thus Le � L� needs to be broken.
The symmetry breaking scale required to generate the solar
scale �m2

12 would be �m2
12=me�. With �m2

12 � 10�4 eV2

corresponding to the solar mass difference and me� �

0:1 eV corresponding to the degenerate neutrino mass,
�m2

12=me� is required to be at least 10�3 eV. A similar
conclusion also holds in the case of the unbroken Le � L�
symmetry.

The size of the U�1�X breaking as required above can be
consistent with a nearly massless gauge boson since the
corresponding coupling g in this case is required to be very
small ( & 10�24) from the search of the long range forces
[12,13]. The required smallness of the coupling also en-
sures that the relatively large U�1�X breaking in the neu-
trino sector is consistent with a very light gauge boson. In
fact, a Higgs vacuum expectation value of a few GeV can
lead to a gauge boson corresponding to the Earth-Sun
range with g� 10�26–10�27 and can imply a relatively
large neutrino splitting [9].

The most significant effect of the light gauge bosons
would be in the solar neutrino oscillations. The coupling of
the solar electrons to the Le � L�;� gauge bosons would
generate a long range potential. If ne�r� denotes the spheri-

BANDYOPADHYAY, DIGHE, AND JOSHIPURA PHYSICAL REVIEW D 75, 093005 (2007)

093005-2



cally symmetric electron number density inside the Sun
then the long range potential is given by

 V�e��r < r�� � 4	�e�
Z 1
r

dr0

r02
Z r0

0
r002ne�r00�dr00: (5)

Outside the Sun

 V�e��r > r�� �
4	�e�
r

Z r�

0
r002ne�r00�dr00 �

�e�
r
N�e : (6)

The approximate profile

 ne�r� � 245NA10�10:54�r=r�� cm�3 (7)

of the solar density [14] implies that Ve� is a monotonically
decreasing function, which is inversely proportional to r
when outside the Sun. This behavior is shown in Fig. 1
which is obtained using the actual electron density profile
in the Sun. It is seen that V�e� dominates over the potential
VCC inside the Sun for � * 10�53. Moreover, it does not
abruptly go to zero outside the Sun like VCC, but decreases
inversely with r, ultimately reaching the value given in
Eq. (1) at the surface of the Earth. When Ve� * VCC inside
the Sun, the resonance is shifted outwards (sometimes even
outside the Sun) and its adiabaticity may be affected.

The contribution ~VEe� of the electrons inside the Earth
can be calculated in a similar fashion. Roughly, one finds
that at the Earth surface

 

VEe�
V�e�

�
ME

M�

Res

RE
� 10�1; (8)

where M��ME� and Res�RE� respectively refer to the mass
of the Sun (Earth) and the Earth-Sun distance (radius of the
Earth). Thus the solar long range potential dominates over
the terrestrial contribution and we will neglect the latter. As
long as RLR 
 Rgal, this is the dominant potential affecting
the propagation of solar neutrinos.

When RLR * Rgal, the collective potential due to all the
electrons in the galaxy may become significant. The mass
of the Milky Way is �0:6� 3:0� � 1012 solar masses,
which is mostly concentrated in the center of the galaxy.
The baryonic contribution to the galactic mass may be
estimated to be O�10%�. The center of the galaxy is
�10 kpc away from the Sun. We denote the galactic con-
tribution to the potential Ve� as

 Vgal
e� � b�e�

N0
e;gal

R0
gal

; (9)

where N0
e;gal is taken to be 1012N�e and R0

gal to be 10 kpc.

The net LR potential is Ve� � V�e� � V
gal
e� . The parameter

b takes care of our ignorance about the distribution of the
baryonic mass in our galaxy. With RLR * Rgal, we expect
0:05< b & 1. The value of b may be smaller if RLR is
smaller. Clearly, b � 0 would have the same effect as
RLR 
 Rgal. With b � 0, the constraints on � become
stronger, as will be demonstrated in Sec. V.

The screening length due to the antineutrinos present in
the cosmic neutrino background is a few hundred kpc for
m� � 0:1 eV [16]. Therefore, for the galactic scale, the
screening plays no significant role. Over the Sun-Earth
distance, even the possible local screening effects would
be too small to have any effect [9].

In addition to the altered resonance structure inside and
outside the Sun, the mixing angles at the Earth also differ
from the corresponding vacuum values, with the result that
both the solar and the KamLAND neutrinos get affected by
the LR potential. An important point to note is that this
potential gives unequal contributions to two flavors (e and
� or �) simultaneously unlike in case of the charged
current which contributes only to the electrons. The third
flavor gets no contribution. As a consequence of this, the
inclusion of three generations in the solar analysis becomes
necessary.

