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Neutrinos escaping from a core collapse supernova a few seconds after bounce pass through the shock
wave, where they may encounter one or more resonances corresponding to �m2

atm. The neutrino mass
eigenstates in matter may stay coherent between these multiple resonances, giving rise to oscillations in
the survival probabilities of neutrino species. We provide an analytical approximation to these inevitable
phase effects, that relates the density profile of the shock wave to the oscillation pattern. The phase effects
are present only if the multiple resonances encountered by neutrinos are semiadiabatic, which typically
happens for 10�5 & sin2�13 & 10�3. The observability of these oscillations is severely limited by the
inability of the detectors to reconstruct the neutrino energy faithfully. For typical shock wave profiles, the
detection of these phase effects seems rather unlikely. However, if the effects are indeed identified in the
��e spectra, they would establish inverted hierarchy and a nonzero value of �13.
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I. INTRODUCTION

The neutrino fluxes emitted from a core collapse super-
nova (SN) contain information about the primary fluxes
produced inside the star, the neutrino mixing pattern as
well as the matter densities that the neutrinos have passed
through. The high statistics neutrino signal that one expects
from a future galactic SN needs to be decoded in order to
extract this information.

The neutrinos and antineutrinos produced inside the SN
pass through the core, mantle and envelope of the progeni-
tor star before escaping. They encounter matter densities
ranging from nuclear densities deep inside the core all the
way to vanishingly small densities in the interstellar space.
Neutrino masses and mixing angles, and hence the extent
of their flavor conversions, depend crucially on the density
of surrounding matter, hence it is important to study these
matter effects in detail.

The matter effects [1] give rise to MSW resonances [2]
when the matter density corresponds to

 �R � ��m2 cos2�MN=�2
���
2
p
GFYeE�: (1)

Here Ye is the electron fraction, MN the average nucleon
mass, and the plus and minus signs correspond to neutrinos
and antineutrinos, respectively. For neutrinos of energy E,
resonances are possible at two densities, the H resonance
corresponding to ��m2; �� � ��m2

atm; �13� and the L reso-
nance corresponding to ��m2; �� � ��m2

�; �12�. The ener-
gies of SN neutrinos are typically in the range 5–50 MeV.
For these energies, the H resonance takes place around
�H � 500–5000 g=cc. It occurs in neutrinos for normal
hierarchy and in antineutrinos for inverted hierarchy. The
L resonance that takes place around �L � 20–200 g=cc
always occurs in neutrinos. However, since �12 is large,
significant flavor conversions of antineutrinos also take
place at the L resonance.

The adiabaticities at the H and L resonances determine
the net neutrino conversion probabilities. The L resonance
is always adiabatic, given the values of �m2

�, �12 and the
typical density profile of the progenitor star around �L. The
adiabaticity at the H resonance is very sensitive to the
value of �13 and the density profile of the star in the
resonance region. Indeed the neutrino conversion rates
are crucially dependent on the value of �13, and whether
the H resonance is in neutrinos or antineutrinos. The SN
signal can therefore be an extremely sensitive probe of �13

and whether the mass hierarchy is normal or inverted [3].
In addition to divulging the neutrino mixing scenario,

SN neutrino fluxes can also allow us to have a peek at the
propagation of the shock wave while it is still inside the
mantle of the star. The violent density fluctuations caused
by the SN shock wave can change the adiabaticity at the H
resonance in a time dependent manner, thus leaving their
imprint on the time dependent neutrino spectra [4–7]. In
particular, the observations of the time dependent neutrino
spectra can confirm the presence of forward as well as
reverse shock wave through the ‘‘double dip’’ feature [8],
and in addition can track the positions of the shocks as they
pass through the H resonance region. The feasibility of
such a tracking at a water Cherenkov detector has been
explored in [9,10].

Our understanding of the SN explosion mechanism is
still unsatisfactory [11,12], which makes it very important
to extract as much information about the shock wave as
possible. In this paper, we demonstrate how the neutrinos
that pass through the shock wave near the H resonance
carry information about the density profile of the shock
wave. In addition to making the H resonance temporarily
nonadiabatic, the shock wave also forces the neutrinos to
encounter multiple H resonances. The relative phases that
the neutrino mass eigenstates gain between two or more of
such H resonances manifest themselves as oscillations in
the neutrino flavor conversion probabilities as a function of
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the neutrino energy. These oscillations are related to the
shock wave density profile, and in principle carry informa-
tion about it. We therefore study the relation between the
oscillations and the shock wave profile in detail.

