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It is shown explicitly that in classical dynamics of theories with higher derivatives there arises the
exponential instability with respect to external dissipative force. For this aim, the equations of motion for
the Pais-Uhlenbeck fourth order oscillator with damping are investigated and the corrections to the
oscillator frequencies due to the friction force are calculated.
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I. INTRODUCTION

All fundamental physical theories are defined by differ-
ential equations at most of the second order. However, in
the course of searching for new theories the models de-
scribed by higher-order derivative Lagrangians are consid-
ered too [1]. It is worth mentioning here the gauge theories
with higher derivatives [2,3], the gravitation models with
higher-order curvature corrections to the Einstein-Hilbert
action [4–13], the models of point particles with
Lagrangians depending on curvature and torsion of the
world trajectories [14,15], rigid strings [16]. The higher
derivative theories have some appealing properties, in
particular, the convergence of the Feynman diagrams is
improved [17], for instance, the conformal gravity is not
only power counting renormalizable quantum field theory
[5], but it turns out to be asymptotically free [6,7].

Recently the interest in theories with higher derivatives
revived again. For example, such models are considered
when looking for the theory of everything [18,19] and
when modifying the gravity to make it predict observed
cosmic phenomena without the need for dark energy and
maybe for dark matter [13,20].

It is generally believed that the theories with higher
derivatives are intrinsically sick due to the states with
negative norm (’’ghosts’’) which spoil the unitarity [21].
This peculiarity of theories at hand is a direct consequence
of unboundness from below of their quantum spectrum
[13,22,23]. All this leads to instability of higher derivative
theories both at classical and quantum levels. Sometimes
this instability is referred to as the Ostrogradskian insta-
bility (see, for example, the review [13]). The recent papers
[18,19] have convincingly demonstrated that it is instruc-
tive to investigate the general problem of instability of
theories with higher derivatives first of all in the framework
of their classical dynamics.

The present Brief Report seeks to draw the attention to
the instability of theories with higher derivatives with
respect to external dissipative force; namely, it will be
shown that in classical dynamics of such models there
arises the exponential instability (runaway solutions) due

to the external friction force. As far as we know, the
instability of this kind has not been considered yet.

When investigating the higher derivative theories it is
convenient to use the Pais-Uhlenbeck forth order oscillator
[1,13,18,24], a quantum mechanical analog of a field the-
ory containing both second and fourth order derivative
terms. This model, upon introducing therein damping,
will be used in the present paper also.

II. PAIS-UHLENBECK FOURTH ORDER
OSCILLATOR WITH DAMPING

Without damping the coordinate x�t� of the Pais-
Uhlenbeck oscillator obeys the equation [1]
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the general solution to which has the form

 x�t� � a1ei!1t � a�1e
�i!1t � a2ei!2t � a�2e

�i!2t; (2.2)

where an are the complex amplitudes. In what follows, we
assume that the positive frequencies !1 and !2 are differ-
ent and !2 >!1. The case of equal frequencies !1 � !2

requires a special consideration [18,24].
By making use of the Ostrogradski formalism [25] one

can develop the Hamiltonian description of this model
(see, for example, [13,18,24]). As a result, the conserved
energy acquires the following values
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for the oscillations with the frequency !1 and
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for the frequency !2.
The energy of the conservative system (2.1) is an integral

of motion, and the fact that it can acquire negative values
(2.4) does not lead to any physical contradictions. A differ-
ent situation arises when the system under consideration
experiences external action.

Let us introduce the friction force into the equation of
motion (2.1)*Electronic address: nestr@theor.jinr.ru
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where 2� is a positive constant (friction coefficient). As
before the time dependence of the solutions to Eq. (2.5) is
described by the factor ei!t, where the frequency ! is the
root of the equation
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2 �!2
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2
2 � 2i�! � 0: (2.6)

In order to simplify the calculations we assume that the
damping is weak, so the perturbation theory is applicable.
Upon substituting in Eq. (2.6)

 ! � !n � i�!n; n � 1; 2; (2.7)

we arrive at the equation for �!n. In the approximation
linear in � it reads

 2!2
n�!n � �!2

1 �!
2
2��!n � � � 0; n � 1; 2:

(2.8)

Thus, the frequency shifts for !1 and !2 prove to be real
and equal in the absolute value but they have the opposite
signs
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because we have assumed that !2 >!1. As a result, the
solution

 x1�t� � ei!1t��!1t (2.11)

exponentially decreases in time, while the solution

 x2�t� � ei!2t�j�!2jt (2.12)

exponentially increases in time. The damping behavior of
the solution x1�t� is physically motivated, namely, due to
the external friction force the amplitudes a1 and a�1 in
Eq. (2.3) decrease in time and the energy E1 also decreases
being positive. Unlike this, the amplitudes a2 and a�2 in
Eq. (2.4) exponentially grow up and there are no reasons to
stop this process, since the energy E2, being negative,
decreases without bound. Thus we arrive at the exponential
instability of the classical dynamics of the Pais-Uhlenbeck
oscillator due to the external dissipative force (runaway
solutions).

We can also consider the Pais-Uhlenbeck oscillator
which experiences an arbitrary external force f�t�
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The general solution to this equation can be expressed in
terms of the relevant Green function
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where
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From Eq. (2.13) we deduce in a straightforward way
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Now we see from Eqs. (2.14) and (2.16), that the forces
with spectral densities localized around !2

1 and !2
2 give

rise to displacement x of opposite signs. Obviously, it
implies that one of these displacements is unphysical.

III. CONCLUSION

By making use of a simple and clear example, tractable
analytically, we have revealed the exponential instability of
the theories with higher derivatives with respect to the
external dissipative force. In view of irremovable character
of dissipative processes, any theory with higher deriva-
tives, in order to be viable, should involve the mechanism
that prevents such an instability.

In closing, it is worthy to note that the instability prob-
lem in nonrelativistic mechanical models with higher de-
rivatives has its own peculiarities [22,26,27].
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