The appropriate Hamiltonian in the flavor basis describ-
ing the neutrino propagation can be written as
 

Hf � R23��23�R13��13�R12��12�H0R
T
12��12�

� RT13��13�R
T
23��23� � V; (10)

where H0 refers to the effective Hamiltonian in the mass
basis, and Rij’s are the rotation matrices in the i-j plane.
Since the absolute masses of neutrinos play no part in the
oscillation phenomena, we can take the neutrino mass

eigenvalues in vacuum to be 0,
������������
�m2

21

q
,

������������
�m2

32

q
respec-

tively, leading to
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FIG. 1 (color online). Comparison of the potential Vcc and the
LR potential V�e� due to the solar electrons from the solar core all
the way to the Earth (r=r� � 215) and beyond. The ��m2=2E�
values corresponding to E � 10 MeV are also shown.
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 H0 � Diag�0;�21;�32�; (11)

where �21 	 �m2
21=�2E� and �32 	 �m2

32=�2E�. The ro-
tation angles �23 and �12 are the vacuum mixing angles
describing the atmospheric and the solar neutrino oscilla-
tions, respectively, whereas �13 is the third ‘‘Chooz’’ mix-
ing angle. We have assumed that no CP violation enters
into picture here.

The matrix V in Eq. (10) describes the combined con-
tribution of the charged weak currents as well as the long
range forces. Explicitly,

 V � Diag�Vcc � Ve�;�Ve�; 0�: (12)

The neutrino propagation is described by Eq. (10). The
corresponding antineutrino propagation is obtained by the
replacement V ! �V.

III. MASSES, MIXINGS, AND RESONANCES OF
SOLAR NEUTRINOS

In order to analyze the propagation of solar neutrinos,
we rewrite Eq. (10) explicitly as

 Hf � �32

xs2
12 � yc � ye� xc12s12c23 � s13s23 �xc12s12s23 � s13c23

xc12s12c23 � s13s23 s2
23 � xc

2
12c

2
23 � ye� c23s23�1� xc

2
12�

�xc12s12s23 � s13c23 c23s23�1� xc2
12� c2

23 � xc
2
12s

2
23

0
B@

1
CA; (13)

where

 x 	
�21

�32
� 0:03; yc 	

Vcc
�32
�

2EVcc
�m2

32

;

ye� 	
Ve�
�32
�

2EVe�
�m2

32

;

(14)

and sij 	 sin�ij, cij 	 cos�ij. Since �13 is small (�13 < 0:2
[15]), we have kept terms to only linear order in s13.

Equation (13) can be diagonalized through the unitary
matrix

 Um 	 R23��23m�R13��13m�R12��12m�; (15)

such that

 UT
mHfUm �

1

2E
Diag�m2

1m;m
2
2m;m

2
3m�: (16)

The smallness of x and s13 can be used to approximately
determine the matter dependent mixing angles ofUm to the

leading order in these parameters. The angle �23m follows
from the lower right 2� 2 block in Eq. (13):

 tan2�23m �
sin2�23�1� xc

2
12�

cos2�23�1� xc2
12� � ye�

: (17)

The subsequent diagonalization leads to

 tan2�13m �
2�xs12c12S� s13C�

C2� x�c2
12S

2� s2
12�� yc� ye��1� sin2�23m�

;

(18)

where S 	 sin��23m � �23� and C 	 cos��23m � �23�.
As long as the denominator in Eq. (18) does not vanish

(which happens only in a very narrow range of ye� near
ye� � 2=3), we can take �13m �O�x; s13�. Neglecting
terms that are quadratic or higher order in O�x; s13�, the
effective Hamiltonian in the new basis (after the 2–3 and
1–3 rotation) becomes

 Hf00 � �32

xs2
12 � yc � ye� xc12s12C� s13S 0

xc12s12C� s13S S2 � xc2
12C

2 � ye�c2
23m 0

0 0 C2 � xc2
12S

2 � ye�s2
23m

0
B@

1
CA; (19)

so that a 1–2 rotation through an angle �12m, given by

 tan2�12m �
2�xs12c12C� s13S�

S2 � x�c2
12C

2 � s2
12� � yc � ye��1� cos2�23m�

; (20)

completes the diagonalization. The neutrino masses are given as
 

m2
1m � �32E�x�c2

12C
2 � S2� � yc � ye�sin2�23m � S2 �D1=2;

m2
2m � �32E�x�c

2
12C

2 � S2� � yc � ye�sin2�23m � S
2 �D1=2;

m2
3m � 2�32E�C

2 � xc2
12S

2 � ye�sin2�23m�;

(21)

where

 D � �S2 � x�c2
12C

2 � s2
12� � yc � ye��1� cos2�23m�

2 � 4�xs12c12C� s13S�
2: (22)
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The above analytical results can be verified by the exact
numerical results in Fig. 2 where we show the angles and
m2
i values in matter for different values of � for normal as

well as inverted hierarchy.
In this and the next section, we analyze the case RLR 


Rgal, so that the potential Ve� is as shown in Fig. 1. As is

apparent from the figure, the maximum value of ye� is
given by

 