Most of the analyses of SN neutrino conversions till now
calculate the probabilities of conversions between neutrino
mass eigenstates in matter in each resonance region, and
combine the results at different resonances, assuming them
to be independent. This includes the implicit assumption
that the information on the relative phase between the
neutrino mass eigenstates is lost between successive reso-
nances. For neutrinos that undergo a single H and a single
L resonance, this is a valid assumption since the two
resonance regions are well separated [13]. However,
when the neutrinos encounter multiple H resonances that
are close to each other, coherence between the neutrino
mass eigenstates is maintained, and one has to compute the
amplitudes of neutrino flavor conversions at the reso-
nances, keeping track of the relative phases. This gives
rise to the phase effects that we explore in this paper. Such
effects were pointed out in the context of solar neutrinos in
[14] and also observed in the numerical studies of super-
nova neutrinos in [9,15]. We provide an analytical approxi-
mation to study these effects, relating them to the density
profile of the medium. We also provide criteria to decide
when decoherence or finite energy resolution of detectors
renders these effects unimportant.

If the multiple resonances are semiadiabatic, the phase
effects may be strong and if the oscillations are indeed
observed in the neutrino spectra, they can help us infer
about the density profile of the shock wave, which in turn
can provide us important clues about the shock wave
propagation and the SN explosion.

The observability of these effects is dependent on factors
like neutrino fluxes at the source, possible coherent devel-
opment of neutrinos due to neutrino-neutrino interactions,
the different density profiles encountered by neutrinos
coming from different regions of the neutrinosphere, sto-
chastic fluctuations of density, effective luminosity of the
supernova, detector capabilities, et cetera. We comment on
different model predictions of source fluxes and point out
the model independent features of the phase effect. We
investigate the number of events and detector capabilities
required for the effect to be observable and find them to be
demanding.

Our emphasis in this paper is to first ascertain the origin
of these phase effects, their dependence on various parame-
ters in the problem, and to check whether they are impor-
tant at least in a simplified analysis where effects like
coherent development of neutrinos [16,17], anisotropy
[8] and turbulence [10,18] of the medium are neglected.
We find that even in a simplified setting, the observation of
these effects is challenging.

The paper is organized as follows. In Sec. II, we give an
analytical approximation for calculating the neutrino con-

version probability when multiple H resonances are taken
into account in a two-neutrino framework. The results of
this section are general and can be applied to any situation
where multiple resonances are involved. In Sec. III, we
apply the results to the case of a SN shock wave, where the
third neutrino and the L resonance are included. We show
the neutrino conversion probabilities obtained by using a
realistic shock wave profile and study the feasibility of
detecting the phase effects. Section IV concludes.

II. PHASE EFFECTS FROM MULTIPLE
RESONANCES

In this section, we calculate the survival probability of
�e when they pass through multiple resonances, keeping
track of the relative phases between the mass eigenstates.
The calculations are performed in the 2-� framework. The
results are readily extended to the 3-� framework in the
case of a SN shock wave, as will be shown in Sec. III.
Although all the arguments in this section are given for
neutrinos, they are valid for antineutrinos just by changing
the sign of the matter potential A�x�. However, the flavor
conversion analysis at the H resonance is applicable to
neutrinos in the normal mass hierarchy and for antineutri-
nos in the inverted mass hierarchy. Therefore, while ana-
lyzing antineutrinos, the value of �m2 should be taken to
be negative.

A. Survival probability of �e for a small mixing angle

The relevant mixing angle at the resonance H is � �
�13, on which we currently have a strong bound: sin2�13 <
0:05 [19]. Therefore, we try to solve the problem using a
small angle approximation. We follow the notation and
framework outlined in [20] and work in the flavor basis.

Let �� be the relevant linear combination of �� and ��.
When neutrinos pass through matter, their propagation is
described by the Schrödinger equation

 i
d
dx

�e
��

� �
� H

�e
��

� �
: (2)

Up to a matrix proportional to the unit matrix, the
Hamiltonian H is given by

 

1

4E
A�x� ��m2 cos2� �m2 sin2�

�m2 sin2� �A�x� 	�m2 cos2�

� �
; (3)

where A�x� 
 2EV�x� 
 2
���
2
p
GFYe�E=MN . These two

coupled first order equations give rise to the second order
equation

 �
d2

dx2 �e � ��
2 	 i�0��e � �2�e (4)

where
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 ��x� �
1

4E
�A�x� ��m2 cos2��; � �

�m2

4E
sin2�

(5)

and prime (0) denotes derivative with respect to x. In order
to find the survival probability of �e, we solve for the �e
wave function with the initial conditions �e�0� � 1,
���0� � 0. These conditions are equivalent to

 �e�0� � 1; i
d�e
dx

��������0
� ��0�: (6)