�ye��max

�
� 1:2� 1052

�
E

10 MeV

�
(23)

for the best fit values of the atmospheric parameters. Thus,
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FIG. 2 (color online). The angles and m2
i values in matter for solar neutrinos for E � 10 MeV, in the case RLR 
 Rgal. The m2

i
values are correct up to an additive constant, so that only their relative values have a physical significance. We have taken the values of
the mixing parameters ‘‘away from all electron sources’’ to be �m2

21 � 8� 10�5 eV2, j�m2
32j � 2:5� 10�3 eV2, sin22�12 � 0:75,

sin22�23 � 1:0, and sin22�13 � 0:12 for illustration.
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at E � 10 MeV, we have ye� � 0:1 for � � 10�53. The
left column in Fig. 2 then corresponds to the range of �
where �ye��max 
 1, and the right column corresponds to
�ye��max > 1. The corresponding figures for � � 0 would
be almost identical with the one for � � 10�53, except that
the resonance would be inside the Sun.

The propagation of solar neutrinos is qualitatively and
quantitatively different depending on whether �ye��max is
large enough to cause resonant enhancement of �13m in
(18). The resonance occurs when � * 10�52. We therefore
consider the two cases � & 10�52 and � * 10�52 sepa-
rately in the next two subsections.

A. For � & 10�52

For �
 10�52, we have ye� 
 1 and the atmospheric
mixing angle gets only a small correction from the matter
effects. Writing �23m � �23 � ��23, we see that ��23 �

�ye� sin2�23=2 and �23m remains close to its vacuum
value, �23m � 	=4. With a higher � value, the deviation
��23 becomes appreciable and results in the reduction of
sin22�23m as shown in Fig. 2.

The angle �13m has contributions from two sources: from
finite �13 in vacuum as well as the additional contribution
from the term xs12c12S. The latter is doubly suppressed
because of the smallness of x as well as S � ��23, and can
be neglected as long as s13 > xS. One may then take
�13m �O�s13� since the resonant enhancement of �13m
anyway does not occur for �< 10�52.

In the limit �13m ! 0, the third mass eigenstate decou-
ples and the scenario reduces to 2� mixing, as can be seen
from Eq. (19). However, note that the effective matter
potential is

 V 12 � Vcc � Ve��1� cos2�23m�; (24)

and not Vcc � 2Ve� as would have been taken in a naive
two-generation analysis. Thus, the effect of the third neu-
trino and its mixing is inescapable here. However, it only
appears through the factor �1� c2

23m� in Eq. (24), and the
mass of the third neutrino or the mass hierarchy is imma-
terial for the effective 2� analysis. This may be verified
from the left column of Fig. 2.

The most important effect of the LR potential is for the
solar angle. Equation (20) gives the resonance condition

 �m2
21 cos2�12 � 2E�Vcc � Ve��1� cos2�23m�; (25)

which differs from the condition by an addition of the term
involving Ve�. For � * 10�53, the Ve� contribution domi-
nates over Vcc and changes the resonance picture signifi-
cantly. The resonance is shifted away from the center as �
increases. Eventually for some value of � the resonance
gets shifted outside the Sun where its behavior is solely
determined by the LR potential. For �> 10�53, neutrinos
with E � 10 MeV encounter resonance outside the Sun in

case of the best fit values of the neutrino mass parameters
obtained in the standard analysis [15].

Addition of the Ve��1� cos2�23m� term to Vcc makes
the variation of the total potential smoother than the normal
potential with the result that the transition becomes more
adiabatic than the corresponding case without the LR. In
particular, when the resonance occurs outside the Sun then
V�e� �

�N�e
r and the adiabaticity parameter at the resonance

is given by

 �L 	
�m2

12

2E
sin22�12

cos2�12

�������� 1

V 12

dV 12

dr

��������
�1

res

� �e�N�e tan22�12�1� cos2�23� � 1:4� 1058�e�:

(26)

The value of �L is independent of the neutrino masses,
energy and position of the resonance and is solely deter-
mined by � and the vacuum mixing angles. For the stan-
dard values of the latter, the resonance is found to be highly
adiabatic: �L � 1 for �> 10�57. In general, if PL�E� 	
exp��	�L=2� is the probability that �1m and �2m convert
to each other while passing through the resonance, the net
survival probability of �e is
 

Pee�E� � �1� PL�cos2�13Pcos2�12Pcos2�13Ecos2�12E

� PLcos2�13Psin2�12Pcos2�13Ecos2�12E

� �1� PL�cos2�13Psin2�12Pcos2�13Esin2�12E

� PLcos2�13Pcos2�12Pcos2�13Esin2�12E

� sin2�13Psin2�13E: (27)

Here �ijP and �ijE are the values of �ijm at the neutrino
production point and at the Earth, respectively. The energy
dependence of PL as well as all the angles is implicit. Note
that since �13P, �13E �O��13�, the last term may be ne-
glected if we neglect terms of O��4

13� or smaller.

B. For � * 10�52

For �� 10�52, the value of ye� is large enough so that
sin22�23m gets unacceptably suppressed through Eq. (17).
This also suppresses the atmospheric neutrino flux and
results in the bounds on � discussed in Ref. [9].

For solar neutrinos, the �1m-�2m resonance as described
in the previous section occurs, but in addition the angle
�13m gets resonantly enhanced when

 C2 � x�S2c2
12 � s

2
12� � yc � ye��1� sin2�23m� � 0:

(28)

This happens when ye� � 2=3. The sign of ye� also needs
to be positive, so the resonance occurs only for normal
hierarchy. For the inverted hierarchy, there is no resonance
for �e and Eq. (27) gives the correct expression for their
survival probability.

BANDYOPADHYAY, DIGHE, AND JOSHIPURA PHYSICAL REVIEW D 75, 093005 (2007)

093005-6



In the resonance region, the effective Hamiltonian ma-
trix (10) can no longer be diagonalized through the simple
procedure described in the beginning of Sec. III, and the
mixing angles have to be computed numerically. However,
this happens only in a small range of ye� around ye� �
2=3: the width of the resonance region may be estimated to
be �ye� � �2=3�s13. The expressions (20)–(22) are valid
everywhere outside this region.

The �13m enhancement corresponds to the �2m-�3m level
crossing, with an effective potential

 V 23 � Vcc � Ve��1� sin2�23m�: (29)

When the hierarchy is normal, only a fraction of the �e that
are produced mainly as �2m inside the Sun survive the
�2m-�3m resonance. The adiabaticity at this resonance,
which strongly depends on �13, affects the net survival
probability of �e:

 

Pee�E� � cos2�13Pcos2�12Pcos2�13Ecos2�12E

� �1� PH�cos2�13Psin2�12Pcos2�13Esin2�12E

� PHsin2�13Pcos2�13Esin2�12E

� �1� PH�sin2�13Psin2�13E

� PHcos2�13Psin2�12Psin2�13E; (30)

where PH�E� is the probability that �2m converts to �3m
after traversing through this resonance.

Here we have used the earlier result that for � * 10�52

the �1m � �2m resonance is outside the Sun and is always
adiabatic [see Eq. (26)]. The energy dependence of PH as
well as all the angles is implicit.

The value of PH is given by

 PH � exp
�
�
	
2

�������� m2
3 �m

2
2

2Ed�13m=dr

��������res

�
: (31)

Clearly, if PH � 0, the expression (30) reduces to Eq. (27),
and the results of the 2� analysis stay valid. In general
PH � 0 at high values of �13. In Fig. 3, we show the �13

dependence of PH for various values of � for E �
10 MeV. At � � 10�52, the value of PH > 0:1 for �13 <
0:08�, which is when the survival probability is affected
significantly. For larger �, the value of PH becomes sig-
nificant for lower �13 values. In the range where 0:1<
PH < 0:9 (the semiadiabatic range), PH is also highly
energy dependent, as can be seen from Eq. (31).

The analytic discussion above reveals that the LR po-
tential makes important contribution to the solar neutrino
problem and a detailed numerical analysis is needed to
obtain constraints on this potential. We turn to this analysis
in the next section.

IV. CONSTRAINTS FROM SOLAR NEUTRINOS
AND KAMLAND

To find the best fit values of the oscillation parameters
and � from a statistical analysis of the experimental data,
we employ the 2 minimization technique with covariance
approach for the errors. For analysis of the total event rate
data from all the experiments, the 2 function is defined as

 2
rates �

XNexpt

i;j�1

�Pth
i � P

expt
i ����ij

rates�2�1�Pth
j � P

expt
j �;

(32)

where P
i (
 � th or expt) denotes the total event rate for
the ith experiment. Both the theoretical and experimental
values of the fitted quantities are normalized relative to the
standard solar model (SSM) predictions. The error matrix
��ij

rates�2 contains the experimental and theoretical uncer-
tainties along with their correlations. Theoretical uncer-
tainties include the uncertainties in the capture cross
sections, which are uncorrelated between different experi-
ments and the astrophysical uncertainties from the SSM
predictions which are correlated between different experi-
ments. The correlations are being evaluated using the
procedure of Ref. [17].

For the analysis of any spectral data (recoil energy
spectra or zenith angle spectra), the 2 is defined as

 2
spec �

XNbins

i;j�1

�Sth
i � S

expt
i ����ij

spec�2�1�Sth
j � S

expt
j �; (33)

where S
i (
 � th or expt) is the number of events in the ith
bin of the spectrum. The error matrix ��ij

spec�2 for the
spectral data includes the statistical error, correlated and
uncorrelated systematic errors in the different bins and the
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error due to the calculation of the neutrino energy spectrum
from SSM.

For a global analysis of the solar data—rates from Cl,
Ga experiment, spectral data from SuperKamiokande (SK)
and Sudbury Neutrino Observatory (SNO): both D2O and
salt phase, and KamLAND data—the relevant 2 is given
by

 2 � 2
Cl;Ga rates � 

2
SK spec � 

2
SNO spec � 

2
KamLAND:

(34)

Note that only solar neutrino observations would not
have been able to put strong constraints on �: as long as
there is no �2m-�3m level crossing and the �1m-�2m reso-
nance is adiabatic, the net �e survival probability (27) is a
function of �m2

12=� for a large �, i.e. for Vcc 
 Ve�. As a
result, one can fit the solar data by increasing the value of
�m2

12 when � is increased and a strong bound on � would
not follow.