The ‘‘logarithmic perturbation’’ approximation [20] solves
the differential equation (4) for small mixing angles by
choosing

 g 
 1� cos2� (7)

as the small expansion parameter. Denoting

 �e � eS�x�; with S0�x� � c0�x� 	 gc1�x� 	O�g
2� (8)

so that

 �e�x� � exp
�Z x

0
dx1c0�x1� 	 g

Z x

0
dx1c1�x1� 	O�g

2�

�
;

(9)

the solution becomes
 

�e�x� � exp
�
�
iQ�x�

2
� g

i�m2x
4E

� g
��m2�2

2�2E�2

�
Z x

0
dx1eiQ�x1�

Z x1

0
dx2e�iQ�x2�

�
	O�g2�: (10)

Here we have defined the ‘‘accumulated phase’’

 Q�x� 

1

2E

Z x

0
dx1�A�x1� � �m2�: (11)

The survival probability Pee�x� 
 P��e ! �e� at x � X
then becomes

 Pee�X� � exp
�
�g
��m2�2

2�2E�2

��������
Z X

0
dx1e

iQ�x1�

��������
2
�
	O�g2�:

(12)

The integral in the above expression can be evaluated using
the stationary phase approximation. The integral oscillates
rapidly unless Q0�x� � 0. So the entire contribution to the
integral can be taken to be from the saddle point xs, which
is the point where Q0�xs� � 0, i.e.

 A�xs� � �m2: (13)

Note that this is also the resonance point in the small angle
limit.

For a monotonic density profile, there is only one saddle
point xs and the survival probability is

 Pee � exp
�
�g

	��m2�2

2EjA0�xs�j

�
; (14)

which agrees with the Landau-Zener jump probability
[21,22] in the limit of small mixing angle, and hence small
g, even when Pee � 1.

For a nonmonotonic density profile, neutrinos can expe-
rience more than one resonance at the same density but at
different positions. In that case Q0�x� � 0 at more than one
point. If the resonances are sufficiently far apart, the con-
tributions from each of them may be added independently
of each other. Their total contribution to the integral in (12)
is

 

Z X

0
dxeiQ�x� �

X
i

ei
ieiQ�xi�
�

4	E
jA0�xi�j

�
1=2

(15)

where i runs over all the saddle points. Note that 
 � 	=4
if A0�xs�< 0 and 
 � 3	=4 if A0�xs�> 0. The probability
calculated using (12) now has terms which depend on the
differences between the integrated phases

 �ij 
 Q�xj� �Q�xi� 	 
j � 
i

�
Z xj

xi

1

2E
�A�x� � �m2�dx	 
j � 
i: (16)

In general,

 Pee�X� � exp
�
�g

�X
i

a2
i 	 2

X
i<j

aiaj cos�ij

��
	O�g2�

(17)

where

 ai 

�
	��m2�2

2EjA0�xi�j

�
1=2
: (18)

For example, when there are only two saddle points the
survival probability is given by
 

Pee � exp��ga2
1� exp��ga2

2� exp��2ga1a2 cos�12�

	O�g2�: (19)

The first two factors in (19) are the individual Landau-
Zener jump probabilities for the two level crossings. The
last factor gives rise to oscillations in Pee as a function of
energy. The oscillation pattern has its maxima at �12 �
�2n	 1�	 and minima at �12 � 2n	 where n is an inte-
ger. This expression is valid as long as ga2

i & 1, so that the
O�g2� terms remain small, and none of the resonances
overlap.

We illustrate the validity and limitations of the small
angle approximation with a toy density profile

 ��x� �
�
a	 b1x2 �x < 0�
a	 b2x

2 �x > 0�
; (20)

as shown in Fig. 1. We take Ye � 0:5 and �m2 �
0:002 eV2. Neutrinos are produced at x! �1 and we
calculate Pee at x! 1. We also show the positions of
resonance densities for various energies, which are given
by
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 �R �g=cc
 � �
�m2 �eV2
 cos2�

2� 7:6� 10�8YeE �MeV

: (21)

Figure 2 shows the survival probability Pee as a function
of energy, both the exact numerical result and the result of
our analytical approximation for small angles. It can be
seen that at such small angles (� � 0:02 rad � 1:1�), the
approximation works extremely well.

Note that the amplitude of the oscillations is comparable
to the deviation of the average survival probability from
unity. That is, the oscillation effect is not a small effect.
Indeed, the oscillation term is of the same order as the
averaged effect, as can be seen from (19). Figure 2 also
shows the average value of Pee that one would have ob-
tained if one naively combined the jump probabilities at the
two resonances. Our analysis gives additional oscillations
in the survival probability as a function of neutrino energy

about this average value. This effect is what we call as the
phase effect, and is clearly significant as can be seen from
the figure. An important feature of the oscillations is that
the ‘‘wavelengths,’’ i.e. the distances between the consecu-
tive maxima or minima, are larger at larger E.