However, the data from KamLAND restricts �m2
21 to a

very small range and plays a crucial role in constraining �.
We use Eqs. (27) and (30) for the survival probability of
solar neutrinos. The ��e survival probability in KamLAND
is given by

 PKL
�e �e � 1� cos4�13

�
sin22�12sin2

�
�m2

21L
4E

��

� sin22�13sin2

�
�m2

31L
4E

�

� sin22�13sin2�12

�
sin2

�
�m2

31L
4E

�

� sin2

�
��m2

31 ��m2
21�L

4E

��
; (35)

where all the mass squared differences and the angles are
measured at the Earth for antineutrinos. Note that for
antineutrinos, the sign of Vcc as well as Ve� is reversed
with respect to the neutrinos.

In Fig. 4, we show the �2 values as a function of the
parameter � for various �13 values, while varying the
values of �23 and �m2

atm in their 3� allowed range from
the atmospheric and K2K experiments. The best fit values
for the solar parameters are always observed to lie in the
LMA range with vanishing �e� giving the best fit. For �<
10�52, the value of 2 is minimum for �13 � 0�, which is
consistent with the observation that �13 � 0� also gives the
best fit to the solar and KamLAND data when the LR
forces are not taken into account [15]. When �> 10�52,
a strong energy dependence in the survival probability is
introduced for � < 0:08� through PH, so that the 2 values
for extremely low �13 values become large. In this region,
the lowest 2 is found to be at values of �13 that are small,
but still keep PH � 0. We have shown 2 corresponding to
such a �13 in the figure.

The bounds on � should therefore be, strictly speaking,
�13-dependent. However, the region �> 10�52, where the
�13 dependence from PH starts coming into picture, is
excluded to more than 3� as can be seen from Fig. 4.
Therefore the constraints on � by using �13 � 0� are the
most conservative ones, and we quote the upper bounds on
� obtained by taking �13 � 0�. These limits are shown in
Fig. 5: the 3� limit corresponding to the one-parameter fit
is

 �e� < 3:4� 10�53: (36)

The corresponding limit in the Le � L� case (see
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Rgal is represented by b � 0 and higher b values correspond to
larger contributions from galactic electrons (see Sec. V).
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Appendix A) is

 �e� < 2:5� 10�53: (37)

The bounds are independent of whether the neutrino mass
hierarchy is normal or inverted.

V. THE LONG RANGE POTENTIAL DUE TO
GALACTIC ELECTRONS

The collective contribution of all the electrons in the
galaxy to the LR potential in the solar system may be
parametrized in general as given in Eq. (9). The net poten-
tial Ve� 	 V�e� � V

gal
e� is shown in Fig. 6 for various values

of b and �. Clearly, larger the value of b or �, larger the
value of Ve�. Also, note that the value of Ve� near the earth

is approximately the same as Vgal
e� , since V�e� keeps on

decreasing as one travels towards the Earth, whereas Vgal
e�

is a constant over the scale of the solar system.
With our understanding of the effects of the LR potential

on neutrino masses, mixings and resonances obtained in
Sec. III, the following observations may be made:

(i) For Vgal
e� � �m2

�=�2E�, there is no resonance that is
essential for a good fit to the solar neutrino data.
Therefore, larger values of b and � (b� * 10�53)
are expected to be ruled out from the global fit.

(ii) For Vgal
e� 
 �m2

solar=�2E�, the matter potential VCC
dominates inside the Sun, and the standard picture
of the neutrino flavor conversions inside the Sun is
not affected. Therefore, smaller values of b and �
(b� & 10�55) should be allowed.

(iii) For the intermediate values of Vgal
e� , the situation

depends strongly on whether the potential profile
near the resonance is dominated by VCC or Vgal

e� . In
the former case, the resonance is adiabatic for E>
5 GeV and only partially adiabatic for lower ener-
gies, which gives a good fit to the data. In the latter

case, however, the resonance tends to be adiabatic
even for low energies, so that the radiochemical
data will disfavor the solution.

The value of b is expected to be in the range 0:05< b<
0:5 (see Sec. II). The �2 values as a function of � for b �
0 (i.e. RLR 
 Rgal), b � 0:1, and b � 1 are shown in
Fig. 5. The 3� constraints for Le � L� are

 �e� < 2:9� 10�54�b � 0:1�;

�e� < 2:6� 10�55�b � 1�;
(38)

and for Le � L�, they are

 �e� < 2:3� 10�54�b � 0:1�;

�e� < 2:1� 10�55�b � 1�:
(39)

Clearly, the constraints get stronger as b increases. The
most conservative constraints are therefore with b � 0, as
calculated in Sec. IV.

VI. SUMMARY AND CONCLUSIONS

Flavor-dependent long range leptonic forces, like those
mediated by the Le � L� or Le � L� gauge bosons, con-
stitute a minimal extension of the standard model that
preserves its renormalizability. The flavor-dependent po-
tentials produced by these forces influence neutrino oscil-
lations. The effects of these are quite significant in spite of
the very strong constraints on the couplings of such forces
from astronomical observations or Eötvös type laboratory
experiments. We have performed a detailed study of spe-
cific effects of these forces in the solar neutrino and the
KamLAND experiments.

It was found that the new forces change the standard
picture in a qualitatively different way which ultimately
results in a strong bound on the couplings of these forces.
We have developed a detailed formalism to describe these
effects and have used it to obtain bounds on the couplings
from the statistical analysis of the experimental data. It was
shown that the mixing among all three generations needs to
be taken into account because of the fact that the Le � L�;�
gauge bosons couple to two out of three flavors at a time.
The changes which result in the analysis were studied both
analytically as well as numerically in the case RLR 
 Rgal,
when the galactic electron contribution to the LR potential
may be neglected compared with the solar electron
contribution.

A qualitatively new effect studied in detail is the pos-
sible resonant enhancement of �13. In the standard picture,
a nonzero but small �13 can only give subleading correc-
tions. In contrast, the long range potential can resonantly
amplify �13 if � * 10�52 and the neutrino mass hierarchy
is normal. The global analysis of the solar data however
constrains �< 10�52. As a result, the resonance enhance-
ment of �13 does not take place in the solar case. But this
resonance effect can play an important role in other envi-
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ronments, e.g. inside a supernova. See Appendix B for
details.

A global 2 analysis of all the solar neutrino and
KamLAND data was performed to constrain the coupling
�. The solar data alone are found to be inadequate in
constraining �: one could always fit these data by appro-
priate change in �m2

12 compared to the standard LMA
values. This does not remain true when the KamLAND
results are included. A significant bound on � is obtained
by combining the solar and KamLAND results. The con-
servative 3� bounds follow when �13 � 0:

 �e� < 3:4� 10�53; �e� < 2:5� 10�53: (40)

These bounds are stronger by more than one order of
magnitude than the ones in Eq. (3) following from the
analysis of the atmospheric neutrino data.

A much stronger bound on �, namely �< 6:4� 10�54,
was quoted in Ref. [8] purely from the solar neutrino
results. This was not based on the detailed statistical analy-
sis as presented here, but was obtained under the assump-
tion that even in the presence of � the �m2

12 and �12 should
lie within their 95% C.L. range obtained in the standard
LMA solution. This assumption need not a priori be true.
In fact as discussed here, the solar neutrino results by
themselves cannot be used to constrain �, so the detailed
analysis as done here is required. An analysis similar to
ours has recently been carried out in Ref. [18] which has
reported bounds on couplings of the vector and nonvector
long range forces. The resulting bound on � in the former
case is similar to ours. However, they assume one mass
scale dominance, neglecting the mass eigenstate �3 alto-
gether. As shown in this paper, in the presence of the LR
potential, �3 affects the solar neutrino survival probability
significantly even when �13 is vanishingly small. More-
over, the galactic contribution has not been included in the
analysis of Ref. [18] even when the range of the force is
more than our distance from the galactic center.

When RLR * Rgal, the collective contribution of all the
electrons in the galaxy to the LR potential becomes sig-
nificant. This gives more stringent constraints on the value
of �, which also depend on the distribution of baryonic
mass within the galaxy. We parametrize our ignorance
about this with a parameter b (expected to lie between
0.05 and 1 with conservative estimates) and perform global
fits to constrain � for fixed b values. We obtain �e� <
2:9� 10�54 for b � 0:1 and �e� < 2:6� 10�55 for b � 1
in the Le � L� case. In the Le � L� case, one gets �e� <
2:3� 10�54 for b � 0:1 and�e� < 2:1� 10�55 for b � 1.
Clearly, the constraints become stronger as the galactic
electron contribution, or the range of the potential,
increases.

The strength of the LR forces increases with the elec-
tronic content of the source and therefore their effects are
expected to be much stronger for supernova neutrinos. As
discussed in Appendix B, the conventional flavor conver-

sions of the supernova neutrinos changes significantly in
this case even for �� 10�54. In particular, the LR induced
resonance remains adiabatic for very low values of �13 and
the Earth matter effects may be absent. Also, the shock
wave effects on the neutrino spectra may be absent for t<
10 s, which is when the neutrino flux is significant. On the
other hand, the observation of any of these effects may be
used to improve the bound on � at the level of 10�54, even
when the galactic contribution to the LR forces is small.

While the existence of LR forces may be regarded as a
theoretically allowed speculation at this stage, it is quite
remarkable that these forces, if they exist, strongly influ-
ence the atmospheric and solar neutrino oscillations. They
would also effect the long baseline experiments which can
provide additional constraints on �.