The resonances start overlapping at E � ER�max� (Fig. 1),
which is where our approximation starts breaking down, as
can be seen in Fig. 2. For E> ER�max�, the neutrinos no
longer encounter a strict resonance, and our approximation
gives Pee � 0 identically. However, the resonances have
finite widths which may affect the conversion probabilities
of neutrinos with E � ER�max�. The sharp jump observed in
Fig. 2 at E � 52 MeV is therefore not a real effect, but a
limitation of our technique.

The small angle approximation starts failing for larger
angles and lower energies, where ga2

i * O�1�. Figure 3
shows that the amplitude at low energies is not calculated
correctly for � � 0:1 rad � 5:7�. However, note that the
positions of maxima and minima of Pee are still predicted
to a good accuracy. We shall argue in the next subsection
that these can be computed accurately for the whole al-
lowed range of �13, given the nonmonotonic density profile
between the two resonances.

B. The oscillations in Pee�E�

Let us consider a density profile with a ‘‘dip’’ as in the
toy model in the previous section. A neutrino with energy
E encounters two resonances R1 and R2 at x � x1 and x �
x2 respectively, so that

 �R 
 ��x1� � ��x2�: (22)

We assume Ye to be a constant throughout the region of
interest. We also assume that the propagation of neutrino
mass eigenstates is adiabatic everywhere except in the
resonance regions �x1�; x1	� and �x2�; x2	� around the
resonance points x1 and x2 respectively. In the limit of a
small mixing angle, the widths of the resonances are small:

 �� � � tan2�: (23)

Therefore, x1� � x1 � x1	 and x2� � x2 � x2	. We shall
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FIG. 2 (color online). Survival probability Pee as a function of
energy for � � 0:02 rad � 1:1�. The green (light) curve is the
numerically evaluated exact result. The blue (dark) curve is our
solution with small angle approximation including the phase
effects. The red (dotted) curve is the approximate solution if the
phase effects are neglected. Notice that our approximate solution
is valid only up to E � ER�max�.
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FIG. 3 (color online). Survival probability Pee as a function of
energy for � � 0:1 rad � 5:7�. The convention for the lines is
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resonance densities for various energies (5, 10, 52 MeV) taking
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for larger energies till E � ER�max� � 52 MeV, after which there
is no resonance.
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work in this approximation, and shall use the notation xi�
only for the sake of clarity wherever needed.

At x� x1, the density ��x� � �R, so that the heavier
mass eigenstate �H is approximately equal to the flavor
eigenstate �e. Let us start with �e as the initial state:

 �e�x� x1� � �H: (24)

The mass eigenstate �H propagates adiabatically till it
reaches the resonance region x � x1:

 �e�x1�� � �H: (25)

While passing through the resonance, unless the resonance
is completely adiabatic, the state becomes a linear combi-
nation of �H and �L, the lighter mass eigenstate. Note that
the phases of �H and �L can be defined to make their
relative phase vanish at x � x1	.

 �e�x1	� � cos�1�H 	 sin�1�L; (26)

where P1 
 sin2�1 is the ‘‘jump probability’’ at R1 if it
were an isolated resonance.

The two mass eigenstates �H and �L propagate to the
other resonance R2, gaining a relative phase in the process
(the overall phase of the state is irrelevant):

 �e�x2�� � cos�1�H 	 sin�1 exp
�
i
Z x2

x1

� ~m2

2E
dx
�
�L;

(27)

where � ~m2 is the mass squared difference between �H and
�L in matter:

 � ~m2 � ���m2 cos2�� 2EV�x��2 	 ��m2 sin2���1=2:

(28)

The effect of the resonance R2 may be parametrized in
general as

 

�H�x2	�

�L�x2	�

� �
�

cos�2 sin�2ei’

� sin�2e�i’ cos�2

� �
�H�x2��

�L�x2��

� �
:

(29)

where P2 
 sin2�2 is the ‘‘jump probability’’ at R2 if it
were an isolated resonance.

From (10), one can deduce that in the limit x2� � x2	,
we have ’ � Q�x2	 � x2�� � 0. The state �e�x2	� can
then be written as

 �e�x2	� �

�
cos�2 cos�1

	 sin�2 sin�1 exp
�
i
Z x2

x1

� ~m2

2E
dx
��
�H

	

�
cos�2 sin�1 exp

�
i
Z x2

x1

� ~m2

2E
dx
�

� sin�2 cos�1

�
�L: (30)

For x > x2	, the mass eigenstates travel independently
and over sufficiently large distances, decohere from one
another. At x� x2, since ��x� � �R, the heavier mass
eigenstate �H again coincides with �e and we get the �e
survival probability as

 Pee � cos2��1 � �2� � sin2�1 sin2�2sin2

�Z x2

x1

� ~m2

4E
dx
�
:

(31)

If the phase information were lost, either due to deco-
herence or due to finite energy resolution of the detectors
[23] the survival probability would have been

 Pee�no phase� � P1P2 	 �1� P1��1� P2�

� cos2�1cos2�2 	 sin2�1sin2�2; (32)

which matches with (31) when the sin2�
R
::� term is aver-

aged out to 1=2.
The sin2�

R
::� term in (31) gives rise to the oscillations in

Pee�E�. If two consecutive maxima of Pee are at energies
Ek and Ek	1 such that Ek > Ek	1, then the condition

 

Z x2�Ek	1�

x1�Ek	1�

� ~m2�x; Ek	1�

2Ek	1
dx�

Z x2�Ek�

x1�Ek�

� ~m2�x; Ek�
2Ek

dx � 2	

(33)

is satisfied. The quantity �Ek � Ek	1� is the ‘‘wavelength’’
of the oscillations.

Note that � ~m2�x; E� is equal to jA�x� � �m2j in the
small angle limit. Moreover, this quantity is rather insen-
sitive to � in the allowed range of �13. Therefore, it is not a
surprise that the predictions of the positions of maxima and
minima in the small angle approximation (Sec. II A) are
accurate and robust in the whole range � < 13�.

Since � is small, the left-hand side of (33) is approxi-
mately equal to the area of the region in the density profile
plot enclosed by the densities �Ek and �Ek	1

:

 A � 2	
MN���

2
p
GFYe

: (34)

The distance between the two resonances in the region
�Ek < � < �Ek	1

is then

 rk �A=��Ek	1
� �Ek�: (35)

This procedure may be repeated for various k values to
estimate the separation between the resonances at the
corresponding densities, and hence to constrain the form
of the density profile. Although this seems straightforward
in our simplified analysis, the effect of density variations
due to convection, turbulence and anisotropies would
greatly complicate such a reconstruction in practice.

Nonmonotonic density profiles are encountered by neu-
trinos escaping from a core collapse supernova during the
shock wave propagation. If the phase effects are observable
at neutrino detectors, the above procedure may help us
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reconstruct the shock wave partially. Of course the proce-
dure is somewhat crude, and the information obtained
would only be on the density profile along the line of sight.
We have also assumed that neutrinos coming from differ-
ent parts of the neutrinosphere encounter nearly the same
density profiles. However, since neutrinos are the only
particles that can even in principle carry information
from so deep inside the exploding star, it is important to
check whether the detection of these phase effects is fea-
sible even with these simplifying assumptions. We shall do
this in the next section.

III. OSCILLATIONS DURING THE SN SHOCK
WAVE PROPAGATION

In this section, we apply the results in the last section to
the neutrinos travelling through a supernova shock wave.
Though we have to consider three-neutrino mixing in this
case, the separation ofH and L resonances [24] means that
we can calculate the transition probabilities at these reso-
nances separately. Each of these resonances can then be
treated as an effective two-neutrino level crossing. The L
resonance that takes place in neutrinos is always adiabatic
[3]. If the net survival probability after passing through all
theH resonances is denoted by PH, the survival probability
of �e after passing through all the H and L resonances is

 p � PHsin2�� �NH�; p � sin2�� �IH�

(36)

where NH and IH stand for normal and inverted mass
hierarchy, respectively. Here �� is the solar mixing angle.
Similarly, the survival probability of ��e after passing
through all the H and L resonances is

 �p � PHcos2�� �IH�; �p � cos2�� �NH�:

(37)

Clearly, since the phase effects appear through PH, they
will be visible only in �e for normal hierarchy and only in
��e for inverted hierarchy.

In present and planned water Cherenkov [25] and scin-
tillation [26] detectors, the main neutrino detection channel
is the inverse beta decay reaction ��ep! ne	 that allows
the reconstruction of ��e energies. Therefore we consider
only the ��e spectrum in our analysis. However an analo-
gous analysis can be easily performed in the neutrino
channel for a detector able to measure the �e spectrum,
for example, using liquid argon [27].

In order to illustrate the phase effects on p or �p, we
consider a typical snapshot of the density profile of a SN
during a shock wave [8], as shown in Fig. 4. The forward
shock F and the reverse shock R are sharp density dis-
continuities, the density change of a factor of 2 or more
taking place over a distance of much less than a km. The
density variation in the ‘‘contact discontinuity’’C, which is
the transition region between the shock-accelerated and

neutrino-heated SN ejecta, takes place more slowly, over
a distance of more than 100 km [8]. The mass accretion
region A behind the forward shock wave, and the low
density bubble B have gradually changing densities. The
region T is the tail of the shock wave.

The neutrinos, while passing through these regions, may
undergo multiple level crossings. The extent of flavor
conversion in each region will depend on the value of �13

and the steepness of the density profile in that region. It is
found that for �� 0:01 rad or higher, the density variations
in the mass accretion region A, the low density bubble B
and the contact discontinuity C are too gradual for any
nonadiabaticity. We therefore concentrate on the forward
shock F, the reverse shock R and the tail T.

The coherence between mass eigenstates and the oscil-
lations in the survival probability may be lost due to two
major sources: the separation of mass eigenstate wave
packets and the finite energy resolution of the detector.
The coherence length Lcoh, defined as the distance over
which the wave packets separate, is given by [28]

 Lcoh � 4
���
2
p
�E2=�m2; (38)

where � is the width of the wave packet at source. Taking
�� 10�9 cm near the neutrinosphere [29] in the relevant
energy range of 5–80 MeV, the coherence length for SN
neutrinos is Lcoh � 103–105 km. Resonances separated by
distances larger than Lcoh may be taken to be incoherent.
Since the distances involved are O�104 km� (See Fig. 4), a
definite conclusion about decoherence due to wave packet
separation cannot be reached with this simple estimate.
However, for observability the oscillations in survival
probability must also occur over energy intervals much
larger than 
Edet, the uncertainity in energy measurement
at the detector. This turns out to be the dominant factor in
smearing out the oscillations. We can estimate from (33)
the difference in energies at which successive maxima of
the survival probability occur to be

 �Ek 
 Ek	1 � Ek � 4	E2
k=�m2rk; (39)
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where rk is the distance between the two resonances en-
countered by a neutrino of energy Ek. For the energy range
of 5–80 MeV, this gives �Ek of 1–10 MeV for the T-R
resonance pair with rk � 103–104 km. The oscillations are
faster for the T-F and R-F pairs that occur about
105–106 km apart. Typically the energy resolution is 1–
10 MeV for a water Cherenkov detector and 0.1–1 MeV for
a scintillation detector over this energy range. Moreover,
the charged lepton energy is not of the same as the energy
of the neutrino, which introduces additional smearing.
Indeed as we shall see, the fast oscillations due to the
T-F or R-F resonance pairs will be smeared and therefore
clearly unobservable even at a scintillation detector. Note
that the above arguments are only qualitative; we have
neglected the matter effects while estimating Lcoh and �Ek .

Figure 5 shows the value of �p as a function of energy for
� � 0:02 rad � 1:1�. The rapid oscillations correspond to
the relative phase �RF�� �TF� that is accumulated by the
mass eigenstates between resonance regions R and F (T
and F). Such high frequency oscillations are virtually
impossible to observe, given the practical limits on the
energy resolutions of neutrino detectors.

We smear the high frequency oscillations by taking a
‘‘running average’’ over the energy range corresponding to
the typical energy resolution of a scintillation detector. The
low frequency oscillations that survive are found to corre-
spond to the relative phase �TR accumulated by the mass
eigenstates between resonances in regions T and R. Since
these two resonances are closer compared to the resonance
pairs R-F or T-F, the frequency of oscillations is smaller.
The same oscillation pattern is observed if the survival
probability is computed by assuming that the resonance
in region F is completely nonadiabatic, which confirms
that the pattern is indeed due to the level crossings in
regions T and R.

Note that �p goes to cos2�� at its maximum where PH
goes to unity, whereas at �p � 0 at high energies and low
energies where PH goes to zero. The oscillations in the low

energy region (E< 20 MeV) are too rapid to be observ-
able. The fluctuations observed in the running average at
low energies are not robust: they depend partly on the
details of the density profile and are partly numerical
artifacts.

In Fig. 6, we plot the value of �p for the same parameter
values, but calculated using (17) at the T, R, F resonances.
The smeared probability curve is calculated by dropping
the oscillatory terms due to the resonance at F and combin-
ing the survival probability at the T-R pair with that at F
using (32). We see that the analytical expression agrees
quite well with the numerical result of Fig. 5. In particular,
the oscillation frequency matches quite well. Moreover, the
slope of A�x� at T is about 0.1 times that at R, therefore (18)
and (19) predict the amplitude of oscillations to be�������������������������
A0�T�=A0�R�

p
� 0:3 times the mean value of �p. This esti-

mate is also in good agreement with our numerical results
in the figure.

The analytical approximation in (17) breaks down when
ga2

i >O�1�. This happens below a certain value of energy,
that is higher for larger mixing angles. Comparing Fig. 5
and 6 we see that for � � 0:01 rad the approximation is
resonably accurate for neutrino energies above 20 MeV.
Figure 7 shows the smeared �p calculated numerically and
analytically for � � 0:05 rad. It is clear that the approxi-
mation is valid above 25 MeV. The approximation fails at
low energies where �p calculated analytically does not tend
to zero. For higher energies, the oscillations due to the
phase effect are predicted quite accurately.