Note that we have only considered the case of a light
vector boson exchange, which forces � to be positive, i.e.
the force between an isolated e� and �e, for example, is
repulsive. One may get an attractive force between isolated
e� and �e if a scalar boson were exchanged, however the
structure of the corresponding Hamiltonian is very differ-
ent [18] from the one considered here and the case has to be
analyzed independently.

We have concentrated on bounds on the gauge coupling
� of the LR forces. In principle, the gauge symmetry
allows mixing between the Le � L�;� gauge boson X and
the ordinary hypercharge gauge boson B in their kinetic
energy terms. This mixing would lead to mixing between
the X boson and the photon and would lead to a flavor-
dependent infinite range potential even if the X boson has a
finite mass. The strength of this force will be governed by
an independent mixing parameter � times the electromag-
netic coupling �. Based on the present analysis, we expect
this quantity to obey the same constraint as obeyed by
�e�;� in case of the infinite range potential.
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APPENDIX A: CONSTRAINTS ON THE Le � L�
GAUGE BOSON COUPLING

The analysis of Le � L� gauge bosons can be carried out
in an analogous manner. The potential in the flavor basis
becomes

 V � Diag�Vcc � Ve�; 0;�Ve�� (A1)

and the relevant expressions for the mixing angles in matter
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(to the leading order in x and s13) are

 tan2�23m �
sin2�23�1� xc2

12�

cos2�23�1� xc
2
12� � ye�

; (A2)

 tan2�13m �
2�xs12c12S� s13C�

C2� x�c2
12S

2� s2
12�� yc� ye��1� cos2�23m�

;

(A3)

 tan2�12m �
2�xs12c12C� s13S�

S2� x�c2
12C

2� s2
12�� yc� ye��1� sin2�23m�

:

(A4)

The resonance structure is similar to that in the Le � L�
case. The limits on the coupling of such gauge bosons are
shown in Fig. 5. The bounds are independent of whether
the neutrino mass hierarchy is normal or inverted, like in
the case of Le � L�.

APPENDIX B: EFFECT ON A CORE COLLAPSE
SUPERNOVA

The bounds on the LR forces that we obtained from the
atmospheric, solar and KamLAND experiments are of the
order �� 10�53, when the galactic contribution to the LR
forces is small. Although these bounds seem very stringent,
even such a small strength of LR forces can potentially
give rise to significant effects in the neutrino spectra from a
core collapse supernova. The spectra of �e and ��e from the
SN have encoded information about the primary neutrino
fluxes and neutrino mixing parameters [19], and they can
even show signatures of the passage of the shock wave
through the mantle [20]. Note that all the above analyses
have been carried out assuming that the collective flavor
conversion effects caused by the neutrino-neutrino inter-
actions are negligible compared to the conventional non-
neutrino matter effects on neutrino propagation. If the
collective effects happen to be strong, as claimed in
Ref. [21], our estimations in this section, as well as most
of the SN flavor conversion analyses till now need to be
reexamined.

In Fig. 7, we show a typical profile [22] of the potential
Vcc inside a SN as well as the profile of the LR potential
Ve� for two values of � that are allowed with the con-
straints found in the conservative scenario RLR 
 Rgal.
Note that even with � as low as 10�54, the LR potential
Ve� exceeds Vcc inside the star, and hence affects the
dynamics of neutrino flavor conversions. The effects,
which may be significant in the allowed range 10�54 <
�< 3� 10�53, will be as follows:

(i) The positions of the H and L resonances [23], cor-
responding to �m2

� and �m2
atm respectively, are

shifted away from the center of the star by a factor
of up to one order of magnitude.

(ii) If Ve� dominates over Vcc in the resonance region,
the resonance is highly adiabatic, since the LR
potential is in general smoother than the potential.
Therefore for larger � values, both the H as well as
L resonances are adiabatic for practically all values
of �13. The SN neutrino spectra then lose the ability
to reveal any information about �13 in the absence of
any shock wave effects. For example, no Earth
matter effects [24] may be observed.

(iii) The shock fronts will reach the resonances at late
times t > 10 s when the neutrino flux has reduced a
lot. As a result, the shock wave effects would be
much harder to observe.

(iv) On the other hand, if any effects of non adiabaticity,
e.g. Earth matter effects or shock wave effects, are
identified in the neutrino spectra, the bound on �
can be improved by almost an order of magnitude,
to � & 10�54. Supernova neutrinos thus form the
most sensitive probe for the LR forces, at least
when their range is smaller than Rgal.

(v) For RLR * Rgal, the constraints obtained from the
SN observation are expected to be comparable to
those found from the solar neutrinos and
KamLAND, since it is the approximate condition
�b�Mgal=Rgal� 
 �m2

solar=�2E� that determines the
allowed range of �, like in Sec. V.