In order to explore the observability of the phase effects,
we use the parametrization for the primary fluxes given by
[30]:

 F0
�i �

�0

E0
N�
�

�
E
E0

�



exp
�
��
	 1�

E
E0

�
; (40)

where N�
� � �1	 
�1	
=��1	 
�. For illustration, we
choose two models of neutrino fluxes, the Garching model
[31] that uses the parameters

 

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  10  20  30  40  50  60  70  80

S
ur

vi
va

l P
ro

ba
bi

lit
y 

p

Energy (MeV)

Numerical
Smeared, Numerical

FIG. 5 (color online). Survival probability �p of ��e for inverted
hierarchy with the density profile in Fig. 4. The smeared proba-
bility is obtained by taking a running average over the energy
range corresponding to the typical energy resolution of a scin-
tillation detector i.e., �ESC �MeV� � 0:2

���������������������������
E=�10 MeV�

p
.

 

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  10  20  30  40  50  60  70  80

S
ur

vi
va

l P
ro

ba
bi

lit
y 

p

Energy (MeV)

Analytical
Smeared, Analytical

FIG. 6 (color online). Same as Fig. 5, calculated analytically
using (17) for resonances at T, R, F. The smeared curve is
obtained by dropping the fast oscillatory terms. Note that ana-
lytical approximation reproduces the numerical result reasonably
well for E> 20 MeV.

PHASE EFFECTS IN NEUTRINO CONVERSIONS DURING . . . PHYSICAL REVIEW D 75, 093002 (2007)

093002-7



 
 ��e � 
 ��x � 3; E0� ��e� � 15 MeV;

E0� ��x� � 18 MeV; �0� ��e�=�0� ��x� � 0:8;

and the Livermore model [32] that uses

 
 ��e � 
 ��x � 3; E0� ��e� � 15 MeV;

E0� ��x� � 24 MeV; �0� ��e�=�0� ��x� � 1:6:
(41)

We plot in Fig. 8(a) the quantity

 dN ��e=dE ��e � ��E ��e�F ��e � ��E ��e��F
0
��x 	 �p�F0

��e � F
0
��x�


(42)

as a function of the neutrino energy E ��e , where we have
normalized the spectrum such that the total number of
events is 105. Here we use the differential cross section
as computed in [33].

The phase effect is most prominent around 4–5 seconds
post-bounce when the tail T and reverse shock R pass
through the H resonance and the T-R resonance pair is
about 103 km apart. We expect from (39) that the extrema
in the survival probability will occur at energies separated
by about 1–10 MeV. This is clearly visible in Fig. 8(a).
Moreover, the positions of the extrema are independent of
the primary fluxes.

However, the spectrum shown in Fig. 8(a) is not directly
observable: one can only observe the energy spectrum of
positrons produced by the inverse beta reaction. Assuming
quasielastic scattering, the positron energy is given by [33]

 Ee �
�E��
��1	 �� 	 � cos#

�����������������������������������
�E��
�2�m2

e�
p

�
(43)

and

 pe �
������������������
E2
e �m2

e

q
; (44)

where # is the angle of scattering, Mp the proton mass,
� 
 E ��e=Mp, and � 
 �1	 ��2 � �� cos#�2. For E �

40 MeV, we have � � 1=25, so that the positron energy
is spread over a range of � 4 MeV depending on the
scattering angle. Given that the successive maxima of the
oscillation pattern are separated by only about 2–8 MeV in
this energy range, the oscillation pattern is significantly
smeared out.

A further smearing of the oscillation pattern is caused by
the finite energy resolution of the detector. The energy
resolution of a water Cherenkov detector is typically
�ECH �MeV� � 1:6

���������������������������
E=�10 MeV�

p
and washes off the os-

cillations completely. For a scintillation detector, the reso-
lution is much better, �ESC �MeV� � 0:2

���������������������������
E=�10 MeV�

p
.

We show in Fig. 8(b) the spectrum of the observed positron
energy E0e after taking (43) and (44) into account and using
the energy resolution of a scintillation detector. It is ob-
served that one or two extrema at high energies (E �
40–60 MeV) may still survive for the Livermore model
where the spectrum extends to higher energies, but their
clean identification would require �105 events at a scin-
tillation detector in a single time bin. Figure 8(b) also
shows the positron energy spectrum for 105 events, binned
in 0.5 MeV energy intervals, which is approximately the
energy resolution of a scintillation detector near E �
40 MeV.
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The total number of events expected even at a future
50 kt scintillation detector is�104 for a SN at a distance of
10 kpc [26]. Even with 1 sec time bins, the number of
events in each bin will be�103. This is a number too small
for our purposes. Thus, the identification of the phase
effects seems very unlikely, unless the SN is as close as a
kpc.