 

-2 -1 0 1 2 3 4 5
log

10
( r / r

O
)

-16

-15

-14

-13

-12

-11

-10

-9

-8

-7

-6

-5

-4

-3

log
10

 |V
e µ / e

V|

α = 10
-54

α = 3 x 10
-53

VCC

∆m
2

O/2E

∆m
2

atm/2E

.

.

FIG. 7 (color online). The potential and the LR potential for a
typical SN for two different � values that are allowed with the
bounds obtained in this paper for RLR 
 Rgal. The SN model
taken [22] is a star with a mass of 15M� and primordial
metallicity equal to that of the Sun.

CONSTRAINTS ON FLAVOR-DEPENDENT LONG RANGE . . . PHYSICAL REVIEW D 75, 093005 (2007)

093005-11



[1] R. Foot, Mod. Phys. Lett. A 6, 527 (1991); X.-G. He, G. C.
Joshi, H. Lew, and R. R. Volkas, Phys. Rev. D 43, R22
(1991).

[2] L. Okun, Sov. J. Nucl. Phys. 10, 206 (1969); S. I.
Blinnikov, A. D. Dolgov, L. B. Okun, and M. B.
Voloshin, Nucl. Phys. B458, 52 (1996).

[3] M. Dine, W. Fischler, and M. Srednicki, Phys. Lett. B 104,
199 (1981); J. E. Kim, Phys. Rev. Lett. 43, 103 (1979).

[4] Y. Chikashige, R. N. Mohapatra, and R. D. Peccei, Phys.
Lett. B 98, 265 (1981).

[5] G. B. Gelmini and M. Roncadelli, Phys. Lett. B 99, 411
(1981).

[6] L. J. Hall and S. J. Oliver, Nucl. Phys. B, Proc. Suppl. 137,
269 (2004), and references therein.

[7] R. Fardon, A. E. Nelson, and N. Weiner, J. Cosmol.
Astropart. Phys. 10 (2004) 005; M. Cirelli, M. C.
Gonzalez-Garcia, and C. Pena-Garay, Nucl. Phys. B719,
219 (2005); M. C. Gonzalez-Garcia, P. C. de Holanda, and
R. Zukanovich Funchal, Phys. Rev. D 73, 033008 (2006).

[8] J. A. Grifols, E. Masso, and S. Peris, Astropart. Phys. 2,
161 (1994); J. A. Grifols, E. Masso, and R. Toldra, Phys.
Lett. B 389, 563 (1996); J. A. Grifols and E. Masso, Phys.
Lett. B 579, 123 (2004).

[9] A. S. Joshipura and S. Mohanty, Phys. Lett. B 584, 103
(2004).

[10] R. N. Mohapatra et al., hep-ph/0510213; hep-ph/0412099;
M. S. Athar et al. (INO Collaboration), Report No. INO-
2006-01.

[11] G. Dutta, A. S. Joshipura, and K. B. Vijayakumar, Phys.
Rev. D 50, 2109 (1994).

[12] E. Fischbach and C. L. Talmadge, The Search For Non-
Newtonian Gravity (Springer Verlag, New York, 1999);
E. G. Adelberger, B. R. Heckel, and A. E. Nelson, hep-ph/
0307284; B. R. Heckel et al., in Procedings of the 32nd
COSPAR Scientific Assembly on Advances in Space
Research, Nagoya, 1998; A. D. Dolgov, Phys. Rep. 320,
1 (1999).

[13] J. G. Williams, S. G. Turyshev, and D. H. Boggs, Phys.
Rev. Lett. 93, 261101 (2004); J. G. Williams, X. X.

Newhall, and J. O. Dickey, Phys. Rev. D 53, 6730
(1996); J. Muller et al., Proc of 8th Marcel Grossman
meeting on General Relativity, Jerusalem, 1997.

[14] John N. Bahcall, Neutrino Astrophysics (Cambridge Univ.
Press, Cambridge, England, 1989).

[15] M. Maltoni, T. Schwetz, M. A. Tortola, and J. W. F. Valle,
New J. Phys. 6, 122 (2004); A. Strumia and F. Vissani,
hep-ph/0503246; G. L. Fogli, E. Lisi, A. Marrone, A.
Palazzo, and A. M. Rotunno, hep-ph/0506307; A.
Bandyopadhyay, S. Choubey, S. Goswami, S. T. Petcov,
and D. P. Roy, Phys. Lett. B 608, 115 (2005).

[16] A. D. Dolgov and G. G. Raffelt, Phys. Rev. D 52, 2581
(1995).

[17] G. L. Fogli and E. Lisi, Astropart. Phys. 3, 185 (1995).
[18] M. C. Gonzalez-Garcia, P. C. de Holanda, E. Masso, and

R. Zukanovich Funchal, J. Cosmol. Astropart. Phys. 01
(2007) 005.

[19] A. S. Dighe and A. Yu. Smirnov, Phys. Rev. D 62, 033007
(2000); A. Dighe, Nucl. Phys. B, Proc. Suppl. 143, 449
(2005).

[20] R. C. Schirato and G. M. Fuller, astro-ph/0205390; R.
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