The density profiles in the shock wave are quite uncer-
tain, and one may expect that some possible profiles give
rise to oscillations with larger amplitudes and wavelengths,
which would be easier to observe. The amplitude of oscil-
lations is proportional to the ratio jA0�T�=A0�R�j [See (18)
and (19)]. Therefore, larger amplitudes need a larger ratio
jA0�T�=A0�R�j whereas larger wavelengths need a sharp
tail, i.e. a larger jA0�T�j. At the same time, the adiabaticity
parameter at the two resonances has to be 0:1 & � & 2 for
E � 40 MeV. However, we find that even with such finely
tuned density profiles, the improvement in observability is
not significant.

IV. CONCLUDING REMARKS

When the neutrinos escaping from the core of a core
collapse SN pass through the shock wave, they may en-
counter multiple ‘‘H’’ resonances corresponding to �m2

atm

and �13, when the shock wave is in the regions with
densities around 500–5000 g=cc. We have shown that
this necessarily gives rise to oscillations in the neutrino
survival probabilities, which we have calculated as a func-
tion of energy. We present an analytical approximation for
small mixing angles and show that the oscillations are a
significant effect: they can be of the same order as the
nonoscillating terms. The typical values of �13 that gives
rise to the oscillation features are in the ‘‘transition region’’
of the neutrino mixing parameter space [3] that is signifi-
cant in range (10�5 & sin2�13 & 10�3) but is usually ne-
glected in the SN analysis for the sake of simplicity.

The local maxima and minima in the survival probabil-
ities of �e or ��e are determined by the relative phase
accumulated by the neutrino mass eigenstates between
the multiple resonances. The positions of these extrema
depend on the density profile and are independent of the
primary neutrino spectra. If these extrema were identified
they would reveal information on the propagation of the
shock wave: its location as well as the density variation
present around it. Since neutrinos are the only particles that
can carry information about the shock wave while it is still
deep inside the exploding star, it is important to explore the
observability of these phase effects. Moreover, the mere
identification of these effects in the ��e spectrum would
establish the inverted hierarchy and nonzero �13, which are
two of the most important quantities in neutrino phenome-
nology, and even faint chances of their determination
should be explored.

It is interesting that for typical shock wave profiles,
oscillations with ‘‘wavelengths’’ of 2–8 MeV are indeed

present in the neutrino survival probabilities in the energy
range E � 30–60 MeV. These wavelengths are tantaliz-
ingly close to the resolving power of the neutrino detectors.
However, the inability of the detectors in reconstructing the
energy of the incoming neutrino tends to wash out the
oscillation pattern. For typical shock wave density profiles,
the energy resolution of water Cherenkov detectors is
insufficient to detect the oscillations. Even a scintillation
detector with a superior energy resolution will need �105

events in the relevant time bin of 4–5 sec post-bounce for
identifying one or two extrema in the most optimistic
scenario.

Therefore, we expect that neglecting the phase effects is
a valid practical approximation except under extreme
cases. Note that it is still possible to observe other robust
signatures of shock wave propagation like the dips in the
time spectrum of number of events [7] or the double dip
feature in hEi [8]. Some of these features survive even in
the presence of somewhat extreme stochastic density fluc-
tuations, as discussed in [10]. The oscillatory effects might
contribute additional scatter to these signals but will not
spoil the signatures.

We must qualify the above conclusions by stating the
effects ignored in our analysis to obtain the present results.
We have assumed a smooth spherically symmetric density
profile and ignored anisotropies that are likely to be present
[8]. This is a justified assumption only as long as the
deviations from this assumed profile occur only on trans-
verse distances larger than the size of the neutrinosphere so
that the neutrinos in our line of sight do not experience the
anisotropy. We have not included the recently discussed
collective effects of coherent flavor development [16,17],
which may be important in the inverted hierarchy.
However, the extent and nature of its impact on flavor
conversion has not been worked out in detail, which makes
it difficult to be included in the present analysis. Similarly,
the effects of a realistic spectrum of stochastic fluctuations
in the medium density or turbulent convections behind the
shock wave are yet to be calculated for SN neutrinos
[10,18]. We think that with a better understanding of the
collective effects and density fluctuations one could in-
clude their effect on the realistic observability of the phase
effects.

The phase effects pointed out here result from the inter-
ference between two or more MSW resonances. This phe-
nomenon is not restricted to the SN alone, but may occur
whenever neutrinos pass through nonmonotonic matter
densities and the resonances are semiadiabatic. The tech-
nique developed in this paper for treating coherent multiple
resonances is applicable to such cases.
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